CN103681432A - 静电吸盘 - Google Patents

静电吸盘 Download PDF

Info

Publication number
CN103681432A
CN103681432A CN201310378847.9A CN201310378847A CN103681432A CN 103681432 A CN103681432 A CN 103681432A CN 201310378847 A CN201310378847 A CN 201310378847A CN 103681432 A CN103681432 A CN 103681432A
Authority
CN
China
Prior art keywords
electrode layer
electrostatic chuck
ceramic electrical
electrical amboceptor
amboceptor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310378847.9A
Other languages
English (en)
Other versions
CN103681432B (zh
Inventor
穴田和辉
和田琢真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Publication of CN103681432A publication Critical patent/CN103681432A/zh
Application granted granted Critical
Publication of CN103681432B publication Critical patent/CN103681432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Abstract

本发明提供一种静电吸盘,其能够提高内部电极层与陶瓷电介体基板的贴紧性,能够提高内部电极层的导通性。具体而言,其特征为,具备:陶瓷电介体基板,其为多结晶陶瓷烧结体,具有放置处理对象物的第1主面和第1主面相反侧的第2主面;及电极层,内设于陶瓷电介体基板的第1主面与第2主面之间,一体烧结于陶瓷电介体基板,陶瓷电介体基板具有:第1电介层,位于电极层与第1主面之间;及第2电介层,位于电极层与第2主面之间,电极层具有:第1部分,具有导电性;及第2部分,将第1电介层与第2电介层结合起来,第2部分所含有的结晶的平均粒径小于陶瓷电介体基板所含有的结晶的平均粒径。

Description

静电吸盘
技术领域
本发明涉及一种静电吸盘,具体而言,涉及一种能够将吸附保持的处理对象物维持在所希望的温度的静电吸盘。
背景技术
在进行蚀刻(etching)、化学汽相沉积(CVD(Chemical Vapor Deposition))、溅射(sputtering)、离子注入、灰化等的等离子处理腔内,作为吸附保持半导体晶片或玻璃基板等处理对象物的单元使用静电吸盘。
静电吸盘的制作方法包括:烧成板状的陶瓷电介体基板,通过CVD或溅射等在其单面上形成电极的方法(单板结构);及通过薄板成形法制作陶瓷的印制电路基板,并在印刷有电极的印制电路基板的上下层叠多张印制电路基板而制作的方法(内部电极结构)。在静电吸盘中,从确保充分的吸附力与高耐电压的观点考虑,内部电极结构比较适合。
但是,进行等离子处理之后的腔内面附着有来自半导体晶片或涂膜的残渣及生成物。而且,如果反复进行等离子处理,则残渣及生成物逐渐堆积,不久便会从腔内面剥离而附着在半导体晶片或玻璃基板等的处理对象物的表面上,成为成品率降低的原因。
因此,以往一直使用等离子定期对腔内部进行清洗,除去附着在腔内面上的残渣及生成物。此时,有时会不用假晶片(Dummy Wafer)覆盖静电吸盘的表面而进行处理,即进行所谓的无晶片等离子清洗。在无晶片等离子清洗中,清洗时静电吸盘表面会直接暴露在O2气体或CF4气体等清洗等离子中。
在静电吸盘中,在实施了无晶片等离子清洗时,则发生陶瓷表面粒子的脱离及晶界的浸蚀,表面粗糙度变大。由此,会发生静电吸附力降低、密封环的气体泄漏量增加、半导体晶片与固体接触界面的热传导率降低等问题,不得不在短期间内更换静电吸盘。
于是,作为抑制因卤素气体等的等离子照射而发生的表面粗糙度变化的方法,在专利文献1中公开有电介体使用高纯度氧化铝的内部电极结构的静电吸盘的制造方法。
在专利文献1中公开有如下内容,在使用纯度99.5%的氧化铝粉末的印制电路基板上,涂敷含有W、Mo、WC、TiC、TiN等粉末的浆料而作为导体使用。
另外,在专利文献2中公开有如下静电吸盘的结构,在使用纯度99.9%以上的氧化铝粉末的印制电路基板上,涂敷由Pd单体或含有40重量%以下的Ag的Pd构成的导体而作为内部电极。
但是,在使用高纯度氧化铝的印制电路基板而制作内部电极结构的静电吸盘时,内部电极层与其上下的高纯度氧化铝层的贴紧性较弱,加工中在高纯度氧化铝层与内部电极层的界面上容易发生剥离。于是,为了强化贴紧性,虽然有作为相同材料将氧化铝添加于内部电极层的方法,但是在此情况下会产生由于添加氧化铝而导致内部电极的导电性降低的问题。
专利文献1:日本国特开平10-279349号公报
专利文献2:日本国特开平8-119720号公报
发明内容
本发明是基于这样的课题认识而进行的,其目的为提供一种静电吸盘,其能够提高内部电极层与陶瓷电介体基板的贴紧性,能够提高内部电极层的导通性。
第1发明为一种静电吸盘,其特征为,具备:陶瓷电介体基板,其为多结晶陶瓷烧结体,具有放置处理对象物的第1主面和所述第1主面相反侧的第2主面;及电极层,内设于所述陶瓷电介体基板的所述第1主面与所述第2主面之间,一体烧结于所述陶瓷电介体基板,所述陶瓷电介体基板具有:第1电介层,位于所述电极层与所述第1主面之间;及第2电介层,位于所述电极层与所述第2主面之间,所述电极层具有:第1部分,具有导电性;及第2部分,将所述第1电介层与所述第2电介层结合起来,所述第2部分所含有的结晶的平均粒径小于所述陶瓷电介体基板所含有的结晶的平均粒径。
根据该静电吸盘,由于第2部分所含有的结晶的平均粒径小于陶瓷电介体基板所含有的结晶的平均粒径,因此容易用第2部分连结第1电介层与第2电介层。另外,第2部分不会阻碍第1部分的导电性网络。由此,能够确保电极层的导电性,实现电极层与陶瓷电介体基板的可靠结合。
第2发明为一种静电吸盘,其特征为,在第1发明中,所述第2部分具有在不平行于所述第1主面的方向上延伸的部分。
根据该静电吸盘,由于在电极层中第1部分与第2部分形成像3维网眼似的网络,因此能够确保电极层的导电性,实现电极层与陶瓷电介体基板的可靠结合。
第3发明为一种静电吸盘,其特征为,在第2发明中,所述陶瓷电介体基板所含有的结晶粒子与所述第2部分所含有的结晶粒子通过固相烧结或液相烧结而相互结合。
根据该静电吸盘,玻璃等不纯物不会向陶瓷电介体基板扩散,能够确保陶瓷电介体基板的抗等离子性。
第4发明为一种静电吸盘,其特征为,在第1发明中,所述陶瓷电介体基板所含有的结晶粒子彼此通过固相烧结或液相烧结而相互结合。
根据该静电吸盘,玻璃等不纯物不会向陶瓷电介体基板扩散,能够确保陶瓷电介体基板的抗等离子性。
第5发明为一种静电吸盘,其特征为,在第1发明中,所述第1部分与所述第2部分直接结合。
根据该静电吸盘,玻璃等不纯物不会向陶瓷电介体基板扩散,能够确保陶瓷电介体基板的抗等离子性。
第6发明为一种静电吸盘,其特征为,在第1至第5中的任意一项发明中,所述陶瓷电介体基板的纯度为99.9重量%以上。
根据该静电吸盘,玻璃等不纯物不会向陶瓷电介体基板扩散,能够确保陶瓷电介体基板的抗等离子性。
第7发明为一种静电吸盘,其特征为,在第3发明中,所述第2部分的材料与所述陶瓷电介体基板为同种材料。
根据该静电吸盘,第1电介层与第2电介层的贴紧烧结性介由第2部分而得到提高。
第8发明为一种静电吸盘,其特征为,在第1至第7中的任意一项发明中,所述第1电介层的厚度为100微米(μm)以上。
根据该静电吸盘,由于第1电介层的厚度为100μm以上,因此能够维持充分的绝缘强度。
第9发明为一种静电吸盘,其特征为,在第1至第8中的任意一项发明中,所述电极层的厚度为15μm以下。
根据该静电吸盘,能够缓解电极层应力集中,能够防止电极层从陶瓷电介体基板剥离。
第10发明为一种静电吸盘,其特征为,在第1至第9中的任意一项发明中,所述第2部分所含有的结晶的平均粒径为所述电极层的厚度的1/2以下。
根据该静电吸盘,由于第2部分的电介体粒子进入电极层中,因此能够提高电极层与陶瓷电介体基板的贴紧性,而且也能够确保第1部分的充分的导通性。
第11发明为一种静电吸盘,其特征为,在第1至第10中的任意一项发明中,所述陶瓷电介体基板所含有的结晶的材料为Al2O3
根据该静电吸盘,能够制作出具有充分的抗等离子性的高纯度陶瓷烧结体。
根据本发明的形态,提供一种静电吸盘,其能够提高内部电极层与陶瓷电介体基板的贴紧性,能够提高内部电极层的导通性。
附图说明
图1是例示本实施方式所涉及的静电吸盘结构的模式剖视图。
图2(a)及(b)是例示电极层结构的模式剖视图。
图3(a)及(b)是例示静电吸盘表面的图。
图4(a)~(c)是说明第2部分的作用的图。
图5是例示电极层的图。
符号说明
11-陶瓷电介体基板;11a-第1主面;11b-第2主面;12-电极层;13-凸部;20-连接部;50-基座板;50a-上部;50b-下部;61-接触电极;80-吸附保持用电压;100-静电吸盘用基板;110-静电吸盘;111-第1电介层;112-第2电介层;121-第1部分;122-第2部分;W-处理对象物。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。而且,在各附图中,对相同的构成要素标注相同的符号并适当地省略详细说明。
图1是例示本实施方式所涉及的静电吸盘结构的模式剖视图。
图2(a)及(b)是例示电极层结构的模式剖视图。
图2(a)表示放大电极层部分的模式剖视图,图2(b)表示(a)所示的A部分断面的扫描式电子显微镜((SEM)Scanning Electron Microscope)图像。
如图1所示,本实施方式所涉及的静电吸盘110具备陶瓷电介体基板11与电极层12。
陶瓷电介体基板11例如是由多结晶陶瓷烧结体构成的平板状的基材,具有:第1主面11a,放置半导体晶片等处理对象物W;及第2主面11b,位于该第1主面11a的相反侧。
电极层12内设于陶瓷电介体基板11的第1主面11a与第2主面11b之间。即,电极层12以插入陶瓷电介体基板11中的方式形成。电极层12被一体烧结于陶瓷电介体基板11。静电吸盘用基板100是包括陶瓷电介体基板11与设置于陶瓷电介体基板11的电极层12的板状结构物。
静电吸盘110如下,通过对该电极层12外加吸附保持用电压80,从而在电极层12的第1主面11a侧产生电荷,利用静电力吸附保持处理对象物W。
在此,在本实施方式的说明中,将连接第1主面11a与第2主面11b的方向称为Z方向,将与Z方向正交的1个方向称为X方向,将与Z方向及X方向正交的方向称为Y方向。
陶瓷电介体基板11具有:第1电介层111,位于电极层12与第1主面11a之间;及第2电介层112,位于电极层12与第2主面11b之间。
电极层12是沿着陶瓷电介体基板11的第1主面11a及第2主面11b设置的。电极层12是用于吸附保持处理对象物W的吸附电极。电极层12既可以是单极型也可以是双极型。另外,也可以是三极型或其他的多极型。电极层12的数量、配置是适当选择的。图1所示的电极层12是双极型,同一面上设置有2极的电极层12。
如图2(a)及(b)所示,电极层12具有第1部分121与第2部分122。第1部分121具有导电性。第2部分122具有将第1电介层111与第2电介层112进行结合的部分。
第2部分122所含有的结晶的平均粒径小于陶瓷电介体基板11所含有的结晶的平均粒径。当第2部分122所含有的结晶的平均粒径小于陶瓷电介体基板11所含有的结晶的平均粒径时,则会容易通过第2部分122连结第1电介层111与第2电介层112。
另外,当第2部分122所含有的结晶的平均粒径小于陶瓷电介体基板11所含有的结晶的平均粒径时,则第1部分121的导电性网络会难以被第2部分122阻碍。即,第2部分122所含有的结晶的平均粒径越大,则第1部分121会越容易被第2部分122的结晶所阻断。另一方面,当第2部分122所含有的结晶的平均粒径小时,则第1部分121的连续性会被充分保持,容易确保第1部分121的导电性网络。
通过使第2部分122所含有的结晶的平均粒径小于陶瓷电介体基板11所含有的结晶的平均粒径,从而能够确保电极层12的导电性,实现电极层与陶瓷电介体基板的可靠结合。
在此,对静电吸盘110的具体构成例进行说明。
如图1所示,静电吸盘110安装在基座板50上。基座板50成为静电吸盘110的安装基准。在将静电吸盘110安装在基座板50上时,使用硅酮等耐热性树脂、铟接合及钎焊等。
基座板50例如被分成铝制的上部50a与下部50b,在上部50a与下部50b之间设置有通路55。通路55的一端侧连接于输入路51,另一端侧连接于输出路52。
基座板50发挥调节静电吸盘110的温度的作用。例如,在冷却静电吸盘110时,使冷却媒体从输入路51流入并通过通路55,从输出路52流出。由此,能够通过冷却媒体来吸收基座板50的热,从而冷却安装在其上的静电吸盘110。
另一方面,在对静电吸盘110进行保温时,也可以向通路55内输入保温媒体。另外,也可以在静电吸盘110或基座板50内内置发热体。这样,当通过基座板50调节静电吸盘110的温度时,能够容易地调节被静电吸盘110吸附保持的处理对象物W的温度。
另外,在陶瓷电介体基板11的第1主面11a侧,根据需要设置有凸部13,在凸部13之间设置有槽14。该槽14是连通的,在由静电吸盘110所搭载的处理对象物W的背面与槽14之间形成空间。
穿通基座板50及陶瓷电介体基板11的导入路53连接于槽14。当在吸附保持有处理对象物W的状态下从导入路53导入氦(He)等传递气体时,则传递气体流到设置在处理对象物W与槽14之间的空间,能够通过传递气体直接冷却处理对象物W。
在此,通过适当地选择凸部13的高度(槽14的深度)、凸部13及槽14的面积比率、形状等,从而能够将处理对象物W的温度或附着于处理对象物W的颗粒(particle)控制成优选的状态。
在陶瓷电介体基板11的第2主面11b上设置有连接部20。在与连接部20的位置相对应的基座板50的上部50a设置有接触电极61。因而,当将静电吸盘110安装在基座板50的上部50a时,则接触电极61接触连接部20,由此接触电极61与电极层12介由连接部20成为可通电的状态。
接触电极61例如使用可动式探针(probe)。由此,接触电极61与连接部20确实地接触,将接触电极61的接触引起的对连接部20的损伤抑制在最小限度。而且,接触电极61不局限于上述内容,可以是只是与连接部20接触的结构或者通过嵌合或螺合于连接部20而连接的结构等的任意方式。
接下来,具体说明陶瓷电介体基板11。
陶瓷电介体基板11所含有的结晶材料是例如Al2O3、Y2O3及YAG中的任意一种。通过使用该材料,从而能够提高陶瓷电介体基板11的绝缘耐性及抗等离子腐蚀性。从抗等离子性的观点考虑,作为陶瓷电介体基板11的材料优选使用Al2O3
优选陶瓷电介体基板11所含有的结晶的粒子彼此通过固相烧结或液相烧结而相互结合。即,是在结晶间不含有烧结辅助剂而结晶粒子彼此结合的状态。由于不使用烧结辅助剂,因此玻璃等不纯物不会向陶瓷电介体基板11扩散,可确保陶瓷电介体基板11的充分的抗等离子性。
优选陶瓷电介体基板11的纯度为99.9重量%以上。如果减少陶瓷电介体基板11所含有的不纯物,则玻璃等不纯物不会向陶瓷电介体基板11扩散,可确保陶瓷电介体基板11的充分的抗等离子性。
陶瓷电介体基板11中第1电介层111的厚度为100μm以上。当第1电介层111的厚度为100μm以上时,能够维持静电吸盘110的充分的绝缘强度。第1电介层的厚度较大地影响吸附力,为了使处理对象物的温度成为所希望的温度,可以适当地进行设定。在实施方式中,可以将第1电介层111的厚度设定为例如100μm至1000μm,更优选设定为100μm至500μm。
同样也可以适当地设定陶瓷电介体基板11中第2电介层112的厚度。陶瓷电介体基板11中设置有电极层12的静电吸盘用基板100的整体厚度为,考虑到陶瓷电介体基板11的机械強度、冷却性、加热性、可靠性及成品率等,例如是约0.5mm~10mm左右。优选静电吸盘用基板100的整体厚度为约0.5mm~7mm左右。更优选静电吸盘用基板100的整体厚度为约0.5mm~5mm左右。
根据本发明者所得出的见解,与相对较薄的陶瓷电介体基板11相比,在相对较厚的陶瓷电介体基板11上本实施方式的优越性变大。通过陶瓷电介体基板11使红外线透过的效果,能够减小在陶瓷电介体基板11上产生的温差。由此,相对较厚的陶瓷电介体基板11的冷却特性优于相对较薄的陶瓷电介体基板11的冷却特性。相对较厚的陶瓷电介体基板11的加热特性优于相对较薄的陶瓷电介体基板11的加热特性。
例如,存在设置加热器(未图示)使处理对象物W的温度升温的情况。在此情况下,加热器例如内置于第2电介层112。或者,加热器也可以设置在与第2主面11b相同的位置,也可以内置于基座板50。
当陶瓷电介体基板11的厚度变厚时,则第2电介层112的厚度变厚。这样,电极层12与及加热器之间的距离变大。由此,能够确保从电极层12到加热器的绝缘距离更长,能够提高静电吸盘110的可靠性。
如后述内容所示,作为静电吸盘110的制造方法的一个例子,可举出薄板(sheet)成形。例如,通过改变薄板的层叠张数,能够调节陶瓷电介体基板11的厚度。例如,当加厚烧成体的厚度时,则烧成体的载荷增加。根据本发明者所得出的见解,当烧成体的载荷增加时,则烧成体的翘曲减少。由此,第1电介层111及第2电介层112的厚度与电介层厚度大致相同。这样,静电吸盘110所产生的吸附力也是均匀的,半导体晶片等处理对象物W的温度大致相同。
而且,在作为陶瓷电介体基板11的材料而使用了Y2O3或YAG时,按1mm厚度换算时的红外线的透过率为约20%以上约90%以下。
在作为陶瓷电介体基板11的材料而使用了Al2O3时,按1mm厚度换算时的红外线的透过率为约20%以上90%以下。更优选的是,在作为陶瓷电介体基板11的材料而使用了Al2O3时,按1mm厚度换算时的红外线的透过率为大于30%且在90%以下。根据本发明者所得出的见解,在作为陶瓷电介体基板11的材料而使用了Al2O3时,能够制造出按1mm厚度换算时红外线的透过率大于30%且在90%以下的陶瓷电介体基板11。
如果陶瓷电介体基板11的第1电介层111含有异物,则放置在第1电介层111上的处理对象物W即晶片的温度有时会上升。
根据本发明者所得出的见解,如果陶瓷电介体基板11的第1电介层111所含有的异物的外径(mm)为3mm以下,则能够将晶片的温度上升抑制在5℃以下。或者,当考虑到能够通过实体显微镜确认外径为0.05mm以上的异物时,如果异物的外径为0.05mm以上3mm以下,则能够将晶片的温度上升抑制在5℃以下。
另外,根据本发明者所得出的见解,如果异物的面积相对于在Z方向上观察陶瓷电介体基板11时的面积的比率(%)为0.16%以下,则能够将晶片的温度上升抑制在5℃以下。或者,当设想外径为0.1mm以上的异物时,如果异物的面积比率为0.002%以上0.16%以下,则能够将晶片的温度上升抑制在5℃以下。
接下来,具体说明电极层12。
如图2(a)所示,电极层12设置在陶瓷电介体基板11的第1电介层111与第2电介层112之间。电极层12一体烧结于陶瓷电介体基板11。
如图2(b)所示,第1部分121含有金属材料。作为金属材料可举出钯(Pd)、白金(Pt)等。在本实施方式中,第1部分121的材料使用Pd。
第1部分121具有金属材料的粒子彼此贴紧连续的区域。在图2(b)所示的断面SEM图像中,虽然作为第1部分121出现了多个区域,但是各区域在某个位置相连结。因而,在对电极层12外加电压的状态下,第1部分121的各区域成为等电位。
在电极层12的沿着XY面的断面上,第2部分122的占有率为12面积%以上65面积%以下,优选15面积%以上58面积%以下,更优选18面积%以上49面积%以下。
另外,在电极层12的沿着ZX面的断面上,第1部分121对于第2部分122的占有率为30面积%以上90面积%以下,优选40面积%以上80面积%以下,更优选42面积%以上73面积%以下。
电极层12的第2部分122所含有的结晶的平均粒径小于陶瓷电介体基板11所含有的结晶的平均粒径。
平均粒径例如能够从SEM图像导出。
图3(a)及(b)是例示静电吸盘表面的图。
图3(a)是电极层12表面的SEM图像,图3(b)是陶瓷电介体基板11的表面(第1主面11a)的SEM图像。
在此,平均粒径是例如通过以下方法而算出的。即,为了能够判定晶界,准备施以断裂或热蚀刻等加工的陶瓷电介体基板11,通过5000倍的SEM相片对多个部位进行测定。对于1个测定部位,将在晶界呈近似椭圆时的长径作为粒径。而且,将测定该粒径的100个平均值作为平均粒径。
根据图3(a)所示的SEM图像,对电极层12的第2部分122所含有的100个结晶粒子的平均粒径进行测定时为约1.0μm。另一方面,根据图3(b)所示的SEM图像,对陶瓷电介体基板11所含有的100个结晶粒子的平均粒径进行测定时为约1.7μm。
在电极层12内,第1部分121与第2部分122形成了像3维网眼似的网络。由第1部分121构成的网络为导电性网络。
当第2部分122所含有的结晶的平均粒径大于陶瓷电介体基板11所含有的结晶的平均粒径以上时,第1部分121的导电性网络容易被阻碍。另一方面,当使第2部分122所含有的结晶的平均粒径小于陶瓷电介体基板11所含有的结晶的平均粒径以下时,变得难以阻碍第1部分121的导电性网络。
而且,在第2部分122进入第1部分121的间隙时,变得容易通过第2部分122连结第1电介层111与第2电介层112之间。因而,能够同时实现确保电极层12的导电性以及提高电极层12与陶瓷电介体基板11的贴紧性。
以连接第1电介层111与第2电介层112的方式设置第2部分122。第2部分122具有在与沿着第1主面11a的方向(沿着X-Y平面的方向)不平行的方向上延伸的部分122a。部分122a将第1电介层111与第2电介层112结合起来。
第2部分122被设置为埋入第1部分121的金属材料的粒子之间。即,第1部分121例如被设置成蚁巢状。第2部分122被设置为进入第1部分121的间隙。第2部分122具有:部分122b,被第1部分121的金属粒子所围住;及部分122a,以在Z方向上穿通第1部分121的方式延伸。
第2部分122机械性结合第1电介层111与第2电介层112。即,第2部分122中的部分122a一体烧结于第1电介层111及第2电介层112。部分122a具有连结第1电介层111与第2电介层112的功能。由此,能够提高电极层12与陶瓷电介体基板11的机械贴紧性。
第2部分122的材料与陶瓷电介体基板11为同种材料。第2部分122的材料为例如与陶瓷电介体基板11相同的多结晶陶瓷烧结体。当第2部分122的材料与陶瓷电介体基板11为同种材料时,介由第2部分122而第1电介层111与第2电介层112的贴紧烧结性得到提高。由此,能够有效地防止电极层12的剥离。
通过第1部分121及第2部分122的混合制成,电极层12成为在具备导电性的同时可以牢固地贴紧于陶瓷电介体基板11的结构。通过将这样的电极层12组装入陶瓷电介体基板11,从而能够同时满足内部电极层即电极层12的导通性以及与陶瓷电介体基板11的贴紧性。
在电极层12中,优选第1部分121与第2部分122直接结合。即,第1部分121及第2部分122相互接触。在第1部分121与第2部分122之间不含有烧结辅助剂。由此,玻璃等不纯物不会向陶瓷电介体基板11扩散,可确保陶瓷电介体基板11的充分的抗等离子性。
电极层12的厚度为约15μm以下。通过使电极层12的厚度为约15μm以下,从而缓解应力向电极层12集中。另外,能够有效地防止电极层12从陶瓷电介体基板11剥离。
表1表示对电极层12的厚度与剥离之间的关系进行调查的结果。
表1
电检层厚度(μm) 1 2 4 15 30
结果 未发生剥离 未发生剥离 未发生剥离 未发生剥离 发生剥离
判定 ×
在此,分别制作了厚度为1μm、2μm、4μm、15μm及30μm的电极层12,对与陶瓷电介体基板11的贴紧性进行了调查。剥离状态是通过SEM观察的。表1中,在外观上没有裂纹且SEM观察上未发生剥离时,标注有○标记,发生了裂纹或剥离时,标注有×标记。如表1所示,当电极层12的厚度超过30μm时发生了剥离。可认为当电极层12的厚度超过30μm时,则收缩率变大,从而发生剥离或裂纹。
图4(a)及(c)是说明第2部分的作用的图。
图4(a)模式表示第2部分122所含有的结晶CR的平均粒径大的情况,图4(b)模式表示第2部分122所含有的结晶CR的平均粒径小的情况。图4(c)表示电极层12的厚度t与结晶CR的平均粒径d的比率(d/t)、电导通性及烧成时的剥离状态。
如图4(a)及4(b)所示,在相邻的结晶CR接触的部分产生接触点。可知结晶CR的平均粒径小的一方(参照图4(b))与大的一方(参照图4(a))相比接触点CP更多。
另外,如图4(c)所示,优选第2部分122所含有的结晶CR的平均粒径d为电极层12的厚度t的1/2以下。当第2部分122所含有的结晶CR的平均粒径d为电极层12的厚度t的一半以上时,则成为剥离的主要原因的与基材的接触点减少、成为导通不良的主要原因的导通通道数的减少等的影响会变大。这是因为为了第2部分122所含有的结晶CR可进入电极层12中且确保第1部分121的导电性及贴紧性,需要第2部分122所含有的结晶CR的平均粒径d为电极层12的厚度t的1/2以下。
因而,在电极层12的厚度为例如15μm时,优选第2部分122所含有的结晶的平均粒径为7.5μm以下。
接下来,对本实施方式所涉及的静电吸盘110的制造方法的一个例子进行说明。而且,在本实施方式中,虽然举出薄板成形的一个例子,但是并不限定热压或挤出成形等制造方法。
氧化铝印制电路基板的制作
在氧化铝粉末中添加粘合剂及溶媒等,在通过球磨机进行混合粉碎后,经过脱泡进行印制电路基板的成形。优选不纯物较少的氧化铝粉末,使用纯度99.9重量%以上的粉末,更优选使用99.99重量%以上的粉末。粘合剂可选择从由以下树脂构成的群中选择的至少1种树脂,即,聚乙烯醇、聚乙烯醇缩丁醛、聚氯乙稀等的乙烯基类树脂;甲基纤维素、乙基纤维素(ethyl cellulose)、羟基乙基纤维素(hydroxyl ethyl cellulose)等的纤维素类树脂;及聚丙烯酸酯、聚甲基丙烯酸甲酯等的丙烯酸类树脂。除此之外,也可以使用水溶性粘合剂树脂或其他陶瓷薄板制品的处理中可使用的常用粘合剂。接下来,溶媒可以选择丁酮、乙醇、异丙醇、甲苯、二乙基醚、三氯乙烯、甲醇等的单一溶媒或2个以上的混合溶媒。但是,可溶解粘合剂的溶媒即可,并不限定溶媒。
金属化浆料的制作、形成
如下制作用于形成电极层12的金属化浆料。混合氧化铝粉末与Pd粉末后添加粘合剂等,通过三辊式滚轧机进行混合而制作金属化浆料。
接下来,使用所述金属化浆料通过网板印刷法在氧化铝印制电路基板上印刷成为电极层12的内部电极图形(Pattern)。另外,也可以在其他的氧化铝印制电路基板上,在用于连接之后所形成的外部端子而打开的通孔或过孔(Via Hole)内预先印刷金属化浆料。另外,电极的形成不局限于网板印刷法,也可以采用蒸镀法(物理汽相沉积(Physical Vapor Deposition)、化学汽相沉积等)等。
氧化铝印制电路基板的层叠
接下来,在对氧化铝印制电路基板进行相互对位的同时,进行层叠、热压接,制作使整体的厚度为规定厚度的层叠体。
层叠后的氧化铝印制电路基板的烧成、HIP处理
接下来,在1250℃以上1700℃以下、更优选1300℃以上1450℃以下对层叠体进行烧成,与内部电极图形同时进行烧成。烧成并不限定大气环境、还原环境等烧成环境。烧成后,还要设定温度与压力而进行等静热压(HIP(HotIsostatic Pressing))处理。HIP处理的条件为,使加压用气体(例如Ar)在约1000气压以上,温度则根据烧成温度优选1200℃以上1600℃以下。
外部端子的形成
接下来,形成外部电极。从电介体(氧化铝烧结体)的一个面的一侧用钻头等进行鍃孔加工,使内部的通孔或过孔露出。通过钎焊、锡焊、导电性粘接剂等在该鍃孔加工部分接合电极端子。
氧化铝烧结体的加工
对氧化铝烧结体(陶瓷电介体基板11)的表、背两面进行磨削加工,将氧化铝烧结体基板的第1电介层111的厚度(吸附面到电极层12的距离)做成所希望的厚度。
接合
对形成有电极层12的陶瓷电介体基板11与基座板50进行接合。
表面图形的制作
在以使接合于基座板50的陶瓷电介体基板11成为规定厚度的方式进行磨削加工之后,通过喷砂法在表面上形成规定大小、高度的凸部13。
通过如上制作,能够得到在表面上形成有凸部13的静电吸盘110。
实施例
以下,根据实施例关于电极层12进一步进行例示。
准备Pd粉末与氧化铝粉末(纯度99.99%),制作氧化铝添加量为0体积%以上、70体积%以下的金属化浆料,将制作静电吸盘的结果示于表2。
表2
Figure BDA0000372565150000141
实施例1为Pd50体积%、氧化铝50体积%的例子。烧成、磨削加工也没问题,具有充分的内部电极层的贴紧力。另外,使用于静电吸盘时也具有充分的内部电极层的导电性。
图5是例示电极层的图。
图5表示烧成后的电极层12的断面SEM图像。图5中白色部分是Pd。
如图5所示,电极层12无空隙且致密,Pd粒子也彼此贴紧且连续。因而,导电性也变得良好,而且,电极层12与其上下的高纯度氧化铝层(第1电介层111及第2电介层112)的贴紧性也处于良好的状态。
另外,由于混合烧成不含有烧结辅助剂等的高纯度氧化铝与电极原料,因此氧化铝彼此的接触面积减少,所以添加于电极层12的氧化铝粒子不会成长大,而是保持微粒子的状态存在。由此,能够制作出满足贴紧性与导电性双方的电极层12。
实施例2为Pd30体积%、氧化铝70体积%的例子。虽然烧成后电极层12不具有导电性,但是通过HIP处理能够确保使用于静电吸盘时所充分的导电性。另外,烧成、磨削加工也没问题,发挥充分的电极层12的贴紧力。
抗等离子性评价
关于因照射等离子而引起的氧化铝烧结体的表面粗糙度降低(耐久性),利用如下样品进行了等离子照射试验、评价。使用的试验样品是切出在实施例1及2中制作的静电吸盘的一部分,并将其表面研磨成表面粗糙度为Ra0.03μm以下。向该试验样品照射等离子,测定了表面粗糙度Ra的变化。等离子照射使用反应离子蚀刻装置(ANELVA株式会社DEA-506),蚀刻气体为CF4:O2=4:1,以1000W进行了30小时。
其结果,照射等离子10小时后的表面粗糙度Ra为0.12μm,照射30小时后的表面粗糙度Ra为0.13μm。照射等离子10小时以上时表面粗糙度Ra几乎不发生变化,确认到可制作耐等离子性良好的氧化铝烧结体。
对比例1为未添加氧化铝的Pd100体积%的例子。此时,由于氧化铝层与内部电极层的贴紧性不充分,因此未能经得住烧成時的热应力,全部发生了内部电极层与氧化铝层的界面剥离,发生了裂纹。
对比例2为Pd70体积%、氧化铝30体积%的例子。此时,由于氧化铝与内部电极层的贴紧性也还不充分,因此在烧成時发生了内部电极层与氧化铝层的界面剥离,发生了裂纹。
接下来,对烧成体的翘曲进行说明。
在将烧成体的任意面(例如第1主面11a或第2主面11b等)作为上面(测定面)的状态下,以3点支撑该烧成体而进行设置。用电动量仪测定测定面的任意3个部位,将由该3个部位所形成的平面的平面度设定为0。接下来,在测定面上,计算出电动量仪的测定值的最大值与电动量仪的测定值的最小值之间的差来作为平面度。根据该平面度评价了烧成体的翘曲。
该结果的一个例子如下。即,在烧成体的厚度为1mm时的平面度为约2000μm左右。在烧成体的厚度为3.5mm时的平面度为约700μm左右。在烧成体的厚度为5mm时的平面度为约300μm左右。由此,可知当烧成体的厚度相对较厚时,烧成体的翘曲相对较小。
静电吸盘用基板100的厚度为例如约0.5mm~10mm左右。静电吸盘用基板100的厚度优选约0.5mm~7mm左右。静电吸盘用基板100的厚度更优选约0.5mm~5mm左右。
根据本实施方式,能够提供一种静电吸盘,其能够提高内部电极层与陶瓷电介体基板的贴紧性,能够提高内部电极层的导通性。
以上,对本发明的实施方式进行了说明。但是,本发明并不局限于上述记述。关于前述的实施方式,只要具备本发明的特征,则本领域技术人员适当加以设计变更的技术也包含在本发明的范围内。另外,只要在技术上可行,前述的各实施方式所具备的各要素可进行组合,这些组合后的技术只要包含本发明的特征,则也包含在本发明的范围内。

Claims (11)

1.一种静电吸盘,其特征为,
具备:陶瓷电介体基板,其为多结晶陶瓷烧结体,具有放置处理对象物的第1主面和所述第1主面相反侧的第2主面;
及电极层,内设于所述陶瓷电介体基板的所述第1主面与所述第2主面之间,一体烧结于所述陶瓷电介体基板,
所述陶瓷电介体基板具有:第1电介层,位于所述电极层与所述第1主面之间;及第2电介层,位于所述电极层与所述第2主面之间,
所述电极层具有:第1部分,具有导电性;及第2部分,将所述第1电介层与所述第2电介层结合起来,
所述第2部分所含有的结晶的平均粒径小于所述陶瓷电介体基板所含有的结晶的平均粒径。
2.根据权利要求1所述的静电吸盘,其特征为,所述第2部分具有在不平行于所述第1主面的方向上延伸的部分。
3.根据权利要求2所述的静电吸盘,其特征为,所述陶瓷电介体基板所含有的结晶粒子与所述第2部分所含有的结晶粒子通过固相烧结或液相烧结而相互结合。
4.根据权利要求1所述的静电吸盘,其特征为,所述陶瓷电介体基板所含有的结晶粒子彼此通过固相烧结或液相烧结而相互结合。
5.根据权利要求1所述的静电吸盘,其特征为,所述第1部分与所述第2部分直接结合。
6.根据权利要求1至5中任意一项所述的静电吸盘,其特征为,所述陶瓷电介体基板的纯度为99.9重量%以上。
7.根据权利要求3所述的静电吸盘,其特征为,所述第2部分的材料与所述陶瓷电介体基板为同种材料。
8.根据权利要求1至7中任意一项所述的静电吸盘,其特征为,所述第1电介层的厚度为100微米以上。
9.根据权利要求1至8中任意一项所述的静电吸盘,其特征为,所述电极层的厚度为15微米以下。
10.根据权利要求1至9中任意一项所述的静电吸盘,其特征为,所述第2部分所含有的结晶的平均粒径为所述电极层的厚度的1/2以下。
11.根据权利要求1至10中任意一项所述的静电吸盘,其特征为,所述陶瓷电介体基板所含有的结晶的材料为Al2O3
CN201310378847.9A 2012-08-29 2013-08-27 静电吸盘 Active CN103681432B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-189313 2012-08-29
JP2012189313 2012-08-29
JP2013141150A JP5441020B1 (ja) 2012-08-29 2013-07-04 静電チャック
JP2013-141150 2013-07-04

Publications (2)

Publication Number Publication Date
CN103681432A true CN103681432A (zh) 2014-03-26
CN103681432B CN103681432B (zh) 2017-11-10

Family

ID=50187273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310378847.9A Active CN103681432B (zh) 2012-08-29 2013-08-27 静电吸盘

Country Status (5)

Country Link
US (1) US9252041B2 (zh)
JP (1) JP5441020B1 (zh)
KR (1) KR101485438B1 (zh)
CN (1) CN103681432B (zh)
TW (1) TWI445128B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576490A (zh) * 2014-12-31 2015-04-29 上海卡贝尼精密陶瓷有限公司 一种静电吸盘及其制造方法
CN106024383A (zh) * 2015-03-31 2016-10-12 Tdk株式会社 层叠陶瓷电子部件
CN108780773A (zh) * 2016-02-10 2018-11-09 恩特格里斯公司 具有改善粒子性能的晶片接触表面突部轮廓
CN110277342A (zh) * 2018-03-14 2019-09-24 Toto株式会社 静电吸盘
CN111668149A (zh) * 2019-03-05 2020-09-15 Toto株式会社 静电吸盘
CN111883473A (zh) * 2014-12-10 2020-11-03 Toto株式会社 静电吸盘及晶片处理装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229968B2 (en) * 2011-11-30 2022-01-25 Watlow Electric Manufacturing Company Semiconductor substrate support with multiple electrodes and method for making same
JP5441020B1 (ja) * 2012-08-29 2014-03-12 Toto株式会社 静電チャック
JP5441019B1 (ja) * 2012-08-29 2014-03-12 Toto株式会社 静電チャック
US10008399B2 (en) 2015-05-19 2018-06-26 Applied Materials, Inc. Electrostatic puck assembly with metal bonded backing plate for high temperature processes
JP2018148163A (ja) * 2017-03-09 2018-09-20 日本特殊陶業株式会社 半導体製造装置用部品の製造方法
US11837489B2 (en) * 2018-03-23 2023-12-05 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device and production method for electrostatic chuck device
JP7178807B2 (ja) * 2018-06-25 2022-11-28 日本特殊陶業株式会社 半導体製造装置用部品
JP7111522B2 (ja) * 2018-06-25 2022-08-02 日本特殊陶業株式会社 静電チャック
KR101985809B1 (ko) * 2018-12-03 2019-06-04 이성민 정전척의 누설 검사 장치
JP6904442B1 (ja) 2020-01-31 2021-07-14 住友大阪セメント株式会社 セラミックス接合体、静電チャック装置
KR102416778B1 (ko) * 2020-11-23 2022-07-06 한국생산기술연구원 유전체와 전극의 어셈블리 및 그 제조 방법
WO2023076359A1 (en) * 2021-10-28 2023-05-04 Entegris, Inc. Electrostatic chuck that includes upper ceramic layer that includes a dielectric layer, and related methods and structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167886A (ja) * 1987-12-24 1989-07-03 Matsushita Electric Ind Co Ltd 倍速変換装置
JPH08119720A (ja) * 1994-10-14 1996-05-14 Nippon Cement Co Ltd アルミナセラミックス及びその製造方法
CN1941233A (zh) * 2005-09-30 2007-04-04 Tdk株式会社 叠层型陶瓷电子部件的制造方法
JP2011060826A (ja) * 2009-09-07 2011-03-24 Ngk Spark Plug Co Ltd 静電チャック及び静電チャックの製造方法
WO2012020832A1 (ja) * 2010-08-11 2012-02-16 Toto株式会社 静電チャック及び静電チャックの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06737A (ja) * 1991-03-29 1994-01-11 Shin Etsu Chem Co Ltd 静電チャック基板
EP0669644B1 (en) * 1994-02-28 1997-08-20 Applied Materials, Inc. Electrostatic chuck
JPH09172055A (ja) * 1995-12-19 1997-06-30 Fujitsu Ltd 静電チャック及びウエハの吸着方法
JPH10279349A (ja) 1997-02-05 1998-10-20 Kobe Steel Ltd 耐プラズマ性に優れたアルミナセラミックス
JP3486833B2 (ja) * 1997-08-26 2004-01-13 東芝セラミックス株式会社 静電チャック及びその製造方法
JPH11157953A (ja) * 1997-12-02 1999-06-15 Nhk Spring Co Ltd セラミックスと金属との構造体及びそれを用いた静電チャック装置
EP0948042A1 (de) * 1998-03-06 1999-10-06 VenTec Gesellschaft für Venturekapital und Unternehmensberatung Elektrostatische Vorrichtung zum Halten von Wafern und anderen Bauteilen
JPH11312729A (ja) 1998-04-28 1999-11-09 Kyocera Corp 静電チャック
TWI254403B (en) * 2000-05-19 2006-05-01 Ngk Insulators Ltd Electrostatic clamper, and electrostatic attracting structures
JP2002075783A (ja) * 2000-08-25 2002-03-15 Alps Electric Co Ltd 温度補償用薄膜コンデンサ
KR101042782B1 (ko) * 2006-09-19 2011-06-20 가부시키가이샤 크리에이티브 테크놀러지 정전 척의 급전구조 및 그 제조방법 및 정전 척 급전구조의 재생방법
US7851318B2 (en) * 2007-11-01 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor substrate and method for manufacturing the same, and method for manufacturing semiconductor device
JP2009302518A (ja) * 2008-05-13 2009-12-24 Toto Ltd 静電チャック
JP5267603B2 (ja) * 2010-03-24 2013-08-21 Toto株式会社 静電チャック
JP5454803B2 (ja) * 2010-08-11 2014-03-26 Toto株式会社 静電チャック
US20120154974A1 (en) * 2010-12-16 2012-06-21 Applied Materials, Inc. High efficiency electrostatic chuck assembly for semiconductor wafer processing
JP5441020B1 (ja) * 2012-08-29 2014-03-12 Toto株式会社 静電チャック
JP5441019B1 (ja) * 2012-08-29 2014-03-12 Toto株式会社 静電チャック
JP5441021B1 (ja) * 2012-09-12 2014-03-12 Toto株式会社 静電チャック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167886A (ja) * 1987-12-24 1989-07-03 Matsushita Electric Ind Co Ltd 倍速変換装置
JPH08119720A (ja) * 1994-10-14 1996-05-14 Nippon Cement Co Ltd アルミナセラミックス及びその製造方法
CN1941233A (zh) * 2005-09-30 2007-04-04 Tdk株式会社 叠层型陶瓷电子部件的制造方法
JP2011060826A (ja) * 2009-09-07 2011-03-24 Ngk Spark Plug Co Ltd 静電チャック及び静電チャックの製造方法
WO2012020832A1 (ja) * 2010-08-11 2012-02-16 Toto株式会社 静電チャック及び静電チャックの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883473A (zh) * 2014-12-10 2020-11-03 Toto株式会社 静电吸盘及晶片处理装置
CN104576490A (zh) * 2014-12-31 2015-04-29 上海卡贝尼精密陶瓷有限公司 一种静电吸盘及其制造方法
CN106024383A (zh) * 2015-03-31 2016-10-12 Tdk株式会社 层叠陶瓷电子部件
CN108780773A (zh) * 2016-02-10 2018-11-09 恩特格里斯公司 具有改善粒子性能的晶片接触表面突部轮廓
CN108780773B (zh) * 2016-02-10 2022-10-21 恩特格里斯公司 具有改善粒子性能的晶片接触表面突部轮廓
CN110277342A (zh) * 2018-03-14 2019-09-24 Toto株式会社 静电吸盘
CN111668149A (zh) * 2019-03-05 2020-09-15 Toto株式会社 静电吸盘

Also Published As

Publication number Publication date
CN103681432B (zh) 2017-11-10
KR20140029213A (ko) 2014-03-10
TWI445128B (zh) 2014-07-11
KR101485438B1 (ko) 2015-01-22
JP2014063986A (ja) 2014-04-10
TW201409608A (zh) 2014-03-01
JP5441020B1 (ja) 2014-03-12
US20140063682A1 (en) 2014-03-06
US9252041B2 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
CN103681432A (zh) 静电吸盘
CN103681437A (zh) 静电吸盘
CN103681433A (zh) 静电吸盘
US7468880B2 (en) Electrostatic chuck
TW442888B (en) Electrostatic holding apparatus and method of producing the same
KR20070066890A (ko) 정전척
KR100438881B1 (ko) 반도체 제조 장치용 웨이퍼 보유체 및 그것을 이용한반도체 제조 장치
US8498093B2 (en) Electrostatic chuck and method for producing the same
EP1340732A1 (en) Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
US20200404747A1 (en) Holding device and method of manufacturing holding device
CN113597665A (zh) 用于静电卡盘的高密度耐腐蚀层布置
US11177152B2 (en) Ceramic substrate containing aluminum oxide and electrostatic chuck having electrode containing tungsten with oxides
JP2005063991A (ja) 半導体製造装置
CN112259490A (zh) 具有加热功能的静电吸盘及其制备方法
JP2012178415A (ja) 静電チャック
JP2020040865A (ja) セラミックス部材の製造方法
JP4059158B2 (ja) 半導体製造装置
KR20200027897A (ko) 세라믹 기판 및 정전 척
JP2007088492A (ja) 静電チャックの製造方法および静電チャック

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant