CN1036666A - 场效应控制的双极型功率半导体器件及其制造方法 - Google Patents

场效应控制的双极型功率半导体器件及其制造方法 Download PDF

Info

Publication number
CN1036666A
CN1036666A CN89101864.6A CN89101864A CN1036666A CN 1036666 A CN1036666 A CN 1036666A CN 89101864 A CN89101864 A CN 89101864A CN 1036666 A CN1036666 A CN 1036666A
Authority
CN
China
Prior art keywords
type
layer
district
substrate
island region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN89101864.6A
Other languages
English (en)
Inventor
弗里德·海姆·鲍尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
Original Assignee
Asea Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Brown Boveri AG Switzerland filed Critical Asea Brown Boveri AG Switzerland
Publication of CN1036666A publication Critical patent/CN1036666A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bipolar Transistors (AREA)
  • Thyristors (AREA)

Abstract

在IGT(绝缘栅晶体管)中,用埋在结构中的专 门的金属硅化物导电层使n型区(5c)与n型发射层 的ρ型区(4b),以及ρ型基极层短路。
n型区(5c)的长度缩短与阴极接触层(8)和栅极 (7)之间的距离无关,使器件实际上不会闭锁。

Description

本发明涉及一种功率半导体器件。特别涉及一种场效应控制双极型功率半导体器件。它包括:
-位于基片中,阳极与阴极之间的P-型发射层、n-型基极层、P-型基极层,和n-型发射层,其中
-P-型基极层,在横向被空隙分隔成彼此隔开的多个单独的P-型区;
-在空隙中,n-型基极层露在基片表面;和
-n-型发射层以单个n-型区形式埋入每个P-型区中,因此,在P-型区(4a、……C)的边缘,和埋入P-型区中的n-型区之间,均是P-型基极层露在基片表面;和
-位于阴极边的,由栅极和阴极接触层交替排列构成的栅极-阴极结构,其中
-每个P-型区上面有一层阴极接触层,该接触层使P-型区所带的全部n-型区成电气连接,并连接这些n-型区之间的P-型区;和
-在相邻的P型区之间的每一个空隙上设置一个用栅绝缘层与基片绝缘的栅电极,该栅电极在相邻P型区的边缘,盖住露在表面的P型基极层。
这样的一种器件已在B.J.Baliga等的文章(IEEE    Jnt.Electron    Dev.Meet.Tech.Dig.,S.264-267,1982)中公开了。
本发明还涉及一种制造该器件的方法。按该方法,首先在基片上制出各层,并在阴极边用栅极绝缘层将整个表面复盖。
电源设备,作为电能生产者与用户之间的中间环节,必须用简单方式控制电源开关。
迄今使用的器件,如GTO或功率BJT,其控制费用均非常昂贵。如GTO的断路就要求有高的栅电流,这就需要设置控制电路。
通常,采用带有绝缘控制电极的器件能理想地简化控制电路,例如功率MOSFET。
但是,带有绝缘控制电极的通用器件的缺点在于,器件中单极电流传输取决于高导通电阻。
近来公开的一种新器件,它兼有双极型功率器件和MOS功率器件的优点(参见本文开始引用的B.J.Baliga等的文章,或J.P.Russel等人的文章,IEEE    Electron    Dev.Lett.EDL-4.S.63-65    1983)。
IGT(绝缘栅晶体管),或IGR,或COMFET,这些器件的结构,除漏区外,与最新的功率MOSFET器件的结构是一致的。在这种器件中,一个P+型掺杂的P-型发射区占据了n-型掺杂漏区的位置。
该区的空穴发射由流过绝缘栅下面的,MOS-反型层沟道的电子激励和控制。按这种方式,低功率的控制和电导率的调节在原理上是一致的。
但是,IGT有一个重大缺点,它的结构是按P-n-P-n的顺序排列的四层掺杂层构成的,因此,器件中存在寄生闸流晶体管结构,由于这一原因,正如所报道的那样(参见Nachad等人的文章,IEEE    Trans,Electron    Dev,ED-32,S    594-598,1985),在临界条件下,IGT中有阳极电流的闭锁趋势(“latch-uP”)。在这种情况下,电流不受栅极控制,使器件在短时间内被烧坏。
防止被烧坏的最有效方法是,设计出消除烧坏过程发生的最佳IGT结构。一个重要的原则是,尽可能减少n型区下面的P型区中的通路电阻。
例如,在B.J.Baliga的文章中(IEEE Electron Dev.Lett.,EDL-5.S.323-325,1984)已提出,在每一个P型区的n型区之间附加一个P+区,防止临界情况出现。
虽然采用这种措施使器件出现闭锁时的电流密度明显增大,但不能完全避免器件闭锁的危险。
本发明的任务是改变IGT的结构,这种结构无论带有附加的P+区或不带附加的P+区均能提高闭锁电流密度,使器件在很大程度上不受闭锁影响。
本发明的任务是用本文一开始所述的方式来完成的,即用一层导电层连接每个阴极接触层,并同所带的n型区之间连接。该导电层在基片表面上穿过阴极接触层和所带的n型区之间。
本发明的出发点同样是减小n型区下面的通路电阻。企图用缩短n型区来降低通路电阻。能实现的n型区的最小范围取决于所用工艺。
n型区的长度(图2中的X3)一方面必须足够大,以确保n型区和P型区短路,另一方面,要根据调整精度使阴极接触层的接触孔和栅电极之间保持最小距离。
就迄今已知的IGT结构而言,在阴极接触层底延伸的n型区可实现的最小长度显然超过2微米。
本发明的核心在于,为确保短路,不再采用一个较长的穿过一个与阴极接触层搭接的大的搭接区的n型区,而是在基片表面设置一个特定的短路导电层。按照这种方式,n型区的长度可以不受上述的最小距离影响而明显缩短。
根据第一个最佳实施例。所说的导电层由金属硅化物构成,所用金属选自钛、钨、钽、和钴金属中的一种金属。采用这种金属硅化物,由于具有较高的电导率,因此接触良好,有高的稳定性和好的工艺兼容性。
根据本发明的另一最佳实施例,栅电极用多晶硅制成,在多晶硅表面同样设置一层金属硅化物导电层。因此这种栅结构的电阻与用单纯多晶硅制成的栅电极电阻相比,降低约1个数量级。从而彻底改善了器件的动态特性。
本发明所述方法的特征工艺步骤如下:
-去掉除栅极下部和边缘区以外的栅极绝缘层;
-将导电层复盖基片的暴露表面;
-n型区和栅电极再复盖一层栅绝缘层;和
-紧接着形成阴极接触层。
根据本发明所述方法的一个最佳实施例,用多晶硅制成栅极,并在制成的多晶硅栅极上同样形成一层金属硅化物为导电层。首先选择钛、钨、钽、钴系列中的一种金属淀积在栅电极的整个表面,紧接着进行热处理,形成相应的金属硅化物。
本发明的其他实施例用从属权利要求给出。
本发明将结合有关附图用实施例作详细说明。
图1.现有技术中IGT结构剖面图(部分);
图2.图1的部分放大图;
图3A-D.根据本发明的一个实施例制造IGT的各个步骤。
图1所示的现有技术中IGT结构的一部分,已在本文开始所述的B.J.Baliga等人的文章,或J.P.Kussel等人的文章中公开。
在这种通用的结构中,基片1中处于阳极A和阴极K之间的各个掺杂层和它们的范围按层序排列。
各个掺杂层的层序为:一层P+掺杂的P-型发射层2,一层n掺杂的n-型基极层3,一层P掺杂的P-型基极层4和一层n+掺杂的n-型发射层5。
P-型基极层4由空隙10分隔成单个的P-型区4a,……,C。在这些空隙10中,位于下部的n型基极层3在阳极边的基片表面露出。
n型发射层5以单独的n型区5a,……,e的形式埋入每一个P型区4a,……C中。同时,P型基极层4在P型区4a,……,C的边缘和所带的n型区之间,在阴极边的基片表面露出。
阴极边的栅极-阴极结构包括交替放置的栅极7和阴极接触层8。在每个P型区4a,……,C上面都有一个阴极接触层8,该阴极接触层直接与各个P型区中所带的n型区接触,也与这些n型区之间露在表面的P型区接触。
在每个空隙10上部的基片表面设置栅电极7,它用普通的栅绝缘层6,例如SiO2形成的绝缘层与基片电绝缘。栅电极7不仅跨接相应的空隙10,也跨接相邻的P型区,在这些空隙中P型基极层4露在基片表面。
栅电极7与器件的栅极连接。在阳极边,在P型发射层2上形成平面阳极接触层11,与阳极A相连。
此外,每个P型区中的n型区之间还可以设置一个P+型区9,该P+型区通过P型基极层4延伸到n型基极层3中,从而降低器件的闭锁(“latch-up”)趋势。
IGT的工作机理在此无需进一步研究,它在所引用的文章中有详细说明。
已知的IGT结构的缺点从图2所示的单个IGT结构中可以清楚地看到,如本文开始所述,在n型区(5c)下面的P型区(4b)中的通路电阻,对IGT中的寄生闸流晶体管的闭锁起关键性作用。通路电阻越小,器件闭锁趋势就越小。
减小导通区(例如,通过P+区9)的电阻率,或缩短通路均能减小通路电阻。
本发明企图缩短通路。n型区5c的长度X3对通路长度的确定起决定性作用。
n型区长度X3由所采用工艺确定:在IGT中,按现有技术,X3必须足够大,以确保n型区与P基极层短路。这要求n型区与阴极接触层的搭接长为X1(图2)。
另一方面,由于不可避免的调整精度,必须保证阴极接触层8的接触孔与相邻栅电极之间有一个最小距离(图2中的长度X2)。由于有这些先决条件,长度X2显然要超过2微米,而不会再降低。
当不能用不多的费用来减小长度X2时,若按本发明保持长度X1和X2之间的关系,也就是说使n型区无搭接短路,长度X3则会明显下降。
在这种情况下,n型区5c和所带的阴极接触层8之间所必需的电连接是用特制的导电层12(图3D)完成的,导电层在基片表面从n型区5c延伸到阴极接触层8。
导电层12主要由薄层金属硅化物构成,所用金属是钛、钨、钽和钴中的一种。
这种金属硅化物-接触系统已在高度集成化中证明对半导体工艺有兼容性和高稳定性(例如S.J.Lai等的文章所述,IEEE    Trans、Electron    Dev.ED-33.S.345-353    1988)。
按此方法,阴极接触层8和栅极绝缘层6下埋设的导电层12使n型区5c与P型区4b短路。从而使长度X3能达到工艺上能实现的那么短。而且至少可以省去搭接长度X1。并使n型区完全被栅极绝缘层6复盖。
若在多晶硅栅电极7表面附加形成另一层同样的导电层13(图3D),则会有更多的优越性。并使较高的栅极电阻明显下降,器件的动态特性会得到明显改善。
此外,导电层12和13很容易在一个单独的工序中制成。
图3A-D描绘了本发明所述方法一个最佳实施例的各个步骤。
从基片1中已预先经过掺杂的情况开始,形成相应的栅电极(用多晶硅制成),并使栅电极的整个表面复盖一层栅绝缘层6(由按LPCVD法气相沉积的SiO2构成)(图3A)。
本发明与现有技术的差别在于,栅极绝缘层6被各向异性的全平面腐蚀,此时反应离子起蚀刻作用。由于栅电极7的边缘厚度不均匀,因此在此处留下一个绝缘层边缘区;在栅电极7的下面同样获得绝缘层(图3B)。
现在,在结构的整个表面上蒸发或沉积一层金属,蒸发或沉积的金属与硅形成高温稳定的金属硅化物(参见T.P.Chow等人的文章,IEEE    Trans.Electron    Dev.ED-30.S.1480-1497,1983)。适用的金属有钛、钨、钽和钴。
蒸发或沉积金属之后进行热处理形成金属硅化物,热处理温度应使金属硅化物仅在基片和多晶硅栅电极上形成。而不在栅电极边缘处和SiO2绝缘层的边缘区形成金属硅化物。用湿式化学蚀刻工序除去残留的无用金属。图3C给出了制成的结构。在该结构中导电层12、13用X号标示。
为了使硅化物层有尽可能高的电导率,还应在高温下进一步进行热处理。
紧接着使结构按惯用方法继续加工,在沉积SiO2绝缘层之后在该绝缘层上开一个接触孔,最后制成阴极金属化层(阴极接触层8)(图3D)。
将图2与图3D相比,本发明显然有全面的改善:
-高导电率的导电层12使n型区与P型发射区短路。这表明n型区的长度X3可以做到工艺上允许的那么小。同时避免器件闭锁而具有高稳定性。
-由于导电层12具有高导电率,因而不需要较深的n型区,因此可以增大n型区下面的P型发射层4的垂直范围(图2中的长度X4)。这同样有利于降低通路电阻。
-带有n型区的多晶硅栅电极,通常规定,也同样有一层电导率不是特别高的导电层13。栅极电阻可以降低约一个数量级。从而使器件的动态特性有明显改善。
-本发明不仅适用于无P+区的IGT,也适用于带P+区的IGT结构。
最后还应特别指出,本发明不仅适用于有所述层序的器件,也适用于具有互补层序的器件,正如J.P.Kussel等人的文章所述(IEEE    Electron    Dev.Lett,EDL-5.S.437-439、1984)。在这种情况下,可以用相应的n型发射层,P型基极层、n型基极层、P型发射层、n型区和P型区的层序来取代P型发射层、n型基极层、P型基极层、n型发射层、P型区和n型区的层序。
标号说明
1    基片
2    P-型发射层
3    n型基极层
4    P型基极层
4a,…,e    P型区
5    n型发射层
5a,…,e    n型区
6    栅绝缘层
7    栅电极
8    阴极接触层
9 P+型区
10    空隙
11    阳极接触层
12、13    导电层
A    阳极
K    阴极
G    栅极
X1…X4    长度

Claims (10)

1、场效应控制双极型功率半导体器件,它包括:
(a)基片(1)中阳极(A)和阴极(K)之间的一层P型发射层(2),一层n型基极层(3),一层P型基极层(4)和一层n型发射层(5),其中
(aa)P型基极层(4)在横向被彼此隔离的空隙(10)隔离成许多单个的P型区(4a,……,c);
(bb)在空隙(10)中n型基极层(3)露在基片(1)的表面;和
(cc)n型发射层(5)以单个n型区(5a,……e)的形式埋入每个P型区(4a,……,c)中,因此,P型基极层(4)在P型区(4a,……,c)的边缘和每一个P型区中的n型区之间露在基片(1)的表面;和
(b)阴极边,栅极一阴极结构交替排列成栅电极(7)和阴极接触层(8),其中,
(aa)每个P型区(4a……,c)上设置一层阴极接触层(8),该接触层与P型区所带的所有n型区成电气连接,并与这些n型区之间的P型区连接;和
(bb)在相邻P型区之间的每个空隙(10)上设置用栅绝缘层(6)与基片(1)绝缘的栅电极(7),栅电极复盖在相邻的P型区的边缘露出在表面上的P型基极层(4);
其特征在于
(c)制造一层导电层(12)使每一层阴极接触层(8)和所带的n型区之间成电连接,该导电层在基片(1)表面上从阴极接触层(8)延伸到所带的n型区。
2、按权利要求1的器件,其特征在于,在每一个P型区的n型区之间总设置一个P+型区,该区从基片(1)的表面穿过P型基极层(4)伸到n型基极层(3)中。
3、按权利要求1或2的器件,其特征在于,导电层(12)由金属硅化物构成。
4、按权利要求3的器件,其特征在于,导电层(12)所用的金属是钛、钨、钽和钴中的一种。
5、按权利要求4的器件,其特征在于,n型区(5a,…,e)用栅绝缘层(6)完全复盖。
6、按权利要求5的器件,其特征在于,栅电极(7)用多晶硅制成,并在多晶硅栅电极上设置一层同样的导电层(13)。
7、制造权利要求1所述器件的方法,在该方法中,首先将基片(1)制成不同的层(2、3、4、5),和区(4a,……,C;5a,……,e),形成栅极(7),并在阴极边完全复盖一层栅绝缘层(6);
其特征在于:
aa)除去除栅极(7)下面和边缘范围以外的栅绝缘层(6);
(b)在基片(1)的露出表面上形成导电层(12);
(c)在n型区(5a,…,e)和栅电极(7)上复盖栅绝缘层(6);和
(d)紧接着形成阴极接触层。
8、按权利要求7的方法,其特征在于,栅电极(7)用多晶硅制成,并在基片上形成导电层(12)的同时,也在栅电极(7)上形成导电层(13)。
9、按权利要求8的方法,其特征在于,为了形成导电层(12、13),首先选择金属钛、钨、钽和钴中的一种金属沉积在整个表面,紧接着在热处理中形成相应的金属硅化物。
10、按权利要求9的方法,其特征在于:
(a)用SiO2作栅绝缘层(6);
(b)首先进行热处理,在该温度下,仅在基片(1)的表面和栅电极(7)上,而不是在栅绝缘层的表面形成硅化物;
(c)然后除去栅绝缘层(6)表面上的金属;和
(d)紧接着在较高的温度下继续热处理。
CN89101864.6A 1988-02-22 1989-02-22 场效应控制的双极型功率半导体器件及其制造方法 Pending CN1036666A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH65188 1988-02-22
CH651/88-3 1988-02-22

Publications (1)

Publication Number Publication Date
CN1036666A true CN1036666A (zh) 1989-10-25

Family

ID=4191980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89101864.6A Pending CN1036666A (zh) 1988-02-22 1989-02-22 场效应控制的双极型功率半导体器件及其制造方法

Country Status (4)

Country Link
US (1) US4975782A (zh)
EP (1) EP0332822A1 (zh)
JP (1) JPH027570A (zh)
CN (1) CN1036666A (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216275A (en) * 1991-03-19 1993-06-01 University Of Electronic Science And Technology Of China Semiconductor power devices with alternating conductivity type high-voltage breakdown regions
CN1075668C (zh) * 1995-12-05 2001-11-28 三星电子株式会社 绝缘栅双极晶体管
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7655981B2 (en) 2003-11-28 2010-02-02 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
US7732876B2 (en) 2004-08-03 2010-06-08 Fairchild Semiconductor Corporation Power transistor with trench sinker for contacting the backside
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
CN101043032B (zh) * 2006-03-23 2011-03-02 瑞萨电子株式会社 半导体器件及其制造方法
US7936008B2 (en) 2003-12-30 2011-05-03 Fairchild Semiconductor Corporation Structure and method for forming accumulation-mode field effect transistor with improved current capability
US8084327B2 (en) 2005-04-06 2011-12-27 Fairchild Semiconductor Corporation Method for forming trench gate field effect transistor with recessed mesas using spacers
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
CN103618002A (zh) * 2013-10-22 2014-03-05 东南大学 一种p型绝缘栅双极型晶体管结构
CN103618001A (zh) * 2013-10-22 2014-03-05 东南大学 一种n型绝缘栅双极型晶体管结构
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US9224853B2 (en) 2007-12-26 2015-12-29 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312280A (ja) * 1989-05-26 1990-12-27 Mitsubishi Electric Corp 絶縁ゲート型バイポーラトランジスタ
DE69032084T2 (de) * 1989-11-17 1998-07-16 Toshiba Kawasaki Kk Halbleiteranordnung mit zusammengesetzter Bipolar-MOS-Elementpille, geeignet für eine Druckkontaktstruktur
US5446310A (en) * 1992-06-08 1995-08-29 North Carolina State University Integrated circuit power device with external disabling of defective devices and method of fabricating same
US5392187A (en) * 1992-08-12 1995-02-21 North Carolina State University At Raleigh Integrated circuit power device with transient responsive current limiting means
JPH0723530A (ja) * 1993-06-30 1995-01-24 Mitsubishi Materials Corp サージ吸収器
EP0693773B1 (en) * 1994-07-14 2005-02-09 STMicroelectronics S.r.l. VDMOS power device and manufacturing process thereof
EP0817274B1 (en) 1996-07-05 2004-02-11 STMicroelectronics S.r.l. Asymmetric MOS technology power device
DE19840032C1 (de) 1998-09-02 1999-11-18 Siemens Ag Halbleiterbauelement und Herstellungsverfahren dazu
US6819089B2 (en) 2001-11-09 2004-11-16 Infineon Technologies Ag Power factor correction circuit with high-voltage semiconductor component
US6828609B2 (en) * 2001-11-09 2004-12-07 Infineon Technologies Ag High-voltage semiconductor component
US7385248B2 (en) 2005-08-09 2008-06-10 Fairchild Semiconductor Corporation Shielded gate field effect transistor with improved inter-poly dielectric

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785341A (en) * 1979-06-29 1988-11-15 International Business Machines Corporation Interconnection of opposite conductivity type semiconductor regions
DE3018468A1 (de) * 1980-05-14 1981-11-19 Siemens AG, 1000 Berlin und 8000 München Thyristor mit steuerbaren emitterkurzschluessen und verfahren zu seinem betrieb
US4466176A (en) * 1982-08-09 1984-08-21 General Electric Company Process for manufacturing insulated-gate semiconductor devices with integral shorts
GB2128018A (en) * 1982-09-22 1984-04-18 Philips Electronic Associated Insulated-gate field-effect transistors
JPS60249370A (ja) * 1984-05-24 1985-12-10 Mitsubishi Electric Corp 電導度変調型半導体装置

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216275A (en) * 1991-03-19 1993-06-01 University Of Electronic Science And Technology Of China Semiconductor power devices with alternating conductivity type high-voltage breakdown regions
CN1075668C (zh) * 1995-12-05 2001-11-28 三星电子株式会社 绝缘栅双极晶体管
US8710584B2 (en) 2000-08-16 2014-04-29 Fairchild Semiconductor Corporation FET device having ultra-low on-resistance and low gate charge
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US8101484B2 (en) 2000-08-16 2012-01-24 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US9368587B2 (en) 2001-01-30 2016-06-14 Fairchild Semiconductor Corporation Accumulation-mode field effect transistor with improved current capability
US8829641B2 (en) 2001-01-30 2014-09-09 Fairchild Semiconductor Corporation Method of forming a dual-trench field effect transistor
US7982265B2 (en) 2003-05-20 2011-07-19 Fairchild Semiconductor Corporation Trenched shield gate power semiconductor devices and methods of manufacture
US8350317B2 (en) 2003-05-20 2013-01-08 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US8889511B2 (en) 2003-05-20 2014-11-18 Fairchild Semiconductor Corporation Methods of manufacturing power semiconductor devices with trenched shielded split gate transistor
US8013391B2 (en) 2003-05-20 2011-09-06 Fairchild Semiconductor Corporation Power semiconductor devices with trenched shielded split gate transistor and methods of manufacture
US8013387B2 (en) 2003-05-20 2011-09-06 Fairchild Semiconductor Corporation Power semiconductor devices with shield and gate contacts and methods of manufacture
US8786045B2 (en) 2003-05-20 2014-07-22 Fairchild Semiconductor Corporation Power semiconductor devices having termination structures
US8936985B2 (en) 2003-05-20 2015-01-20 Fairchild Semiconductor Corporation Methods related to power semiconductor devices with thick bottom oxide layers
US7855415B2 (en) 2003-05-20 2010-12-21 Fairchild Semiconductor Corporation Power semiconductor devices having termination structures and methods of manufacture
US8129245B2 (en) 2003-05-20 2012-03-06 Fairchild Semiconductor Corporation Methods of manufacturing power semiconductor devices with shield and gate contacts
US8143124B2 (en) 2003-05-20 2012-03-27 Fairchild Semiconductor Corporation Methods of making power semiconductor devices with thick bottom oxide layer
US8143123B2 (en) 2003-05-20 2012-03-27 Fairchild Semiconductor Corporation Methods of forming inter-poly dielectric (IPD) layers in power semiconductor devices
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7655981B2 (en) 2003-11-28 2010-02-02 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
US8518777B2 (en) 2003-12-30 2013-08-27 Fairchild Semiconductor Corporation Method for forming accumulation-mode field effect transistor with improved current capability
US7936008B2 (en) 2003-12-30 2011-05-03 Fairchild Semiconductor Corporation Structure and method for forming accumulation-mode field effect transistor with improved current capability
US8148233B2 (en) 2004-08-03 2012-04-03 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US7732876B2 (en) 2004-08-03 2010-06-08 Fairchild Semiconductor Corporation Power transistor with trench sinker for contacting the backside
US8026558B2 (en) 2004-08-03 2011-09-27 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US8680611B2 (en) 2005-04-06 2014-03-25 Fairchild Semiconductor Corporation Field effect transistor and schottky diode structures
US8084327B2 (en) 2005-04-06 2011-12-27 Fairchild Semiconductor Corporation Method for forming trench gate field effect transistor with recessed mesas using spacers
CN101043032B (zh) * 2006-03-23 2011-03-02 瑞萨电子株式会社 半导体器件及其制造方法
US9595596B2 (en) 2007-09-21 2017-03-14 Fairchild Semiconductor Corporation Superjunction structures for power devices
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US9224853B2 (en) 2007-12-26 2015-12-29 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8432000B2 (en) 2010-06-18 2013-04-30 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
CN103618001B (zh) * 2013-10-22 2016-08-17 东南大学 一种n型绝缘栅双极型晶体管结构
CN103618002B (zh) * 2013-10-22 2016-08-17 东南大学 一种p型绝缘栅双极型晶体管结构
CN103618001A (zh) * 2013-10-22 2014-03-05 东南大学 一种n型绝缘栅双极型晶体管结构
CN103618002A (zh) * 2013-10-22 2014-03-05 东南大学 一种p型绝缘栅双极型晶体管结构

Also Published As

Publication number Publication date
US4975782A (en) 1990-12-04
JPH027570A (ja) 1990-01-11
EP0332822A1 (de) 1989-09-20

Similar Documents

Publication Publication Date Title
CN1036666A (zh) 场效应控制的双极型功率半导体器件及其制造方法
US10355125B2 (en) Electrode contact structure for semiconductor device
CN1205658C (zh) 具有多厚度栅极氧化层的槽型半导体器件的制造方法
CN1260817C (zh) 含有绝缘栅场效应晶体管的半导体器件及其制造方法
US6104062A (en) Semiconductor device having reduced effective substrate resistivity and associated methods
US9385202B2 (en) Semiconductor device having a patterned gate dielectric
US7400017B2 (en) Reverse conducting semiconductor device and a fabrication method thereof
US6190948B1 (en) Method of forming power semiconductor devices having overlapping floating field plates for improving breakdown voltage capability
JP2005505912A (ja) トレンチゲート電極を有するパワー半導体デバイス、及びその製造方法
CN1586012A (zh) 具有低栅极电荷的沟槽金属氧化物半导体场效应晶体管
CN1812121A (zh) 绝缘栅半导体器件及其制造方法
CN1375880A (zh) 半导体器件及其制造方法
CN1947261A (zh) 沟槽半导体器件及其制造方法
CN1498425A (zh) 沟道型肖特基整流器
CN1253946C (zh) 半导体装置及其制造方法
US8921184B2 (en) Method of making an electrode contact structure and structure therefor
CN1589499A (zh) 具有多晶硅源极接触结构的沟槽mosfet器件
CN100448025C (zh) 具有低栅极电荷和低导通电阻的半导体器件及其制造方法
US5918114A (en) Method of forming vertical trench-gate semiconductor devices having self-aligned source and body regions
CN1738050A (zh) 半导体器件及其制造方法
CN1539169A (zh) 对称沟槽mosfet器件及其制造方法
JPH05198816A (ja) 半導体装置
CN1118872C (zh) 半导体器件及其制造方法
CN88100546A (zh) 双极型和互补金属氧化物半导体晶体管的集成制造工艺
US20070042549A1 (en) Semiconductor device having reduced effective substrate resistivity and associated methods

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication