CN103654808B - 放射线成像装置和放射线成像系统 - Google Patents

放射线成像装置和放射线成像系统 Download PDF

Info

Publication number
CN103654808B
CN103654808B CN201310376842.2A CN201310376842A CN103654808B CN 103654808 B CN103654808 B CN 103654808B CN 201310376842 A CN201310376842 A CN 201310376842A CN 103654808 B CN103654808 B CN 103654808B
Authority
CN
China
Prior art keywords
radiation
unit
detecting unit
lonizing radiation
radiography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310376842.2A
Other languages
English (en)
Other versions
CN103654808A (zh
Inventor
佐藤翔
龟岛登志男
八木朋之
竹中克郎
冈田英之
岩下贵司
菅原惠梨子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN103654808A publication Critical patent/CN103654808A/zh
Application granted granted Critical
Publication of CN103654808B publication Critical patent/CN103654808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • A61B6/544Control of apparatus or devices for radiation diagnosis involving control of exposure dependent on patient size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Abstract

公开了放射线成像装置和放射线成像系统。为了提供能以高精度检测放射线的放射线成像装置和放射线成像系统,放射线成像装置包括:检测单元,在检测单元中将放射线转换成电信号的转换元件被以矩阵形状布置;放射线检测单元,配置成检测放射线的照射状态;驱动电路,配置成根据由放射线检测单元检测到的照射状态来驱动检测单元;以及射线照相种类设定单元,配置成设定射线照相种类,其中,放射线检测单元根据由射线照相种类设定单元设定的射线照相种类来改变放射线检测能力。

Description

放射线成像装置和放射线成像系统
技术领域
本发明涉及放射线成像装置和放射线成像系统。
背景技术
近年来,包括由半导体材料形成的平板探测器(以下缩写为“FPD”)的成像装置已经开始投入实际应用,作为用于医疗诊断成像或使用X射线的非破坏性检查的成像装置。在FPD中,具有使用诸如能够将放射线转换成电荷的非晶硅(a-Si)之类的半导体材料构建的转换元件以及传送与电荷对应的电信号的开关元件的多个像素是二维布置的。包括FPD的这类成像装置用于例如医疗诊断成像,作为用于静止图像射线照相(比如一般的射线照相)或运动图像射线照相(比如荧光射线照相)的数字成像装置。
当执行射线照相时,放射线成像装置与X射线生成装置的操作同步地执行射线照相。作为同步方法,例如,其中X射线生成装置和放射线成像装置通过两装置彼此电连接而同步的单元可用,或其中放射线成像装置通过检测从X射线生成装置放射线的X射线而与X射线生成装置同步的单元可用。在前一种情况下,由于服务人员用线缆连接X射线生成装置和放射线成像装置,连接工作涉及时间和劳动,并且此外X射线生成装置和放射线成像装置必须被固定并且用作单个装置对。在后一种情况下,已知一种方法,其中X射线检测器设置在放射线成像装置内外,或者其中放射线成像装置自身执行放射线检测,并且在这种情况下有利的是并不需要用于连接工作的时间和劳动,并且放射线成像装置是便携式的并且可以与多种X射线生成装置结合使用。
通常,在FPD中,包括光电转换元件和开关元件的像素是二维排列的,并且以行为单位执行从光电转换元件读取信号以及将光电转换元件复位。在X射线照射之前,以行为单位使开关元件经受开/关控制,并且将流至光电转换元件的暗电流分量复位(“初始化操作”)。如果在初始化操作期间X射线照射信号被输入或X射线被检测到,则必须立即结束复位操作并且转变成蓄积操作。如果即使X射线照射信号已经被输入也并未转变成蓄积操作,则在用户按下曝光按钮和实际拍摄图像的时间之间将出现时间滞后,并且将获得非预期的图像,其中出现电平等的差异。此外,如果即使检测到X射线还继续进行初始化操作,则因为在光电转换元件处生成的X射线信号将被复位,所以在被检体上照射了不必要的X射线并且放射线暴露的量可能增大。
日本专利申请特开No.H11-151233公开了如下技术,其包括放射线检测单元并且当确定放射线照射开始时立即地将操作状态从射线照相准备状态移动至蓄积状态。此外,日本专利申请特开No.2010-268171公开了放射线图像射线照相装置,其检测流过为放射线检测元件供应偏置电压的偏置线的电流,基于检测到的电流的值来检测放射线照射的开始,并且保持在放射线检测元件内部生成的电荷。
然而,在日本专利申请特开No.H11-151233和日本专利申请特开No.2010-268171中,在一些情况下,放射线检测单元不能适合多种射线照相种类(射线照相部位和被检体的体格、运动图像或静止图像射线照相模式等)。在使用X射线的诊断成像中,X射线照射条件根据射线照相的种类而不同。因此,需要如下放射线检测单元,其能够针对各种照射条件精确地检测X射线的照射。
发明内容
本发明的目的之一是提供能够进行高度精确的放射线检测的放射线成像装置以及放射线成像系统。
本发明提供一种放射线成像装置,包括:检测单元,在所述检测单元中将放射线转换成电信号的转换元件被以矩阵形状布置;放射线检测单元,配置成检测放射线的照射状态;驱动电路,配置成根据由放射线检测单元检测到的照射状态来驱动检测单元;以及射线照相种类设定单元,配置成设定射线照相种类;其中,放射线检测单元根据由射线照相种类设定单元设定的射线照相种类来改变放射线检测能力。
能够针对各种射线照相种类来精确地执行放射线检测。射线照相种类例如包括射线照相部位和被检体的体格以及运动图像射线照相模式或静止图像射线照相模式。
从参照附图对示例性实施例进行的以下描述中,将会明了本发明的其他特征。
附图说明
图1是示出根据第一实施例的放射线成像系统的配置示例的视图。
图2是示出根据第一实施例的放射线成像装置的配置示例的视图。
图3是放射线检测单元的等效电路图。
图4是用于描述在增益设定单元处的增益设定的视图。
图5是示出根据射线照相种类的增益设定表的示例的视图。
图6是放射线成像装置的时序图。
图7是示出放射线成像装置的另一配置示例的视图。
图8是在使用放射线检测像素的情况下放射线检测单元的等效电路图。
图9是示出根据第二实施例的放射线成像系统的配置示例的视图。
图10A和图10B是用于描述检测能力设定的视图。
图11是示出检测能力设定表的示例的视图。
图12是示出根据第三实施例的放射线成像系统的配置示例的视图。
图13是放射线检测单元的等效电路图。
图14是用于描述增益设定的视图。
图15是放射线检测单元的等效电路图。
具体实施方式
现在将根据附图详细地描述本发明的优选实施例。
第一实施例
图1是示出根据本发明的第一实施例的放射线成像系统的配置示例的框图。放射线成像系统包括放射线生成装置和放射线成像装置。成像装置100包括检测器(FPD)104,检测器(FPD)104具有:包括将放射线转换成电信号的多个像素的检测单元101;驱动电路102,其驱动检测单元101;以及读取电路103,其将来自检测单元101的电信号作为图像数据输出。成像装置100还包括:信号处理单元105,其处理来自FPD104的图像数据并且输出结果数据;控制单元106,其通过将相应的控制信号供应给各部件来控制FPD104的操作;以及电源单元107,其分别地将偏压供应给每个部件。信号处理单元105输入从未示出的控制计算机发送的控制信号,并且将控制信号提供至控制单元106。信号处理单元105还输入关于在照射放射线期间从读取电路103发送的信号线电位的信息,并且将该信息发送至控制计算机。电源单元107包括电源电路,比如输入从未示出的外部电源或内部电池发送的电压并且将需要的电压供应至检测单元101、驱动电路102、和读取电路103的稳压器。放射线生成装置111根据作为指令从控制台112接收的放射线照射条件来照射放射线。成像装置100和放射线生成装置111并未电连接并且其间没有信号交换。放射线检测单元120包括检测放射线照射状态的放射线检测传感器121、检测来自放射线检测传感器121的电流的电流检测单元122、增益设定单元124、比较单元123、和设定比较单元123的阈值的阈值设定单元125。在射线照相之前,使用者使用射线照相种类设定单元126来设定射线照相种类(射线照相部位和被检体的体格、运动图像或静止图像射线照相模式等)。增益设定单元124根据由射线照相种类设定单元126设定的射线照相种类来设定电流检测单元122的增益。比较单元123比较来自电流检测单元122的电压信号。阈值设定单元125根据由射线照相种类设定单元126设定的射线照相种类来设定比较单元123的阈值电压。尽管根据本实施例放射线检测传感器121被布置在检测单元101的放射线照射面上,但放射线检测传感器121可以布置在放射线照射面的相对侧。此外,为了即使在收窄放射线照射区域时也能够可靠地检测放射线照射,希望将放射线检测传感器121布置在检测单元101中的中心部分处。根据本实施例,将放射线直接地转换成电信号的直接型传感器或通过在硅(Si)光电二极管上涂覆将放射线转换成可见光线的荧光物质形成的传感器可以用作放射线检测传感器121。然而,本发明并不限于这些传感器,并且放射线检测传感器可以是如下部件,其包括在检测单元101中包括的配线的一部分并且得到检测来自检测单元101的预定区域的放射线照射状态的信号。
图2是示出根据本发明的第一实施例的成像装置100的配置示例的视图。图2中具有与参照图1所述相同配置的元件指派相同的附图标记,且将其详细描述省略。此外,在图2中,为了易于描述,示出包括具有三行乘三列的像素的检测单元101的成像装置。然而,实际上,成像装置具有更大数量的像素。例如,17英寸成像装置具有约2800行乘约2800列的像素。检测单元101具有以矩阵形式布置的多个像素。在本实施例中,每个像素具有将放射线转换成电荷(电信号)的转换元件S11至S33,以及输出与所述电信号对应的电信号的开关元件T1至T33。在本实施例中,设置在诸如玻璃基板之类的绝缘基板上并且包括非晶硅作为主要材料的金属-绝缘体-半导体(MIS)型的光电传感器被用作将光转换成电荷的光电转换元件。具有如下波长转换器的间接型转换元件或者直接地将放射线转换成电荷的直接型转换元件适合用作转换元件,所述波长转换器设置在放射线入射到上述光电转换元件的一侧并且将放射线转换成落在可以由光电转换元件感测的波长的频带内的光。具有一个控制端子和两个主端子的晶体管适合用作开关元件T11至T33。在本实施例中,使用薄膜晶体管(TFT)。转换元件S11至S33的电极之一电连接至开关元件T11至T33的两个主端子之一,而另一个电极经由共用偏压线Bs电连接至偏压电源107a。在行方向上的多个开关元件,例如开关元件T11至T13,具有共同地电连接至第一行的驱动线G1的控制端子,并且用于控制开关元件的导通状态的驱动信号逐行地经由驱动线从驱动电路102施加。在列方向上的多个开关元件,例如开关元件T11至T31,其另一个主端子电连接至第一列的信号线Sig1。在开关元件T11至T31处于导通状态的时段期间,与转换元件S11至S31的电荷对应的电信号经由信号线Sig1输出至读取电路103。多个在列方向上布置的信号线Sig1至Sig3将从多个像素输出的电信号并行地传送至读取电路103。尽管在本实施例中描述的每个像素包括转换元件S11至S33和开关元件T11至T33,但本实施例并不限于此。本实施例还包括如下像素,其至少还包括在信号线Sig1至Sig3或转换元件S11至S33与开关元件T11至T33之间的放大晶体管。此外,可以采用包括如下像素的配置,所述像素还包括将转换元件S11至S33或设置在转换元件S11至S33与放大晶体管之间的节点初始化的初始化晶体管。
读取电路103包括多个放大电路207,多个放大电路207将从检测单元101并行输出的电信号放大并且是与相应的信号线对应地设置的。此外,每个放大电路207包括将输出电信号放大的积分放大器203,将来自积分放大器203的电信号放大的可变放大器204,采样并且保持放大的电信号的采样和保持电路205,以及缓冲放大器206。积分放大器203具有将读取电信号放大并且输出放大后的信号的运算放大器A、积分电容器Cf、和复位开关RC。积分放大器203包括能够通过改变积分电容器Cf的值来改变放大因子的机构。输出电信号从检测单元101输入至运算放大器A的反相输入端,参考电压Vref从参考电源107b输入至运算放大器A的非反相输入端,并且放大后的电信号被从运算放大器A的输出端输出。此外,积分电容器Cf被布置在运算放大器A的反相输入端和输出端之间。采样和保持电路205与每个可变放大器204对应地设置,并且由采样开关SH和采样电容器Ch构成。此外,读取电路103包括:复用器208,复用器208顺序地输出从相应的放大电路207并行地读取的电信号并且将电信号作为串行图像信号输出;以及缓冲放大器209,缓冲放大器209对图像信号执行阻抗转换并且输出转换后的图像信号。作为从缓冲放大器209输出的模拟电信号的图像信号Vout被A/D转换器210转换成数字图像数据,然后被输出至信号处理单元105(图1)。将由信号处理单元105处理后的图像数据输出至控制计算机。
根据从控制单元106(图1)输入的控制信号D-CLK、OE、DIO,驱动电路102向相应的驱动线G1至G3输出具有用于使开关元件T11至T33处于导通状态的导通电压Vcom和用于使开关元件T11至T33处于非导通状态的非导通电压Vss的驱动信号。这样,驱动电路102控制开关元件T11至T33的导通状态和非导通状态,并且驱动检测单元101。当由放射线检测单元120检测到放射线照射开始时,驱动电路102使检测单元101的操作状态从待机状态转变成蓄积状态。此外,当由放射线检测单元120检测到放射线照射结束时,驱动电路102使检测单元101的操作状态从蓄积状态转变成读取状态。
图1中示出的电源单元107包括图2中示出的放大电路207的参考电源107b和偏压电源107a。偏压电源107a通过偏压线Bs共同地将偏压电压Vs供应至每个转换元件S11至S33的所述另一个电极。参考电源107b将参考电压Vref供应至每个运算放大器A的非反相输入端。
图1中示出的控制单元106通过经由信号处理单元105输入来自装置外部的控制计算机等的控制信号并且将各种控制信号供应至驱动电路102、电源单元107、和读取电路103来控制FPD104的操作。图1中示出的控制单元106通过供应控制信号D-CLK、控制信号OE、和控制信号DIO至驱动电路102,来控制图2中示出的驱动电路102的操作。在此,控制信号D-CLK是用作驱动电路102的移位寄存器的移位时钟,控制信号DIO是由移位寄存器传送的脉冲,而控制信号OE是控制移位寄存器的输出端的信号。此外,控制单元106通过供应控制信号ΦRC、控制信号ΦSH、和控制信号CLK至图2中示出的读取电路103,来控制读取电路103的相应部件的操作。在此,控制信号ΦRC控制积分放大器203的复位开关RC的操作,控制信号ΦSH控制采样和保持电路205的开关SH的操作,而控制信号CLK控制复用器208的操作。
接下来,将参照图1至图6来描述放射线成像系统的操作。图3是放射线检测单元120的等效电路图。图4是用于描述在增益设定单元124处的增益设定的视图。图5是示出根据射线照相种类的增益设定表的示例的视图。图6是放射线成像装置的时序图。
当执行射线照相的射线照相时,首先操作人员通过射线照相种类设定单元126来设定射线照相类型。在此,术语“射线照相种类”是指射线照相部位和被检体的体格,或诸如静止图像或运动图像射线照相模式之类的射线照相模式。因为放射线照射条件或照射区域会根据射线照相种类而不同,所以在射线照相之前操作人员必须设定射线照相种类。
接下来,当将成像装置100的电源导通并且将偏压电压Vs供应至转换元件S11至S33时,成像装置100启动待机操作(图6)。在待机操作中,重复地执行初始化操作以将流过转换元件S11至S33的暗电流复位。在初始化操作中,通过复位开关RC将积分放大器203的积分电容器Cf和信号线Sig1至Sig3复位。此外,与被发送至驱动电路102的控制信号DIO和控制信号D-CLK同步地,将导通电压Vcom施加至驱动线G1来将第一行中的像素的开关元件T11至T13置于导通状态。作为开关元件T11至T13进入导通状态的结果,转换元件S11至S13被复位。通过重复地执行对开关元件的导通状态的控制并且以这种方式顺序地将第二行和第三行复位而将所有像素的转换元件S11至S33复位。为了继续进行初始化操作,再次将控制信号DIO输出至驱动电路102,并且将导通电压Vcom施加至第一行的驱动线G1。在成像装置100处于待机操作中的同时,以上述方式重复地执行初始化操作。
当作为操作人员在控制台112处的操作的结果,曝光请求信号被传送至放射线生成装置111时,放射线照射被立即启动。当放射线照射至成像装置100上时,放射线检测单元120检测放射线并且将放射线检测信号输出至信号处理单元105。此外,信号处理单元105将信号发送至控制单元106以停止初始化操作并且转变成蓄积操作。结果,成像装置100转变成蓄积操作(图6)。在蓄积操作期间,非导通电压Vss施加至开关元件T11至T33,因此所有像素的开关元件T11至T33进入非导通状态。
此后,当放射线照射结束时,由放射线检测单元120检测到放射线照射结束,并且将放射线照射结束的信号输出至信号处理单元105。接下来,信号处理单元105将信号发送至控制单元106以便从蓄积操作转变成读取操作。结果,成像装置100转变成读取操作(图6)。在读取操作中,首先通过复位开关RC将积分电容器Cf和信号线Sig1至Sig3复位。接下来,将导通电压Vcom从驱动电路102施加至驱动线G1以将第一行中的开关元件T11至T13置于导通状态。结果,基于在第一行中的转换元件S11至S13中生成的电荷的电信号被输出至相应的信号线Sig1至Sig3。经由相应的信号线Sig1至Sig3并行输出的电信号分别地被每个放大电路207的积分放大器203和可变放大器204放大。通过响应于控制信号ΦSH操作采样和控制电路205的开关SH将放大后的相应电信号并行地保持在相应的放大电路207的采样和保持电路205中。在保持信号之后,将积分电容器Cf和信号线Sig1至Sig3复位。在复位之后,类似于针对第一行执行的操作,将导通电压Vcom施加至第二行的驱动线G2,并且将第二行的开关元件T21至T23置于导通状态。在第二行的开关元件T21至T23处于导通状态的时段中,复用器208顺序地输出在采样和保持电路205中保持的电信号。结果,来自并行读取的第一行中像素的电信号被转换成串行图像信号并且输出,而A/D转换器210将串行图像信号转换成一行的图像数据并且输出该图像数据。通过从第一行至第三行以行为单位执行上述操作,从成像装置输出一帧的图像数据。如上所述,控制单元106和驱动电路102根据由放射线检测单元120检测的照射状态来驱动检测单元101和读取电路103。
图3是示出图1中的放射线检测单元120的配置示例的视图。当在放射线检测传感器121处照射放射线时,放射线检测传感器121将照射的放射线转换成与照射的放射线的输入量对应的电流iPD。此外,电流iPD还流至电流检测单元122的反馈电阻Rref,并且经历通过放大器ampX进行的电流-电压转换。在此,从放大器ampX输出的电压Vout表示为Rref×iPD。此外,可以通过改变反馈电阻Rref的电阻值来控制从放大器ampX输出的电压值,并且反馈电阻Rref变成放大器ampX的增益。将电压Vout输入至比较单元123的比较器CMP并且与任意阈值电压Vth1至Vth3中任一个阈值电压Vth进行比较。在照射放射线并且电流流至放射线检测传感器121并且来自放大器ampX的电压Vout超出阈值电压Vth的情况下,比较器CMP输出指示出放射线照射开始的放射线检测信号(高电平逻辑)。随后,如上所述,将放射线检测信号输出至信号处理单元105,并且成像装置100转变成蓄积操作。此后,当放射线照射结束时,来自放大器ampX的电压Vout小于阈值电压Vth,并且比较器CMP输出指示出放射线照射结束的放射线检测信号(低电平逻辑)。然后信号处理单元105将信号输出至控制单元106使得成像装置100转变成读取操作。
本实施例的特征在于可以根据由操作人员设定的射线照相种类来改变电流检测单元122的增益以及比较单元123的阈值电压Vth。在这种情况下,设定电流检测单元122的反馈电阻Rref的值使得放大器ampX的输出电压Vout保持在放大器ampX正常操作的动态范围内。通常,基于关系Vout=Rref×iPD,设定反馈电阻Rref的电阻值使得Vout为从数十毫伏(mV)至数伏(V)的值。使用约105Ω至109Ω的值作为反馈电阻Rref。
接下来,描述设定电流检测单元122的增益并且设定比较单元123的阈值电压Vth的方法。放射线检测传感器121检测透射通过被检体的放射线。放射线照射的条件根据射线照相部位和被检体的体格或诸如静止图像或运动图像射线照相模式之类的射线照相模式而不同。因此,输入至放射线检测传感器121的放射线量根据射线照相的种类而不同。因此,根据本实施例,针对各种射线照相种类执行最适当的增益设定。
如上所述,通过检测来自放大器ampX的电压Vout超出阈值电压Vth而检测到放射线照射开始。放射线检测单元120的检测性能取决于以下的点。
·噪声
·时间响应
·SN比
在此,术语“噪声”是指,例如,放射线检测传感器121的暗电流,反馈电阻Rref的热噪声,放大器ampX的输入偏移电流,以及比较器CMP的输入偏移电压等。在图3中示出的放射线检测单元120中,作为这些种类噪声的特性,放射线检测传感器121的暗电流或放大器ampX的输入偏移电流被与增益成比例地放大。相反,反馈电阻Rref的热噪声或比较器CMP的输入偏移电压并不被与增益成比例地放大。即,放射线检测单元120的噪声包括与增益成比例放大的噪声以及不与增益成比例放大的噪声。因此,放射线检测单元120的噪声总量不与增益成比例地放大。
图4示出针对电流检测单元122的增益设定较低的情况以及增益设定较高的情况的两种输入-输出特性。在输入量较小的情况下,如果增益设定较低,则噪声电平相对于来自放大器ampX的输入电压Vout比例较大。即,SN比较小。相反,如果增益设定较高,则噪声电平的比例较小。即,SN比较大。因此,通过将增益设定至较高值,可以升高在放射线检测单元120处的SN比。在此,术语“SN比”是指通过将来自放大器ampX的输出电压Vout除以噪声的总和而获得的比率。
然而,当将增益设定至较高值时,放大器ampX的时间常数RC值增大,且输出电压Vout的时间响应更差。因此,存在如下可能性,即从放射线实际照射时直到在放射线检测单元120处检测到放射线照射为止的时间段将增大。此外,当检测放射线结束时,还存在如下可能性,即从当放射线照射实际结束时直到检测到放射线照射结束为止的时间段将增大。
根据本实施例,在至放射线检测传感器121的放射线输入量较小的情况下,将增益设定设至较高值以升高SN比。即,使反馈电阻Rref的电阻值为较大值。结果,即使在至放射线检测传感器121的放射线输入量较小的情况下,也可以防止由于噪声引起的误检。另一方面,在至放射线检测传感器121的放射线输入量较大的情况下,将增益设定降低。因为放射线输入量较大,所以SN比较大。存在发生误检的较低可能性,并且因此不必将增益设定至较高值。此外,如果不必要地将增益设定至较高值,则时间响应变差并且导致上述不利影响。
图5是示出根据射线照相种类的增益设定表的示例的视图。在实际射线照相中,如表中所示,根据射线照相部位和被检体的体格来确定放射线照射条件。因此,通过使用数据,增益设定单元124根据在射线照相之前用射线照相种类设定单元126预先设定的射线照相种类来设定放大器ampX的反馈电阻Rref的电阻值。通过来自增益设定单元124的信号来设定电阻值。希望设定反馈电阻Ref的电阻值从而与放射线输入量成反比。
比较单元123的阈值电压Vth根据增益设定而改变。如上所述,在将增益设定成较高值的情况下,因为叠加在来自放大器ampX的电压Vout上的噪声量较大,所以将阈值电压Vth设定为较高值。此外,在将增益设定成较低值的情况下,因为叠加在来自放大器ampX的电压Vout上的噪声量较小,所以将阈值电压Vth设定为较低值。阈值电压Vth越低,在照射放射线之后放射线检测单元120检测到放射线照射所用时间越短。因此,希望尽可能低地设定阈值电压Vth。通过来自阈值设定单元125的信号将阈值电压Vth设定成阈值电压Vth1至Vth3中任一个。通过以这种方式根据射线照相种类来设定最佳增益和阈值电压Vth,可以实现如下放射线成像装置,其中减少误检的发生并且以高精度检测到放射线照射。
图7是示出另一个放射线成像装置的配置示例的视图。尽管,如上所述,在本实施例中使用放射线检测传感器121检测到放射线照射,但是也可以采用如下配置,其中包括两个邻近的放射线检测像素321的一对放射线检测像素321分开地设置在检测单元101中。图8是在使用放射线检测像素321情况下的放射线检测单元的等效电路图。放射线检测单元包括电压检测单元322、比较单元323、阈值设定单元325、偏压切换单元330、以及偏压设定单元331。放射线检测像素321包括使用a-Si制成的MIS传感器。在放射线检测像素321设置在检测单元101中的情况下而不是上述电流检测单元122的增益设定的情况下,放射线检测像素321的灵敏度被设定。通过偏压电压值VS来设定放射线检测像素321的灵敏度。偏压设定单元331根据由射线照相种类设定单元126设定的射线照相种类来控制偏压切换单元330。通过偏压切换单元330将偏压电压值VS设定到偏压电压Vs1至Vs3的任一个,并且偏压电压值VS被供应至放射线检测像素321。在使用a-Si制成的传感器中,因为传感器为非晶体半导体,所以存在由悬键(dangling bond)产生的大量的陷阱能级。因此,取决于半导体内部的电场强度,由陷阱引起的电子和空穴的移动变成活动的(active),并且灵敏度可以通过偏压电压值VS来改变。
当放射线照射在放射线检测像素321上时,光生电荷被生成并且被蓄积在电压检测单元(积分电路)322的反馈电容器Cf中。与蓄积的电荷对应的输出电压信号Vout输入至比较单元323的比较器CMP中。如果输出电压Vout超出阈值电压Vth,则比较器CMP输出放射线检测信号。当放射线检测结束时,将电压检测单元322的开关SW导通并且刷新放射线检测像素321。
根据此检测方法,同样的,当至放射线检测像素321的放射线输入量较小时,将灵敏度设定为较高值(将偏压电压值VS设定成较大值),并且当至放射线检测像素321的放射线输入量较大时,将灵敏度设定成较低值(将偏压电压值VS设定成较小值)。
此外,在本实施例中,还可以通过检测在检测单元101的偏压线Bs中流动的电流来检测放射线照射。在这种情况下,上述放射线检测单元120连接至检测单元101的偏压线Bs。
第二实施例
接下来,将使用图9至图11来描述本发明的第二实施例。图9至图11中的与第一实施例中所描述元件相同的元件被指派相同的附图标记,并且将其详细描述省略。图9是示出根据本发明的第二实施例的放射线成像系统的配置示例的框图。图10A和图10B是用于描述检测能力设定的视图。图11是示出检测能力设定表的示例的视图。
以下,描述本实施例与第一实施例不同之处。本实施例与第一实施例不同之处在于设置了多组放射线检测传感器121、电流检测单元122、以及比较单元123。多个放射线检测传感器121布置在检测单元101的区域内部。两个或更多个放射线检测传感器121布置在检测单元101中的点不同于第一实施例。至少一个放射线检测传感器121布置在检测单元101的中心部分使得即使当收窄照射区域时也能够可靠地检测到放射线照射。如图3中所示,电流检测单元122和比较单元123分别连接至每个放射线检测传感器121。每个比较单元123输出放射线检测信号。将相应的放射线检测信号输入至放射线确定单元127,并且确定放射线照射存在或不存在。放射线确定单元127基于多个比较单元123的放射线检测信号来确定放射线照射开始。
接下来,将使用图10A和图10B来描述根据本实施例的设定电流检测单元122的增益并且设定比较单元123的阈值电压Vth的方法。如上所述,当执行射线照相时,在射线照相之前操作人员通过射线照相种类设定单元126来设定射线照相种类,比如射线照相部位和被检体的体格。增益设定单元124根据射线照相种类来设定多个放射线检测传感器121的增益的点是本实施例的一特征。
在射线照相期间,放射线通过被检体的被检体区域以及放射线并不通过被检体的直接透射区域存在于检测单元101中。与直接透射区相比较,在被检体区域中,由于放射线被被检体吸收,所以到达检测单元101的放射线量较低。因此,至布置在被检体区域中的放射线检测传感器121的放射线输入量较小。因此,将布置在被检体区域中的放射线检测传感器121的增益设定成较高值。相反,由于到达直接透射区域中的检测单元101的放射线量较高,所以至布置在直接透射区域中的放射线检测传感器121的放射线输入量较大。因此,将布置在直接透射区域中的放射线检测传感器121的增益设定为较低值。如上所述,根据由射线照相种类设定单元126设定的射线照相种类,增益设定单元124将与在多个放射线检测传感器121之中布置在被检体存在的被检体区域中的放射线检测传感器121对应的电流检测单元122的增益设定成较大值。此外,根据由射线照相种类设定单元126设定的射线照相种类,增益设定单元124将与在多个放射线检测传感器121之中布置在被检体不存在的直接透射区域中的放射线检测传感器121对应的电流检测单元122的增益设定成较小值。
如上所述,当执行射线照相时,首先操作人员通过射线照相种类设定单元126来设定射线照相种类。接下来,增益设定单元124基于来自射线照相种类设定单元126的射线照相部位信息来执行针对每个电流检测单元122的增益设定。图10A示出在放射线检测传感器121被布置在9个位置处的情况下对胸部正面进行射线照相的增益设定示例。当对胸部正面进行射线照相时,存在四个外围角将成为直接透射区域的较高可能性。因此,增益设定单元124将四个外围角处的每个电流检测单元122的增益设定成较低值,并且将另外五个位置处的每个电流检测单元122的增益设定成较高值。图10B示出对胸部侧面进行射线照相的增益设定示例。当对胸部侧面进行射线照相时,存在其中放射线检测传感器121布置在中心区域周围的左侧和右侧的六个位置将成为直接透射区域的较高可能性。因此,增益设定单元124将布置在中心区域周围的左侧和右侧的六个位置处的每个电流检测单元122的增益设定为较低值,而将另外三个位置处的每个电流检测单元122的增益设定为较高值。
图11示出根据射线照相种类的增益设定表的示例。将直接透射区域的增益也设于增益设定表中。类似于第一实施例,通过使用与基于射线照相部位和被检体的体格确定的放射线照射条件相关的数据,增益设定单元124基于估计的至放射线检测传感器121的放射线输入量来对于电流检测单元122执行增益设定。希望设定增益设定以便与放射线输入量成反比。此外,比较单元123的阈值电压Vth可以根据增益设定而改变,或者可以固定为相对于在所有增益设定处的噪声具有余量的电压值。
在本实施例中,将来自比较单元123的放射线检测信号输入至放射线确定单元127。将多个放射线检测信号输入至放射线确定单元127,并且放射线确定单元127将放射线照射确定信号输出至成像装置100的信号处理单元105。信号处理单元105将信号输出至控制单元106以停止初始化操作并且转变成蓄积操作。结果,成像装置100转变成蓄积操作。
在此,放射线确定单元127可以在输入任一个放射线检测信号时立即输出放射线确定信号,或者可以在输入两个或更多个放射线确定信号之后输出放射线确定信号。在前一种情况下,因为使用在来自多个放射线检测传感器121的放射线检测信号之中最早地检测到的放射线检测信号,所以与第一实施例相比较,可以缩短从当放射线照射时直到由放射线检测单元120检测到放射线照射的开始为止的时间段。此外,在后一种情况下,因为使用两个或更多个放射线检测信号,所以可以减少误检从而实现精确的放射线检测。如前所述,当将指示出放射线照射开始或照射结束的放射线检测信号从多个比较单元123中的任一个输入时,放射线确定单元127确定放射线照射开始或结束。可替代地,当将指示出放射线照射开始或照射结束的放射线检测信号从多个比较单元123中的两个或更多个输入时,放射线确定单元127确定放射线照射开始或结束。
此外,还可以通过如下操作来确定放射线照射开始。现在将描述根据本实施例的最佳确定方法。首先,当输入任一个放射线检测信号时,放射线确定单元127输出放射线确定信号以临时停止成像装置100的初始化操作。此后,如果第二放射线检测信号被输入至放射线确定单元127,则成像装置100转变成蓄积操作。如果第二放射线检测信号未被输入至放射线确定单元127,则放射线确定单元127确定存在误检并且将信号输出至成像装置100从而使成像装置100再继续待机驱动操作,即,再次继续初始化操作。通过这种操作,可以减少误检的发生并且还减少由初始化操作引起的来自转换元件S11至S33的信号流出。
根据本实施例,通过提供两个或更多个放射线检测传感器121并且还根据射线照相种类设定检测能力,可以构造如下放射线检测系统,其中存在较少的误检并且从当放射线照射时直到检测到放射线为止的时间段较短。
尽管在本实施例中使用放射线检测传感器121来检测放射线照射,但是也可以采用如下配置,其中两个或更多个放射线检测像素分开地设置在检测单元101中。在这种情况下,类似于第一实施例,代替电流检测单元122的增益设定,采用使得能够设定两个或更多个放射线检测像素的灵敏度的配置。
此外,在本实施例中,还可以通过检测流过检测单元101的偏压线Bs的电流来检测放射线照射。在这种情况下,将偏压线Bs分成两个或更多个区域,并且上述电流检测单元122和比较单元123分别连接至两个或更多个区域。在这种情况下确定放射线照射的方法与上述方法相同。
第三实施例
接下来,将使用图12至图14来描述本发明的第三实施例。图12至图14中的与第二实施例具有相同配置的元件被指派相同的附图标记,并且将其详细说明省略。图12是示出根据本发明第三实施例的放射线成像系统的配置示例的框图。图13是放射线检测单元120的等效电路图。图14是用于描述增益设定的视图。
下面描述本实施例与第二实施例之间的差异。如图12和图13中所示,本实施例与第二实施例的不同之处在于将饱和确定单元128连接至电流检测单元122的放大器ampX的输出。在第二实施例中,基于射线照射种类设定单元126的设定来设定布置在检测单元101中的两个或更多个放射线检测传感器121的检测能力。在至放射线检测传感器121的放射线输入量较小的位置处将增益设定为较高值,而在放射线输入量较大的位置处将增益设定为较低值。然而,实际上,存在如下一些情况,其中在基于射线照相种类设定单元126设定的相应位置处的增益设定是不适当的。例如,这样的情况如下。
·在检测单元101内的被检体的位置偏离预设的被检体区域。
·放射线检测传感器121布置在直接透射区域和被检体区域之间的边界处。
·存在关于被检体体格的个体差异。
在这种情况下,如下影响是不利影响。当过强的放射线照射在增益被设定为较高值的放射线检测传感器121上时,电流检测单元122内部的放大器ampX饱和并且不再正常地操作。当放大器ampX饱和时,时间响应变差并且花费时间来检测放射线照射结束,并且不再能够精确地检测到照射结束。因此,根据本实施例,饱和确定单元128连接至放大器ampX的输出。
现在将使用图13和图14来描述饱和确定单元128的操作。饱和确定单元128监测放大器ampX的输出电压Vout,并且当电压值Vout超出设定为比饱和电压更低电压的阈值电压Vthx时,饱和确定单元128将饱和确定信号输出至增益设定单元124。增益设定单元124输入饱和确定信号,并且降低电流检测单元122的反馈电阻Rref的电阻值。即,增益设定单元124将增益设定为较低值。如果电流检测单元122的电压超出阈值电压Vthx,则增益设定单元124降低电流检测单元122的增益。通过执行这种操作,可以防止放大器ampX的饱和,并且可以精确地检测到放射线照射结束的定时。
当来自放大器ampX的电压Vout小于阈值电压Vth时,比较单元123将指示出放射线照射结束的信号输出至放射线确定单元127。指示出放射线照射结束的多个信号被输入至放射线确定单元127,并且放射线确定单元127将放射线确定信号输出至成像装置100的信号处理单元105。信号处理单元105将信号输出至控制单元106以停止蓄积操作并且转变成读取操作。结果,成像装置100转变成读取操作。
放射线确定单元127可以在输入指示出放射线照射结束的任一个信号时立即输出放射线确定信号,或者可以在输入指示出放射线照射结束的两个或更多个信号之后输出放射线确定信号。
在本实施例中,在基于射线照相种类设定单元126设定的相应位置处的增益设定不适当的情况下,能够避免放大器ampX的饱和并且精确地检测照射开始和照射结束二者。
类似于第二实施例,可以将两个或更多个放射线检测像素321分开地设置在检测单元101中。图15是在这种情况下的放射线检测单元的等效电路图。代替电流检测单元122的增益设定,设置偏压切换单元330以便使得能够分别地设定两个或更多个放射线检测像素321的灵敏度。根据偏压设定单元331的设定,偏压切换单元330将偏压电压Vs1至Vs3中任一个供应至放射线检测像素321。饱和确定单元128连接至电压检测单元322的输出。饱和确定单元128监测放大器ampX的输出电压Vout,并且如果输出电压Vout超出设定成比放射线检测像素321饱和时的电压更低电压的阈值电压Vthx,则饱和确定单元128将饱和确定信号输出至偏压设定单元331。偏压设定单元331输入饱和确定信号,并且降低偏压切换单元330的偏压电压。即,偏压设定单元331降低放射线检测像素321的灵敏度。由此能够防止如下情形的发生,其中放射线检测像素321饱和且时间响应变差。
根据第一至第三实施例,放射线检测单元120根据由射线照相种类设定单元126设定的射线照相种类来改变放射线检测能力。具体地,在至放射线检测单元120的放射线输入量较小的射线照相种类的情况下放射线检测单元120增大放射线检测能力,并且在至放射线检测单元120的放射线输入量较大的射线照相种类的情况下降低放射线检测能力。
根据第一至第三实施例的放射线成像系统有利地用于比如一般的射线照相的静止图像射线照相或诸如用于医疗诊断的荧光射线照相之类的运动图像射线照相。值得注意的是在前面的说明书中,术语“放射线”不仅指由因放射性衰变而放出的粒子(包括光子)生成的α射线、β射线、和γ射线,而且包括具有等于或大于上述射线的能量的光束,例如X射线、粒子束、以及宇宙射线。
应当理解的是前面的实施例仅旨在示出本发明的具体示例,而并不旨在限制本发明的技术范围。即本发明能够在不偏离其技术概念或主要特征的情况下以多种形式实现。
尽管已参照示例性实施例对本发明进行了描述,但是将会明了,本发明不限于所公开的示例性实施例。所附权利要求的范围被赋予最宽广的解释,以包括所有这些修改以及等同结构和功能。

Claims (14)

1.一种放射线成像装置,包括:
检测单元,在检测单元中将放射线转换成电信号的转换元件被以矩阵形状布置;
放射线检测单元,配置成检测放射线的照射状态;
驱动电路,配置成根据由放射线检测单元检测到的照射状态来驱动检测单元;以及
射线照相种类设定单元,配置成设定射线照相种类;
其中,放射线检测单元根据由射线照相种类设定单元设定的射线照相种类来改变放射线检测能力,以使得放射线检测单元在至放射线检测单元的放射线输入量小的射线照相种类的情况下增大放射线检测能力,并且在至放射线检测单元的放射线输入量大的射线照相种类的情况下减小放射线检测能力。
2.根据权利要求1所述的放射线成像装置,其中:
当由放射线检测单元检测到放射线的照射开始时,驱动电路使检测单元的操作状态从待机状态转变成蓄积状态;并且
当由放射线检测单元检测到放射线的照射结束时,驱动电路使检测单元的操作状态从蓄积状态转变成读取状态。
3.根据权利要求1所述的放射线成像装置,其中,放射线检测单元包括:
放射线检测传感器,配置成将照射的放射线转换成电流;
电流检测单元,配置成将放射线检测传感器的所述电流转换成电压;以及
比较单元,配置成将电流检测单元的所述电压与阈值电压进行比较,当电流检测单元的所述电压超出阈值电压时输出指示出放射线的照射开始的放射线检测信号,并且当电流检测单元的所述电压小于阈值电压时输出指示出放射线的照射结束的放射线检测信号。
4.根据权利要求3所述的放射线成像装置,其中,放射线检测单元还包括增益设定单元,该增益设定单元被配置成根据由射线照相种类设定单元设定的射线照相种类来设定电流检测单元的增益。
5.根据权利要求3所述的放射线成像装置,其中,放射线检测单元还包括阈值设定单元,该阈值设定单元被配置成根据由射线照相种类设定单元设定的射线照相种类来设定比较单元的阈值电压。
6.根据权利要求3所述的放射线成像装置,其中,放射线检测单元包括:
增益设定单元,配置成根据由射线照相种类设定单元设定的射线照相种类来设定电流检测单元的增益;以及
阈值设定单元,配置成根据由射线照相种类设定单元设定的射线照相种类来设定比较单元的阈值电压。
7.根据权利要求3所述的放射线成像装置,其中:
多组放射线检测传感器、电流检测单元以及比较单元被设置;
多个放射线检测传感器被布置在检测单元的区域内;并且
放射线检测单元还包括放射线确定单元,该放射线确定单元被配置成基于多个比较单元的放射线检测信号来确定放射线的照射开始。
8.根据权利要求7所述的放射线成像装置,其中,在指示出放射线的照射开始或放射线的照射结束的放射线检测信号被从所述多个比较单元中的任一个输入的情况下,放射线确定单元确定放射线的照射开始或结束。
9.根据权利要求7所述的放射线成像装置,其中,在指示出放射线的照射开始或放射线的照射结束的放射线检测信号被从所述多个比较单元中的两个或更多个输入的情况下,放射线确定单元确定放射线的照射开始或结束。
10.根据权利要求7所述的放射线成像装置,其中,放射线确定单元包括增益设定单元,该增益设定单元被配置成:根据由射线照相种类设定单元设定的射线照相种类,将与所述多个放射线检测传感器之中的布置在被检体存在的被检体区域中的放射线检测传感器对应的电流检测单元的增益设定成大的量,并且将与所述多个放射线检测传感器之中的布置在被检体不存在的直接透射区域中的放射线检测传感器对应的电流检测单元的增益设定成小的量。
11.根据权利要求4所述的放射线成像装置,其中,增益设定单元在电流检测单元的所述电压超出阈值电压的情况下降低电流检测单元的增益。
12.一种放射线成像系统,包括:
根据权利要求1所述的放射线成像装置;以及
放射线生成装置,配置成照射放射线。
13.一种放射线成像装置,包括:
检测单元,配置成输出与用于射线照相的放射线对应的图像信号;
设定单元,配置成设定射线照相种类;以及
放射线检测单元,配置成检测放射线的照射开始,
其中,放射线检测单元根据由设定单元设定的射线照相种类来改变放射线检测能力,以使得放射线检测单元在至放射线检测单元的放射线输入量小的射线照相种类的情况下增大放射线检测能力,并且在至放射线检测单元的放射线输入量大的射线照相种类的情况下减小放射线检测能力。
14.一种放射线成像系统,包括:
根据权利要求13所述的放射线成像装置;以及
放射线生成装置,配置成照射放射线。
CN201310376842.2A 2012-08-31 2013-08-27 放射线成像装置和放射线成像系统 Active CN103654808B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012192455A JP2014048204A (ja) 2012-08-31 2012-08-31 放射線撮像装置及び放射線撮像システム
JP2012-192455 2012-08-31

Publications (2)

Publication Number Publication Date
CN103654808A CN103654808A (zh) 2014-03-26
CN103654808B true CN103654808B (zh) 2015-10-28

Family

ID=49036464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310376842.2A Active CN103654808B (zh) 2012-08-31 2013-08-27 放射线成像装置和放射线成像系统

Country Status (4)

Country Link
US (1) US9360562B2 (zh)
EP (1) EP2702944A1 (zh)
JP (1) JP2014048204A (zh)
CN (1) CN103654808B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5583191B2 (ja) * 2011-11-25 2014-09-03 富士フイルム株式会社 放射線画像検出装置およびその作動方法
JP6138754B2 (ja) * 2014-03-03 2017-05-31 富士フイルム株式会社 放射線画像撮影システム、放射線画像撮影装置、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム
JP6362421B2 (ja) * 2014-05-26 2018-07-25 キヤノン株式会社 放射線撮像装置、その制御方法およびプログラム
US9702758B2 (en) * 2014-06-09 2017-07-11 Kiskeya Microsystems Llc Systems and methods for readout of event-driven pixels
JP6470508B2 (ja) * 2014-06-17 2019-02-13 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6577700B2 (ja) 2014-06-30 2019-09-18 キヤノン株式会社 放射線検出装置、その制御方法、放射線撮影装置、およびプログラム
JP6366542B2 (ja) 2015-06-17 2018-08-01 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよび照射開始検出方法
CN106454166B (zh) * 2016-10-21 2019-12-06 奕瑞影像科技(太仓)有限公司 降低探测器图像串扰的方法
JP6752353B2 (ja) * 2017-02-28 2020-09-09 富士フイルム株式会社 放射線検出システム、放射線出力装置および放射線検出装置
JP7075250B2 (ja) 2018-03-20 2022-05-25 キヤノン株式会社 放射線撮影システム、撮影制御装置及び方法
JP7319809B2 (ja) * 2019-03-29 2023-08-02 キヤノン株式会社 放射線撮像装置、その制御方法及び放射線撮像システム
JP7344769B2 (ja) * 2019-11-22 2023-09-14 キヤノン株式会社 放射線検出装置及び出力方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208710B1 (en) * 1998-07-21 2001-03-27 Kabushiki Kaisha Toshiba X-ray diagnostic apparatus and radiation diagnostic apparatus
CN102313896A (zh) * 2010-07-02 2012-01-11 富士胶片株式会社 放射线检测元件及放射线图像成像装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236670A (ja) * 1996-02-29 1997-09-09 Toshiba Eng Co Ltd 中性子測定装置用の校正装置
JP3413084B2 (ja) 1997-11-20 2003-06-03 キヤノン株式会社 放射線撮像装置及び撮像方法
JP2001283215A (ja) * 2000-01-24 2001-10-12 Hitachi Medical Corp 画像処理装置
JP3950665B2 (ja) 2001-10-23 2007-08-01 キヤノン株式会社 放射線撮像装置及び放射線撮像装置の撮像方法
JP5300216B2 (ja) * 2006-08-29 2013-09-25 キヤノン株式会社 電子カセッテ型放射線検出装置
US9492129B2 (en) 2008-10-27 2016-11-15 Dental Imaging Technologies Corporation Triggering of intraoral X-ray sensor using pixel array sub-sampling
JP5233831B2 (ja) 2009-05-14 2013-07-10 コニカミノルタエムジー株式会社 放射線画像撮影装置および放射線画像撮影システム
JP5306062B2 (ja) * 2009-06-01 2013-10-02 キヤノン株式会社 放射線撮影装置、放射線撮影方法及びプログラム
WO2011016262A1 (ja) 2009-08-07 2011-02-10 コニカミノルタエムジー株式会社 放射線画像撮影装置
JP5533198B2 (ja) * 2010-04-28 2014-06-25 コニカミノルタ株式会社 医用画像表示装置及びプログラム
JP2012040053A (ja) * 2010-08-13 2012-03-01 Fujifilm Corp 放射線撮影装置及び放射線撮影システム
JP5676632B2 (ja) * 2010-10-26 2015-02-25 富士フイルム株式会社 放射線画像撮影装置、当該装置によって実行されるプログラム、放射線画像撮影方法
JP5490026B2 (ja) * 2011-01-14 2014-05-14 富士フイルム株式会社 放射線画像撮影装置
JP5691536B2 (ja) * 2011-01-14 2015-04-01 コニカミノルタ株式会社 放射線画像撮影システム
JP5283718B2 (ja) * 2011-02-09 2013-09-04 富士フイルム株式会社 放射線画像検出装置及び放射線画像検出装置に用いられるゲイン設定方法
JP5403036B2 (ja) * 2011-11-04 2014-01-29 コニカミノルタ株式会社 放射線撮像システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208710B1 (en) * 1998-07-21 2001-03-27 Kabushiki Kaisha Toshiba X-ray diagnostic apparatus and radiation diagnostic apparatus
CN102313896A (zh) * 2010-07-02 2012-01-11 富士胶片株式会社 放射线检测元件及放射线图像成像装置

Also Published As

Publication number Publication date
US9360562B2 (en) 2016-06-07
US20140061492A1 (en) 2014-03-06
CN103654808A (zh) 2014-03-26
EP2702944A1 (en) 2014-03-05
JP2014048204A (ja) 2014-03-17

Similar Documents

Publication Publication Date Title
CN103654808B (zh) 放射线成像装置和放射线成像系统
CN103654807B (zh) 放射线成像装置和放射线成像系统
CN110623682B (zh) 放射线摄像装置及控制方法、放射线摄像系统及存储介质
CN103312990B (zh) 放射线摄像设备和摄像系统
US9977135B2 (en) Radiation imaging apparatus and radiation detection system
US8642970B2 (en) Radiographic image detecting apparatus and radiographic image capturing system
CN105306840A (zh) 放射线成像装置和放射线成像系统
CN102413766A (zh) 成像装置和成像系统及其控制方法和程序
WO2005015639A1 (en) Multi-mode digital imaging apparatus and system
CN103828342B (zh) 成像设备,成像系统,和控制成像设备的方法
US9239390B2 (en) Radiation imaging apparatus and radiation imaging system
US8841623B2 (en) X-ray detecting device and operating method thereof
JP2023134775A (ja) 放射線撮像装置および放射線撮像システム
KR20010095147A (ko) 전하량검출회로 및 이를 사용한 2차원화상센서
WO1997005657A1 (en) Method and apparatus of operating a dual gate tft electromagnetic radiation imaging device
WO2014187842A1 (en) A radiographic image detecting apparatus comprising operational amplifiers
CN100530664C (zh) 多模式数字成像装置和系统
JP7190913B2 (ja) 放射線撮像装置および放射線撮像システム
JP6821457B2 (ja) 放射線検出器
JP2018161431A (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant