CN103687683A - 从钯纳米颗粒除去表面活性剂 - Google Patents

从钯纳米颗粒除去表面活性剂 Download PDF

Info

Publication number
CN103687683A
CN103687683A CN201180071441.5A CN201180071441A CN103687683A CN 103687683 A CN103687683 A CN 103687683A CN 201180071441 A CN201180071441 A CN 201180071441A CN 103687683 A CN103687683 A CN 103687683A
Authority
CN
China
Prior art keywords
particles
palladium nano
hydrogen
nano
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180071441.5A
Other languages
English (en)
Other versions
CN103687683B (zh
Inventor
M.邵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of CN103687683A publication Critical patent/CN103687683A/zh
Application granted granted Critical
Publication of CN103687683B publication Critical patent/CN103687683B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)
  • Inert Electrodes (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

从钯纳米颗粒除去表面活性剂的方法,其包括将钯纳米颗粒暴露于氢气并从钯纳米颗粒除去表面活性剂。方法包括使用表面活性剂合成钯纳米颗粒。所述表面活性剂影响钯纳米颗粒的几何性质并结合至钯纳米颗粒。所述方法也包括将钯纳米颗粒暴露于氢气以从钯纳米颗粒除去表面活性剂。

Description

从钯纳米颗粒除去表面活性剂
背景技术
钯和钯合金纳米颗粒可用作催化剂,具体地在燃料电池中用以产生电场能。例如,在氢燃料电池中,在燃料电池的阳极可用钯催化剂氧化氢气成质子和电子。在燃料电池的阴极,钯催化剂引发氧还原反应(ORR),导致水的形成。
燃料电池的性能部分取决于钯纳米颗粒的可用表面积。当钯纳米颗粒的表面积增大时,燃料电池的性能一般增强。除了尺寸,也可选择钯纳米颗粒的形状以进一步增强氧还原反应(ORR)的活性。在纳米颗粒形成期间通常使用表面活性剂以控制颗粒尺寸和形状。在纳米颗粒成形和成尺寸(size)时表面活性剂结合至纳米颗粒。
一旦形成纳米颗粒,需要将用于使颗粒成形和成尺寸的表面活性剂除去。一些表面活性剂可通过洗涤和低温热处理除去。但是,其它表面活性剂需要长洗涤时间(在特定溶剂中长达几周)或在高于300 °C的温度下高温处理。对于一些催化剂纳米颗粒,高温处理存在问题。例如,在300 °C,立方钯纳米颗粒可能失去它们的形状并粒度增大。结果,使用高温处理从纳米颗粒除去表面活性剂消除了所述表面活性剂意在提供的益处。
