CN108155286A - 高温超导体 - Google Patents

高温超导体 Download PDF

Info

Publication number
CN108155286A
CN108155286A CN201611101139.0A CN201611101139A CN108155286A CN 108155286 A CN108155286 A CN 108155286A CN 201611101139 A CN201611101139 A CN 201611101139A CN 108155286 A CN108155286 A CN 108155286A
Authority
CN
China
Prior art keywords
strontium
hours
calcium
superconductor
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611101139.0A
Other languages
English (en)
Inventor
房毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Yuan Kun Superconducting Mstar Technology Ltd
Original Assignee
Shandong Yuan Kun Superconducting Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Yuan Kun Superconducting Mstar Technology Ltd filed Critical Shandong Yuan Kun Superconducting Mstar Technology Ltd
Priority to CN201611101139.0A priority Critical patent/CN108155286A/zh
Publication of CN108155286A publication Critical patent/CN108155286A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • H10N60/858Ceramic superconductors comprising copper oxide having multilayered structures, e.g. superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明的公开了一种Bi(pb)Sr(ca)‑CuOx系超导材料,具有5或8.7倍钙钛矿晶胞超结构的相。

Description

高温超导体
技术领域
本发明涉及Bi-Sr(Ca)-CuOx系高温超导体。
背景技术
Bednorz和Müller已公开了镧-锶-铜氧化物系超导体,这类超导体具有以前从未达到过的由普通导体跃迁为超导体的高转变温度。钇-钡-铜氧化物所达到的转变温度为70至90K。最近公开的另一系超导体,即铋-锶-钙-铜氧化物业已进行了深入的研究,所研究的问题涉及烧结过程中,诸如烧结温度、烧结时间和氧气分压力等烧结参数的影响。
上述第二种材料的制造是采用粉末原料,经混合、碾磨和冷压后,置于氧化锆板上,在微处理机控制的炉中进行烧结。在空气中进行烧结的烧结温度为800,860,880,900℃,烧结时间长达10小时。将金属与试样接触,测量其电特性;通过测量材料周围线圈的感应率测定各种材料的磁性。
发明内容
本发明的任务在于提供超过90K或等于105K的高转变温度的高温超导材料的化学组分。
本发明的任务的材料是通过下列组分解决的,即:
其中,0.01<x<0.5,
0≤y<x<0.5,
0≤d,
0≤u,
d约等于2y或u,u为0.1至0.3,或u=0.2±10%。该种材料除杂质外,不含有铅,晶胞结构中基本上不含有铋。
本发明的基础是:
测量规定组分的分子式为BiSrCaCu2Ox系的超导材料试样中电阻和电感的急速下降;测量零电阻与55至175K温度的相关性。零电阻与温度的相关曲线给出在空气中和在860°至880℃温度下经过长达10小时烧结的材料的电阻降低的两个阶段。采用相应的线性外推法得到超导相变的温度值为100至105K。
这项结果被认为很容易重复,而且经过较长时间烧结的试样也很容易冲压。在900℃和900℃以上烧结温度的试样上,观测到半导体性能。
在本发明范围内所进行的广泛研究,其目的在于从所研究的具有二相或多相结构的材料中,能够研制出一种其结构可得到转变温度为100至105K的超导材料。
本发明的另一基础在于上述材料是多相的,而且两种超导材料共存,其中之一具有上述的高转变温度。
本发明人成功地发现,具有大约105K转变温度的这种材料至少主要是由铋-锶-钙-铜氧化物系的相,尤其是由铅部分取代铋的材料组成的。从《科学》(Science,239卷,1988年2月,1015-1016页,尤其是图3)已知,含有规定组分氧化铋-锶-钙-氧化铜系的超导材料具有层状结构,其氧化铋层与由氧化锶-氧化铜-氧化钙(锶)-氧化铜-氧化锶组成的层序可以互相置换。
