CN1036100A - 高温超导体 - Google Patents

高温超导体 Download PDF

Info

Publication number
CN1036100A
CN1036100A CN89101490A CN89101490A CN1036100A CN 1036100 A CN1036100 A CN 1036100A CN 89101490 A CN89101490 A CN 89101490A CN 89101490 A CN89101490 A CN 89101490A CN 1036100 A CN1036100 A CN 1036100A
Authority
CN
China
Prior art keywords
superconductor
strontium
calcium
bismuth
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN89101490A
Other languages
English (en)
Other versions
CN1016299B (zh
Inventor
奥利弗·埃布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6349684&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1036100(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1036100A publication Critical patent/CN1036100A/zh
Publication of CN1016299B publication Critical patent/CN1016299B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/782Bismuth-, e.g. BiCaSrCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ladders (AREA)

Abstract

Bi(Pb)Sr(Ca)-CuOx系超导材料,具有5或8.7 倍钙钛矿晶胞超结构的相。(附图)

Description

本发明涉及Bi-Sr(Ca)-CuOx系高温超导体。
Bednonz和Müller已公开了镧-锶-铜氧化物系超导体,这类超导体具有以前从未达到过的由普通导体跃迁为超导体的高转变温度。钇-钡-铜氧化物所达到的转变温度为70至90K。最近公开的另一系超导体,即铋-锶-钙-铜氧化物业已进行了深入的研究,所研究的问题涉及烧结过程中,诸如烧结温度、烧结时间和氧气分压力等烧结参数的影响。
上述第二种材料的制造是采用粉末原料,经混合、碾磨和冷压后,置于氧化锆板上,在微处理机控制的炉中进行烧结。在空气中进行烧结的烧结温度为800,860,880,900℃,烧结时间长达10小时。将金属接点与试样接触,测量其电特性;通过测量材料周围线圈的感应率测定多种材料的磁性。
本发明的任务在于提供超过90K或等于105K的高转变温度的高温超导材料的化学组分。
本发明的任务的材料是通过下列组分解决的,即:
(Bi1-uPbu)2(Sri-x-y Cax Biy)4Cu3O10±d(d=δ)
其中,0.01<x<0.5,
0≤y<x≤0.5
0≤d
0≤u
d约等于2y或u,u为0.1至0.3,或u=0.2±10%。该种材料除杂质外,不含有铅,晶胞中基本上不含有铋。
本发明的基础是:
测量规定组分的分子式为BiSrCaCu2Ox系的超导材料试样中电阻和电感的急速下降;测量零电阻与55至175K温度的相关性。零电阻与温度的相关曲线给出在空气中和在860°至880℃温度下经过长达10小时烧结的材料的电阻降低的两个阶段。采用相应的线性外推法得到超导相变的温度值为100至105K。
这项结果被认为很容易重复,经过较长时间烧结的试样也很容易冲压。对用900℃和900℃温度以上烧结的试样,观察其半导体性能。
在本发明范围内所进行的广泛研究,其目的在于从所研究的具有二相或多相结构的材料中,能够研制出一种其结构可得到转变温度为100至105K的超导材料。
本发明的另一基础在于上述材料是多相的,而且两种超导材料共存,其中之一具有上述的高转变温度。
本发明人成功地发现,具有大约105K转变温度的这种材料至少主要是由单相的铋-锶-钙-铜化物系,尤其是由铅部分取代铋的材料组成的。从《科学》(Science,239卷,1988年2月,1015-1016页,尤其是图3)已知,含有规定组分铋氧化物-锶-钙-铜氧化物系的超导材料具有层状结构,其铋氧化物层与依次由锶-铜-钙(锶)-铜-锶氧化物组成的层次可互相置换。
在导致本发明的研究中认为,晶格常数a=0.54nm和C=3nm(由电子显微镜衍射测定)的相,即由上述出版物公开的相,其晶格常数a也等于0.54nm,而晶格常数C=3.6nm,更精确地说为3.7~3.8nm。更深入的研究还进一步了解到,这个相除了技术上具有特殊优点的超导特性之外,还具有105K的较高的转变温度。
这种超导材料具有至今所分析的A-面心正交对称的正交晶格。0/0轴的电子显微镜衍射图所分辨出A-面心正交晶格和F-面心正交晶格。
还确定a=0.54nm和C=3.6nm或3.7至3.8nm的本发明的基本结构在于其平行于0/0或100方向上具有5倍或8.7倍超结构。本发明材料的晶胞具有由锶氧化物,(钙氧化物)和铜氧化物组成的BiOx双层和钙钛矿晶胞的结构。这些晶胞也可含有铋和/或铅,即除了铋外也可含铅。本发明材料具有夹三层式的结构,其由铋氧化物或(Bi1-uPbu氧化物组成的层状和由呈层状的钙钛矿晶胞组成的层次可以互换。本发明这种结构的层序如下:
(铋1-uu)/锶(钙)/铜/钙(锶)/铜/钙(锶)/铜/锶(钙)/(铋1-uu),其晶格常数如上所述,即C=3.6nm。括号中的元素可以部分取代括号前的元素。
本发明的超导材料具有下列化学计量组分:
(Bi1-uPbu)(Sr1-x-yCaxBiy)4Cu3O10±d(d=δ)
其中,0.01<X<0.5
0≤y<x≤0.5
0≤d≌2y或≌U
0≤u,
其转变温度高于90K。
如所测定的那样,这种材料的转变温度可达到105至120K。
即使本发明材料不能完全达到所给出的105至110K高转变温度,本发明的材料与有关与之竟争的超导材料相比,仍然具有很大的技术优点,因为本发明的材料与大气反应不那么快,即对大气具有较高的抗性。
采用其他方法也可制造本发明的材料。相应于上述组分在上述x,y,d和u的极限值范围内,选择相应的原料(氧化物,碳酸盐等)。在各个相继的制造步骤中视其产生的损耗量(碾磨、过筛、反应和烧结时的损耗)考虑相应增加原料量。
将称取的物料相互混合和碾磨,尤其可在碾磨时进行混合,并且可用一般的球磨机进行碾磨。碾磨后的原料按常规方法,在普通的高温(700℃至1000℃,尤其在800℃至820℃下)进行反应(移入到氧化物中)。碾磨后对样品进行压制和烧结。烧结温度为800℃至1000℃,优先采用800°±20℃,尤以860°至865℃为佳。烧结时间为10小时,尤以60至120小时为佳。反应优先采用在空气中进行。这种制造方法能够制取制超导材料,即通过成型和压制得到预定尺寸的超导体。此外,这种料料也可采用常规加工过程进行制造。
本发明的一个实施例如下:
按已确定Bi1.7Pb0.4Sr1.7Ca2.1Cu3,称重Bi2O0,PbO,SrCO3,CaO和CuO。在空气中同时进行碾磨,并先在800℃反应3小时,再在820℃反应10至20小时。经碾磨和压制后,在860°至865℃温度下和在空气中烧结60至120小时。在Po2=1/13巴条件下和在氩氧混合气体中,烧结60至120小时,烧结温度为843℃,同样能获得良好的效果。
附图给出本发明材料的结构层序的截面,C轴呈垂直方向。
P表示3层钙钛矿晶胞。

Claims (11)

1、Bi-Sr(Ca)-CuOx系超导材料,其特征在于原料组分为:
(Bi1-uPbu)2(Sr1-x-yCaxBiy)4Cu3O10±d(d=δ)
其中,0.01<X<0.5
0≤y<x≤0.5
0≤d
0≤u
转变温度高于90K。
2、按权利要求1的超导材料,其特征在于d约等于2y。
3、按权利要求1的超导材料,其特征在于d约等于u。
4、按权利要求1,2或3的超导材料具有由铋、锶、(钙)、和铜的氧化物组成层状结构,其特征在于所述氧化物的层序为……铋、锶、(钙)、铜、钙(锶)、铜、钙(锶)、铜、锶、(钙)、铋,……(参阅附图)。
5、按权利要求1,2,3或4的超导材料,其特征在于转变温度等于或高于105K。
6、按权利要求1,2,3,4或5的超导材料,其特征在于除杂质外不含有铅。
7、按权利要求1至5之一所述的超导材料,其特征在于除了杂质外,晶胞基本上不含铋。
8、按权利要求1至5之一所述的超导材料,其特征在于u为0.1和0.3。
9、按权利要求8的超导材料,其特征在于u=0.2±10%。
10、按权利要求9的超导材料,其特征在于重量为Bi1.7Pb0.4Sr1.7Ca2.1Cu3的材料在空气中用中间碾磨先于800℃反应3小时,再于820℃反应10至20小时,将经过反应的材料进行碾磨压制,在空气中和860℃至865℃温度下烧结60至120小时。
11、按权利要求9的超导材料,其特征在于Po2=1/13巴的氩氧混合气体中,于大约843℃温度下,烧结60至120小时。
CN89101490A 1988-03-14 1989-03-14 高温超导体 Expired CN1016299B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3808447A DE3808447C2 (de) 1988-03-14 1988-03-14 Hochtemperatur-Supraleiter des Systems Bi-Sr (Ca)-CuO¶x¶
DEP3808447.3 1988-03-14

Publications (2)

Publication Number Publication Date
CN1036100A true CN1036100A (zh) 1989-10-04
CN1016299B CN1016299B (zh) 1992-04-15

Family

ID=6349684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89101490A Expired CN1016299B (zh) 1988-03-14 1989-03-14 高温超导体

Country Status (7)

Country Link
US (1) US5665662A (zh)
EP (1) EP0404790B2 (zh)
JP (1) JPH02504261A (zh)
CN (1) CN1016299B (zh)
AT (1) ATE126397T1 (zh)
DE (2) DE3808447C2 (zh)
WO (1) WO1989008929A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100416714C (zh) * 2003-09-17 2008-09-03 住友电气工业株式会社 超导装置和超导电缆

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ228132A (en) * 1988-04-08 1992-04-28 Nz Government Metal oxide material comprising various mixtures of bi, tl, pb, sr, ca, cu, y and ag
JPH01320227A (ja) * 1988-06-20 1989-12-26 Daikin Ind Ltd ビスマス系酸化物超電導材料の製造方法
DE68927895T2 (de) * 1988-12-05 1997-10-09 Sumitomo Electric Industries Verfahren zum Herstellen eines einkristallinen oxidischen Supraleitermaterials
US5264413A (en) * 1990-03-07 1993-11-23 Ivan Bozovic Bi-Sr-Ca-Cu-O compounds and methods
US8723372B2 (en) 2010-10-20 2014-05-13 Larry A. Park System for inducing a high efficiency conductive state in materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327044B2 (de) * 1988-02-05 1998-04-22 Hoechst Aktiengesellschaft Supraleiter und Verfahren zu seiner Herstellung
US4880771A (en) * 1988-02-12 1989-11-14 American Telephone And Telegraph Company, At&T Bell Laboratories Bismuth-lead-strontium-calcium-cuprate superconductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100416714C (zh) * 2003-09-17 2008-09-03 住友电气工业株式会社 超导装置和超导电缆

Also Published As

Publication number Publication date
ATE126397T1 (de) 1995-08-15
EP0404790B1 (de) 1995-08-09
DE3808447C2 (de) 1995-09-28
DE58909382D1 (de) 1995-09-14
EP0404790B2 (de) 2007-10-17
JPH02504261A (ja) 1990-12-06
US5665662A (en) 1997-09-09
EP0404790A1 (de) 1991-01-02
WO1989008929A1 (en) 1989-09-21
DE3808447A1 (de) 1989-09-28
JPH0583489B2 (zh) 1993-11-26
CN1016299B (zh) 1992-04-15

Similar Documents

Publication Publication Date Title
Matsuda et al. Superconductivity of Tl-Sr-Ca-Cu-O System in Relation to Tl-Ba-Ca-Cu-O and Bi-Sr-Ca-Cu-O Systems
CN1025900C (zh) 铋-锶-钙-铜-氧高Tc超导体及其制备方法
Manako et al. Non-superconducting TlBa2YCu2O7 with a new crystal structure resembling superconducting YBa2Cu3O7
CN1036100A (zh) 高温超导体
EP0443827B1 (en) Rare earth substituted thallium-based superconductors
EP0377359A1 (en) Oxide superconducting material, process for preparing the same and applications thereof
Tokiwa-Yamamoto et al. Effect of Tl doping on the phase stability of Hg2Ba2 (Y, Ca) 1Cu2O8− δ superconductors prepared by a high-pressure technique
US5143895A (en) R-ce-cu-o superconducting oxide material wherein r is at least one element selected from the group consisting of pr, nd, and sm
EP0290271B1 (en) Superconducting circuit board and process of manufacturing it
EP0483858B1 (en) Layered copper oxides
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
Tang et al. 77-K superconductor Pb 0.8 SrBa 1.2 Y 0.7 Ca 0.3 Cu 3 O 7+ δ: Comparison with other Pb-based superconductors
JP2859516B2 (ja) 酸化物超電導体およびその製造方法
JP2001505178A (ja) 126Kまでの温度で超伝導するBa―Ca―Cu―O組成物及びその製造方法
Otto et al. Preparation and structural investigation of normalconducting and high-T c superconducting (Tl, Pb) Sr 2 (Ca, Tl) Cu 2 O 7− y
CN1018311B (zh) 铋系复合氧化物超导薄膜的成膜方法
Alimardan et al. Partial substitution Effect of Pb and Mg on the Structural and Electrical Properties of High Temperature (Hg1-xPbxBa2Ca3-yMgyCu4O10+ δ) Superconductor
JP2727608B2 (ja) 超伝導物質の製造方法
JP2671881B2 (ja) 超伝導物質
JP2542610B2 (ja) 化合物超電導体およびその製造方法
US5214026A (en) Method for producing a R-Ce-Cu-O superconducting material wherein R is at least one rare earth element
JP2778100B2 (ja) 酸化物超電導材料およびその製造方法
CN108155286A (zh) 高温超导体
JP2671882B2 (ja) 超伝導物質
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term