发明综述
从钯纳米颗粒除去表面活性剂的方法包括,将钯纳米颗粒暴露于氢气并从钯纳米颗粒除去表面活性剂。
方法包括使用表面活性剂合成钯纳米颗粒。表面活性剂影响钯纳米颗粒的几何性质并结合至钯纳米颗粒。所述方法也包括将钯纳米颗粒暴露于氢气以从钯纳米颗粒除去表面活性剂。
附图简述
图1是从钯纳米颗粒除去表面活性剂的方法的简化图。
图2用电势将表面活性剂和钯纳米颗粒之间的结合暴露于氢气的方法的简化图。
图3用氢气将表面活性剂和钯纳米颗粒之间的结合暴露于氢气的方法的简化图。
图4是从钯纳米颗粒除去表面活性剂的方法的简化图。
图5是制备钯纳米颗粒的方法的简化图。
发明详述
本发明提供从钯纳米颗粒除去表面活性剂的简单有效的方法。电化学和化学方法使用氢气弱化表面活性剂在钯纳米颗粒上的吸附。该方法提供从钯纳米颗粒除去表面活性剂的简单有效的方式而不使用高温。
表面活性剂经常被用于改变用作燃料电池催化剂的钯纳米颗粒的尺寸和形状。 在钯纳米颗粒形成期间存在的表面活性剂胶束影响纳米颗粒的几何形状。可使用特定的表面活性剂和表面活性剂浓度以形成具有满足燃料电池性能要求所需的特定尺寸和形状的钯纳米颗粒。使钯纳米颗粒成尺寸和成形的适合的表面活性剂包括聚乙烯吡咯烷酮(PVP)、和氯基和溴基盐。表面活性剂在它们使得纳米颗粒成形时结合至钯纳米颗粒。在钯纳米颗粒用作催化剂之前,这些表面活性剂必须从钯纳米颗粒除去,以使所述纳米颗粒能和反应物完全接近。
如上文提示的,典型地,通过(有或没有低温处理)洗涤纳米颗粒或高温处理除去表面活性剂。这些表面活性剂的除去方法中的各种均有缺点。一些表面活性剂只有在特别长的洗涤时间后才能除去。用于洗涤纳米颗粒的长时间段增加了生产最终的纳米颗粒催化剂所需的时间和成本。高温处理典型地需要高于300 °C的温度并可能对钯纳米颗粒有不利作用。如上文提示的,在300 °C钯纳米颗粒可能失去它们的形状并尺寸增大。高温处理以从纳米颗粒除去表面活性剂可能消除用表面活性剂提供的尺寸和形状改性。
代替使用冗长的洗涤方法或有害的高温方法,本发明使用分子氢弱化纳米颗粒和用于使得所述纳米颗粒成形和/或成尺寸的表面活性剂之间的结合。图1示出从纳米颗粒除去表面活性剂的方法的简化图。方法10包括将纳米颗粒暴露于氢气(步骤12)并从纳米颗粒除去表面活性剂(步骤14)。氢气穿透进钯颗粒并扩大钯-钯点阵间距。钯-钯点阵间距的这种扩大弱化表面活性剂的吸附并促进从纳米颗粒除去表面活性剂。如下文讨论的,氢气暴露步骤12可通过电化学或化学方法进行。
图2示出从纳米颗粒除去表面活性剂的电化学方法16的简化图。在步骤18中,施加电势至纳米颗粒。适合的电势在或低于氢气吸附/吸收和氢气释放发生的电势。在示例性实施方式中,相对可逆的氢电极电势测量在约-0.2V和约0.35V之间。在甚至更示例性的实施方式中,相对可逆的氢电极电势测量在约-0.2V和约0.1V之间。在一个具体实施方式中,相对可逆的氢电极电势测量在约-0.05V。  
在步骤20中,保持电势足以使得氢穿透进纳米颗粒的一段时间。所述纳米颗粒作为电极,并且氢气作为多步反应的结果而形成。首先,吸附的氢原子形成在纳米颗粒的表面上
                         H3O+ + e- → H· ads + H2O          (1)
其中H· ads是在纳米颗粒表面吸附的原子。吸附的氢原子组合形成分子氢
                   H· ads + H· ads → H2                                 (2)
或进一步的电化学反应生成分子氢
                         H· ads + H3O+ + e- → H2 + H2O  (3)
取决于电势。所形成的氢气穿透进入钯纳米颗粒,形成一氢化二钯并扩大钯纳米颗粒点阵。一氢化二钯是在其晶格中含有大量氢的金属钯。在室温下和大气压力下,钯能吸收高达900倍其自身体积的氢气。表面活性剂的吸附变弱,并且由于点阵扩大所述表面活性剂能从钯表面轻易脱附。在一些情况下,分子氢是不必要的。在反应(1)中形成的原子氢也能被钯吸收和引起点阵扩大。
在示例性实施方式中,保持电势少于约5分钟。在一个具体实施方式中,保持电势不多于约1分钟。典型地,步骤18和20在室温下进行(约15 °C和约30 °C之间)。在步骤18和20中使用电解质。适合的电解质包括稀释的水性酸,例如0.1 M高氯酸(HClO4)。
图3示出除去在钯纳米颗粒上的表面活性剂的化学方法22的简化图。代替在钯纳米颗粒表面形成氢,不涉及电化学反应的情况下,分子氢被递送到钯纳米颗粒。在步骤24中,将成尺寸的和成形的含表面活性剂的钯纳米颗粒放入容器中。在步骤26中,将氢气加入容器中使得钯纳米颗粒吸收分子氢,导致钯纳米颗粒的点阵扩大。吸收的氢气弱化钯纳米颗粒和表面活性剂之间的结合,使得表面活性剂易于除去。
一旦钯纳米颗粒已吸收足量的氢气,表面活性剂和钯纳米颗粒之间的结合将足够弱化使得表面活性剂只从纳米颗粒脱附(即表面活性剂从纳米颗粒“掉落”)。在钯纳米颗粒表面或钯晶格中存在的氢气也不需要进一步的处理。任何存在的氢气将在用作燃料电池催化剂之前或期间离开。  
图4示出从纳米颗粒除去表面活性剂的具有后处理步骤的方法的简化图。方法28包含方法10 的步骤(将钯纳米颗粒暴露于氢气并从纳米颗粒除去表面活性剂)以及洗涤步骤30和过滤步骤32。用水洗涤所述钯纳米颗粒。洗涤步骤30提供杂质以及在步骤18和20中期间使用的任何溶剂的去除。根据上述方法处理的钯纳米颗粒也可在步骤32中过滤以进一步纯化纳米颗粒。
图5示出制备钯纳米颗粒的方法的简化图。方法34包括将钯纳米颗粒与表面活性剂 (步骤36)组合。在步骤36中,所述表面活性剂改变纳米颗粒的几何性质(例如,尺寸、形状等)。作为步骤36的几何改性的结果,所述表面活性剂与所述纳米颗粒结合。一旦纳米颗粒的几何性质被改变,纳米颗粒暴露于步骤38的氢气中以从纳米颗粒除去表面活性剂。步骤38根据上述方法16或方法22进行。步骤38之后,表面活性剂不再结合至纳米颗粒,可以使用该纳米颗粒。
总之,用氢气弱化钯纳米颗粒和用于使得纳米颗粒成形和成尺寸的表面活性剂之间的结合。可使用电化学方法在钯纳米颗粒表面上形成氢气,使其被纳米颗粒吸收。也可将氢气加至纳米颗粒的环境使其被纳米颗粒吸收。将钯纳米颗粒暴露于氢气扩大了纳米颗粒的点阵结构并弱化了表面活性剂和纳米颗粒之间的结合,使得所述表面活性剂易于被去除。本文中描述的方法使得简单、快速和有效的表面活性剂去除,而不使用不利的高温或不需要长处理时间。
虽然提及优选的实施方式来描述本发明,本领域技术人员将认识到可以在形式和细节上进行改变而不背离本发明的精神和范围。

Claims (20)

1.从钯纳米颗粒除去表面活性剂的方法,所述方法包括:
暴露所述钯纳米颗粒于氢气,和
从所述钯纳米颗粒除去所述表面活性剂。
2.权利要求1所述的方法,其中所述钯纳米颗粒包含选自钯、钯合金及其组合的化学物质。
3.权利要求1所述的方法,其中暴露所述钯纳米颗粒于氢气包括:
施加电势至所述钯纳米颗粒,其中施加至所述钯纳米颗粒的所述电势在或低于氢气吸附/吸收和氢气释放所需的电势;和
保持所述电势足以让氢气穿透入钯纳米颗粒的时间。
4.权利要求3所述的方法,其中施加至所述钯纳米颗粒的所述电势测量从约-0.2V至约0.1V。
5.权利要求4所述的方法,其中施加至所述钯纳米颗粒的所述电势测量为约-0.05V。
6.权利要求3所述的方法,其中将所述电势施加至所述钯纳米颗粒少于约5分钟。
7.权利要求6所述的方法,其中将所述电势施加至所述钯纳米颗粒不多于约1分钟。
8.权利要求3所述的方法,其中当所述钯纳米颗粒在约15 °C和约30 °C之间的温度时,将所述电势施加至所述钯纳米颗粒。
9.权利要求3所述的方法,其中在稀酸存在下将所述电势施加至所述钯纳米颗粒。
10.权利要求3所述的方法,其进一步包括:
施加所述电势至所述钯纳米颗粒之后,用水洗涤所述钯纳米颗粒。
11.权利要求3所述的方法,其进一步包括:
施加所述电势至所述钯纳米颗粒之后,过滤所述钯纳米颗粒。
12.权利要求2所述的方法,其中暴露所述钯纳米颗粒于氢气包括:
将所述钯纳米颗粒放入容器中;和
将氢气加至所述容器中使得所述钯纳米颗粒吸收氢气。
13.方法,其包括:
使用表面活性剂合成钯纳米颗粒,其中所述表面活性剂影响所述钯纳米颗粒的几何性质并结合至所述钯纳米颗粒;和
暴露所述钯纳米颗粒于氢气以从所述钯纳米颗粒除去所述表面活性剂。
14.权利要求13所述的方法,其中所述钯纳米颗粒包含选自钯、钯合金及其组合的化学物质。
15.权利要求13所述的方法,其中暴露所述钯纳米颗粒于氢气包括:
施加电势至所述钯纳米颗粒,其中施加至所述钯纳米颗粒的所述电势在或低于氢气吸附/吸收和氢气释放所需的电势;和
保持所述电势足以让氢气穿透入钯纳米颗粒以弱化所述表面活性剂和所述钯纳米颗粒之间的结合的时间。
16.权利要求15所述的方法,其中施加至所述钯纳米颗粒的所述电势测量从约-0.2V至约0.1V。
17.权利要求16所述的方法,其中施加至所述钯纳米颗粒的所述电势测量为约-0.05V。
18.权利要求15所述的方法,其中将所述电势施加至所述钯纳米颗粒少于约5分钟。
19.权利要求18所述的方法,其中将所述电势施加至所述钯纳米颗粒不多于约1分钟。
20.权利要求14所述的方法,其中暴露所述表面活性剂和所述钯纳米颗粒之间的结合于分子氢包括:
将所述钯纳米颗粒放入容器中;和
将氢气加至所述容器中使得所述钯纳米颗粒吸收氢气。
CN201180071441.5A 2011-06-08 2011-06-08 从钯纳米颗粒除去表面活性剂 Expired - Fee Related CN103687683B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/001030 WO2012169992A1 (en) 2011-06-08 2011-06-08 Surfactant removal from palladium nanoparticles

Publications (2)

Publication Number Publication Date
CN103687683A true CN103687683A (zh) 2014-03-26
CN103687683B CN103687683B (zh) 2016-02-17

Family

ID=47296311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180071441.5A Expired - Fee Related CN103687683B (zh) 2011-06-08 2011-06-08 从钯纳米颗粒除去表面活性剂

Country Status (6)

Country Link
US (1) US9553318B2 (zh)
EP (1) EP2718046B1 (zh)
JP (1) JP5869668B2 (zh)
KR (1) KR101777901B1 (zh)
CN (1) CN103687683B (zh)
WO (1) WO2012169992A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573302A (zh) * 2014-08-19 2017-04-19 贺利氏德国有限两合公司 制造活性钯(0)粉末的方法
CN111326753A (zh) * 2018-12-15 2020-06-23 中国科学院大连化学物理研究所 一种担载型纳米电催化剂及其制备方法与应用
CN112941612A (zh) * 2021-01-25 2021-06-11 江西省万年群兴电子有限公司 一种用于提高腐蚀铝箔腐蚀性能的腐蚀装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020034675A1 (en) * 2000-07-29 2002-03-21 Karl-Anton Starz Noble metal nanoparticles, a process for preparing these and their use
CN101111337A (zh) * 2004-12-22 2008-01-23 布鲁克哈文科学协会 钯和钯-合金颗粒上的氢吸附诱导的金属沉积
CN101198407A (zh) * 2005-05-12 2008-06-11 微小分子股份有限公司 一种制备材料的方法
KR20100024169A (ko) * 2008-08-25 2010-03-05 삼성에스디아이 주식회사 연료전지용 금속 촉매의 제조 방법 및 이로부터 제조된 연료전지용 금속 촉매
CN101690884A (zh) * 2009-10-21 2010-04-07 中国海洋石油总公司 一种焦化苯液相深度脱除噻吩吸附剂的制备方法
KR100959245B1 (ko) * 2009-11-20 2010-05-20 권기영 수소 감지 센서

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712062A (en) * 1992-11-06 1998-01-27 Daikin Industries, Ltd. Carbon fluoride particles, preparation process and uses of the same
JP2000351603A (ja) 1999-06-09 2000-12-19 Toyota Motor Corp 水素吸蔵放出流体
US6572673B2 (en) * 2001-06-08 2003-06-03 Chang Chun Petrochemical Co., Ltd. Process for preparing noble metal nanoparticles
FR2893263B1 (fr) 2005-11-14 2013-05-03 Inst Francais Du Petrole Methode de synthese d'un catalyseur a base de nanoparticules metalliques anisotropes par voie micellaire.
CN101835553A (zh) * 2007-10-25 2010-09-15 近藤胜义 复合金属材料及其制造方法
JP2010103512A (ja) * 2008-09-26 2010-05-06 Toyota Motor Corp FePd/Feナノコンポジット磁石の製造方法
KR20100038069A (ko) * 2008-10-02 2010-04-12 서울대학교산학협력단 제거 가능한 리간드로 표면 개질된 전도성 나노입자
EP2177257A1 (en) * 2008-10-15 2010-04-21 Linde AG Catalyst containing platinum on a support consisting of nano-crystal magnesium oxide and cerium dioxide towards H2-SCR
KR101172861B1 (ko) * 2010-02-26 2012-08-09 삼성전기주식회사 금속 나노입자의 세정방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020034675A1 (en) * 2000-07-29 2002-03-21 Karl-Anton Starz Noble metal nanoparticles, a process for preparing these and their use
CN101111337A (zh) * 2004-12-22 2008-01-23 布鲁克哈文科学协会 钯和钯-合金颗粒上的氢吸附诱导的金属沉积
CN101198407A (zh) * 2005-05-12 2008-06-11 微小分子股份有限公司 一种制备材料的方法
KR20100024169A (ko) * 2008-08-25 2010-03-05 삼성에스디아이 주식회사 연료전지용 금속 촉매의 제조 방법 및 이로부터 제조된 연료전지용 금속 촉매
CN101690884A (zh) * 2009-10-21 2010-04-07 中国海洋石油总公司 一种焦化苯液相深度脱除噻吩吸附剂的制备方法
KR100959245B1 (ko) * 2009-11-20 2010-05-20 권기영 수소 감지 센서

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573302A (zh) * 2014-08-19 2017-04-19 贺利氏德国有限两合公司 制造活性钯(0)粉末的方法
CN111326753A (zh) * 2018-12-15 2020-06-23 中国科学院大连化学物理研究所 一种担载型纳米电催化剂及其制备方法与应用
CN111326753B (zh) * 2018-12-15 2021-06-29 中国科学院大连化学物理研究所 一种担载型纳米电催化剂及其制备方法与应用
CN112941612A (zh) * 2021-01-25 2021-06-11 江西省万年群兴电子有限公司 一种用于提高腐蚀铝箔腐蚀性能的腐蚀装置
CN112941612B (zh) * 2021-01-25 2023-03-31 江西省万年群兴电子有限公司 一种用于提高腐蚀铝箔腐蚀性能的腐蚀装置

Also Published As

Publication number Publication date
EP2718046A4 (en) 2016-01-06
US20140096645A1 (en) 2014-04-10
EP2718046B1 (en) 2018-10-03
JP2014527119A (ja) 2014-10-09
CN103687683B (zh) 2016-02-17
EP2718046A1 (en) 2014-04-16
US9553318B2 (en) 2017-01-24
KR20140034855A (ko) 2014-03-20
KR101777901B1 (ko) 2017-09-26
JP5869668B2 (ja) 2016-02-24
WO2012169992A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP7542467B2 (ja) 二酸化炭素電解装置および二酸化炭素電解装置の運転方法
Wang et al. Nanoporous iridium-based alloy nanowires as highly efficient electrocatalysts toward acidic oxygen evolution reaction
Zhang et al. A strategy in deep eutectic solvents for carbon nanotube-supported PtCo nanocatalysts with enhanced performance toward methanol electrooxidation
Jiang et al. Nanoarchitectonics of metallene materials for electrocatalysis
Li et al. A novel anode for direct borohydride-hydrogen peroxide fuel cell: Au nanoparticles decorated 3D self-supported reduced graphene oxide foam
KR101724690B1 (ko) 양극산화를 통한 철-니켈 기반 물분해 촉매전극 제조방법 및 이에 따라 제조된 물 분해 촉매전극
JP4934799B2 (ja) スポンジ状白金ナノシートをカーボンに担持せしめてなる白金−カーボン複合体とその製造方法
CN108044127B (zh) 一种三维多孔金银铂三元合金纳米材料及其制备方法与应用
Douk et al. One-pot synthesis of ultrasmall PtAg nanoparticles decorated on graphene as a high-performance catalyst toward methanol oxidation
US20130178360A1 (en) Nickel-based electrocatalytic photoelectrodes
Sankar et al. Tuning palladium nickel phosphide toward efficient oxygen evolution performance
Wu et al. Facile synthesis of clean Pt nanoparticles supported on reduced graphene oxide composites: Their growth mechanism and tuning of their methanol electro-catalytic oxidation property
Yang et al. Plasma-synthesized octahedral PtPd alloy/reduced graphene oxide nanocomposites with boosted electrocatalytic activity for methanol oxidation
Yang et al. Designed formation of hollow Pt nanocrystals supported on MoO x-modified carbon for high-performance methanol electro-oxidation
Xu et al. Comprehensive understanding of electro-oxidation of ethylene glycol
CN103687683B (zh) 从钯纳米颗粒除去表面活性剂
CN104607186A (zh) 基于低共熔溶剂的多壁碳纳米管载PdSn催化剂及其制备方法与应用
CN105845952B (zh) 一种燃料电池阳极催化剂的制备方法
Mourdikoudis et al. Simple bottom-up synthesis of bismuthene nanostructures with a suitable morphology for competitive performance in the electrocatalytic nitrogen reduction reaction
CN110997564A (zh) 电极材料用活性炭的制造方法
CN102881917B (zh) 一种PdMg/C纳米催化剂及其制备方法
Wang et al. Dealloyed different atom ratios Pdx (FeCo) 10–x nanoparticle: promising electrocatalyst towards ethylene glycol oxidation
Ipadeola et al. Controlling the Synthesis Protocols of Palladium‐Based Nanostructures for Enhanced Electrocatalytic Oxidation of Carbon Monoxide: A Mini‐Review
Hansu et al. A COMPARATIVE STUDY FOR SODIUM BOROHYDRIDE DEHYDROGENATION AND ELECTROOXIDATION ON CERIUM AND COBALT CATALYSTS.
CN104607205A (zh) 基于低共熔溶剂的多壁碳纳米管载PtCu催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: BALLARD POWER SYSTEMS

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP. (US) 1, FINANCIAL PLAZA HARTFORD, CONNECTICUT 06101 U.

Effective date: 20150603

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150603

Address after: Canadian British Columbia

Applicant after: BALLARD POWER SYSTEMS Inc.

Address before: American Connecticut

Applicant before: UNITED TECHNOLOGIES Corp.

C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160311

Address after: Germany Ingolstadt

Patentee after: AUDI AG

Address before: Canadian British Columbia

Patentee before: BALLARD POWER SYSTEMS Inc.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160217