在导致本发明的研究中确认,晶格常数a=0.54nm和C=3nm(由电子显微镜衍射测定)的相,即与由上述出版物公开的相一样,具有80K的转变温度。但是还确认了存在另一个相,其晶格常数a也等于0.54nm,而晶格常数C=3.6nm,更精确地说为3.7~3.8nm。更深入的研究还进一步了解到,这个相除了技术上具有特殊优点的超导特性之外,还具有105K的更高的转变温度。
这种超导材料具有至今所分析的A-面心正交对称的正交晶格。在<010>轴中的电子显微镜衍射图能分辨出A-面心正交晶格和F-面心正交晶格。
还确定a=0.54nm和C=3.6nm或3.7至3.8nm的本发明的基本结构在于其平行于<010>或<100>方向上具有5倍或8.7倍超结构。本发明材料的晶胞具有由氧化锶,(氧化钙)和氧化铜组成的BiOx双层和钙钛矿晶胞的结构。这些晶胞也可含有铋和/或铅,即除了含铋外也可含铅。本发明材料具有夹三层式的结构,其由氧化铋或(Bil-uPbu)氧化物组成的层状和由呈层状的钙钛矿晶胞组成的层次可以互换。本发明这种结构的层序如下:
(铋1-u铅u)/锶(钙)/铜/钙(锶)/铜/钙(锶)/铜/锶(钙/(铋1-u铅u),其晶格常数如上所述,即C=3.6nm。括号中的元素可以部分取代括号前的元素。
本发明的超导材料具有下列化学计量组分:
其中,0.01<X<0.5
0≤y<x<0.5
0≤d≌2y或≌U
0≤u,
其转变温度高于90K。
如所测定的那样,这种材料的转变温度可达到105至120K。
即使本发明材料不能完全达到所给出的105至110K高转变温度,本发明的材料与有关与之竟争的超导材料相比,仍然具有很大的技术优点,因为本发明的材料与大气反应不那么快,即对大气具有较高的抗性。
采用其他方法也可制造本发明的材料。相应于上述组分在上述x,y,d和u的极限值范围内,选择相应的原料(氧化物,碳酸盐等)。在各个相继的制造步骤中视其产生的损耗量(研磨、过筛、反应和烧结时的损耗)考虑相应增加原料量。
将称取的物料相互混合和研磨,尤其可在研磨时进行混合,并且可用一般的球磨机进行研磨。研磨后的原料按常规方法,在普通的高温(700℃至1000℃,尤其在800℃至820℃下)进行反应(转化为氧化物)。在再次进行研磨后对样品进行压制和烧结。烧结温度为800℃至1000℃,优先采用880°±20℃,尤以860°至865℃为佳。烧结时间为10小时,尤以60至120小时为佳。反应优先在空气中进行。这种制造方法能够制取超导材料,即通过成型和压制得到预定尺寸的超导体。此外,这种料料也可采用常规加工过程进行制造。
具体实施方式
本发明的一个实施例如下:
按已确定的Bi1.7Pb0.4Sr1.7Ca2.1Cu3重量,称重Bi2O3,PbO,SrCO3,CaO和CuO。反应在空气中进行,先在800℃反应3小时,再在820℃反应10至20小时,同时进行间隔研磨。反应后经再次研磨和压制后,在860°至865℃温度下和在空气中烧结60至120小时。在Po2=1/13巴条件下和在氩氧混合气体中,烧结60至120小时,烧结温度为843℃,同样能获得良好的效果,制得含铅量u=0.2±10%的材料。

Claims (7)

1.Bi-Sr(Ca)-CuOx系超导材料,其特征在于原料组分为:其中,0.01<x<0.5,O≤y<x<0.5,0≤d,优先约等于2y或u,0≤u,转变温度高于90K。
2.按权利要求1的超导材料,该材料具有由铋(铅)、锶(钙)、和铜的氧化物组成层状结构,其特征在于所述氧化物的层序为铋(铅)、锶(钙)、铜、钙(锶)、铜、钙(锶)、铜、锶(钙)、铋(铅),其中括号中的元素可分别部分代替其前面所述的元素。
3.按权利要求1或2的超导材料,其特征在于除杂质外不含有铅。
4.按权利要求1或2的超导材料,其特征在于除了杂质外,晶胞结构基本上不含铋。
5.按权利要求1的超导材料,其特征在于u在0.1和0.3之间。
6.按权利要求5的超导材料,其特征在于u=0.2±10%。
7.制备权利要求6的超导材料的方法,其特征在于:(A)重量为Bi1.7Pb0.4Sr1.7Ca2.1Cu3的材料在空气中随着间隔研磨,先于800℃反应3小时,再于820℃反应10至20小时,将经过反应的材料进行研磨压制,在空气中和860℃至865℃温度下烧结60至120小时;或(b)重量为Bi1.7Pb0.4Sr1.7Ca2.1Cu3的材料在空气中随着间隔研磨,先于800℃反应3小时,再于820℃反应10至20小时,将经过反应的材料进行研磨压制,在Po2=1/13巴的氩氧混合气体中和大约843℃温度下烧结60至120小时。
CN201611101139.0A 2016-12-05 2016-12-05 高温超导体 Pending CN108155286A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611101139.0A CN108155286A (zh) 2016-12-05 2016-12-05 高温超导体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611101139.0A CN108155286A (zh) 2016-12-05 2016-12-05 高温超导体

Publications (1)

Publication Number Publication Date
CN108155286A true CN108155286A (zh) 2018-06-12

Family

ID=62470689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611101139.0A Pending CN108155286A (zh) 2016-12-05 2016-12-05 高温超导体

Country Status (1)

Country Link
CN (1) CN108155286A (zh)

Similar Documents

Publication Publication Date Title
US5145831A (en) High-tc oxide superconductor and method for producing the same
Mohammed et al. The substitutions of Strontium by yttrium and their effects on Bi2Sr2-xYxCa2Cu3O10+ δ superconducting compound
CN108155286A (zh) 高温超导体
Idemoto et al. Oxygen content and Tc of Ba0. 6K0. 4BiO3− δ
US5665662A (en) High-temperature superconductor
Kirschner et al. Superconductivity in La-Ba-Cu-O metallic oxide compounds above 50 K
Zhou et al. Structure and superconductivity in the infinite-layer Sr1− xCuO2 system prepared under high pressure
EP0443488B1 (en) Method for producing oxide superconductor
Biju et al. Structural and superconducting properties of Bi1. 7Pb0. 4Sr2− xYbxCa1. 1Cu2. 1Oy system
Min et al. A new family of Pb-based 1222 cuprates Pb (Sr, La) 2Ln2Cu2Oz (Ln Gd, Dy, Eu, and Pr)
Tang et al. (Hg, Mo) Sr2Y1− xCaxCu2O6+ δ. A new series of mercury-based high-Tc superconductor
Kirschner et al. High-Tc Superconductivity in La-Ba-Cu-O and Y-Ba-Cu-O Compounds
Sýkorová et al. Bi-2223 phase development under influence of additions of 5B metal oxides
JP2778100B2 (ja) 酸化物超電導材料およびその製造方法
Sumadiyasa et al. Effect of Substitution Sr Cations on the Structure in the Gd 1 (Ba 2− x Sr x) Cu 3 O 7− δ Phases
Kandyel Synthesis, structural and physical properties of new Terbium containing Tb–Hg–Sr–Ca–Cu–O superconducting system
Sastry et al. Fabrication of Ag-clad BSCCO-2223 tapes using and precursors
Wu et al. Structural evolution of a (Hg0. 6, Tl0. 4) 2Ba2Ca2Cu3O9. 9 superconductor induced by reduction
Briggs et al. Preparation of single phase bismuth-based 2212 and 2223 superconducting oxides, and quantitative X-ray diffraction analysis of 2212 and 2223 phase mixtures
Kandyel et al. New 1201-Type (Hg, Se)-superconducting cuprate grown by sol–gel and sealed quartz tube synthesis
Tripathi et al. Influence of silver and excess copper on the formation and properties of 2223 (Bi, Pb)–Sr–Ca–Cu–O superconductor
Tang et al. (Hg, Pb) Sr2 (Ln, Ce) 2Cu2Oz (Ln Gd, Nd), a new family of mercury-lead-based superconducting cuprates
Sansom et al. Synthesis and Conductivities of the Apatite-Type Phases, La9. 33Si6− xGexO26, La9BaSi6− xGexO26. 5, and Related Titanium Doped Systems
Xingjiang et al. Stability and doping of infinite-layer compound (Ca 1− x Sr x) CuO 2 at ambient pressure
JP2854338B2 (ja) 銅系酸化物超電導体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180612

WD01 Invention patent application deemed withdrawn after publication