CN1018311B - 铋系复合氧化物超导薄膜的成膜方法 - Google Patents

铋系复合氧化物超导薄膜的成膜方法

Info

Publication number
CN1018311B
CN1018311B CN89107753A CN89107753A CN1018311B CN 1018311 B CN1018311 B CN 1018311B CN 89107753 A CN89107753 A CN 89107753A CN 89107753 A CN89107753 A CN 89107753A CN 1018311 B CN1018311 B CN 1018311B
Authority
CN
China
Prior art keywords
described method
film
composite oxides
mentioned
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN89107753A
Other languages
English (en)
Other versions
CN1041237A (zh
Inventor
桧垣贤次郎
原田敬三
藤森直治
糸崎秀夫
矢津修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN1041237A publication Critical patent/CN1041237A/zh
Publication of CN1018311B publication Critical patent/CN1018311B/zh
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0408Processes for depositing or forming copper oxide superconductor layers by sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0604Monocrystalline substrates, e.g. epitaxial growth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • Y10S505/731Sputter coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • Y10S505/732Evaporative coating with superconducting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/742Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/782Bismuth-, e.g. BiCaSrCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

利用物理沉积法在基板上将至少含有铋和铜的复合氧化物制成薄膜的成膜方法,其特征是成膜时的基板温度在670~750℃范围内。

Description

本发明是关于含铋复合氧化物超导薄膜的成膜方法,更详细地说,是关于将具有高超导临界温度(Tc)的Bi-Sr-Ca-Cu系等含铋复合氧化物在基板上制成复合氧化物超导材料薄膜的成膜方法的改进。
采用本发明方法进行成膜的薄膜,具有极高的超导临界电流密度(Jc)。
被人们称作电子相转变的超导现象,是在特定条件下导体的电阻为零状态、显示完全抗磁性的现象。在超导现象的有代表性的应用领域即电子技术领域中,已提出各种超导元件并正在开发、研制。作为代表性元件可以举出的有,在超导材料彼此弱结合的情况下,靠外加电流产生宏观量子效应的约瑟夫逊效应而加以利用的元件。另外,隧道结合型约瑟夫逊元件,由于超导材料的能隙小,可望作为极高速的低电能损耗的开关元件。而且由于对于电磁波和磁场的约瑟夫逊效应是作为精确的量子现象出现的,因此,予计还可将约瑟夫逊元件用作磁场、微波、放射线等的超高灵敏度的敏感元件。在超高速电子计算机中,每单位面积的电力消耗达到了冷却能力的极限,因此迫切期待开发超导元件,而且随电子电路的集成度提高,迫切期待使用无电流损耗的超导材料作为配线材料。但是,超导材料的超导临界温度Tc长期以来不能超过Nb3Ge的23K。
Bednorz和Muller发现了复合氧化物系高Tc超导材料,表明存在高温超导体(Bednorz,Muller,“Z.Phys”B64,1986年,189页)。
迄今为止,已经知道复合氧化物系陶瓷材料本身显示超导电性。例如,美国专利No    3932315中记载了Ba-Pb-Bi系复合氧化物显示超导电性,此外在特开昭60-173885中记载了Ba-Bi系复合氧化物显示超导电性。但是,至今所知道的复合氧化物超导材料的Tc在10k以下,因而都是极低的,要获得超导现象必须在昂贵且稀少的液氦(沸点4.2k)中使用。
Bednorz和Muller发现的氧化物超导体是(La,Ba)2CuO4,它被称为K2NiF4型氧化物,具有与过去已知的钙钛型超导氧化物类似的晶体结构,其Tc约为30k,显著高于过去的超导材料。在此之后,陆续报导了许多复合氧化物系高温超导体,从而使高温超导体有可能进入实用化。
チユ-等人曾报导称作YBCO的另一种系列的复合氧化物,该复合氧化物以YBa2Cu3O7-x表示,它具有90k级的临界温度(Physical Review Letters,(58)9,908页,1987年)。
前田等人曾报导Bi-Sr-Ca-Cu系的超导复合氧化物(Japanese    Journal    Of    Applied    Physics,(27)2,1209-1210页)。
这种铋系复合氧化物不仅具有化学稳定性,而且在不使用稀土类元素的情况下即可达到100k以上的Tc,因而具有降低制造成本的优点。
通常,这些复合氧化物超导材料都能够利用固相反应来制造。即将金属元素的氧化物或碳酸盐等的粉末按规定的金属元素原子比例混合,然后烧结该原料混合粉末、得到烧结体。
可以利用以这种烧结制造的复合氧化物作为靶的射频溅射法、真空蒸镀法和离子镀法等物理沉积(PVD)方法,在基板上形成薄膜。此外还可以使用合适的蒸发源,利用MBE(分子束外延生长)法或化学汽相淀积法例如热化学汽相淀积法、等离子化学汽相淀积法、光化学汽相淀积法、有机金属化学汽相淀积法等,在基板上进行薄膜的成膜。这些成膜方法一般在成膜之后要在氧气气氛中进行热处理,调整晶体中的氧缺陷。
但是,采用以往方法成膜的超导体薄膜,由于临界电流密度Jc低,难以用作电子元件和电子电路材料。
本发明的目的是,解决上述以往技术的问题,提供具有高临界电流密度Jc的铋系复合氧化物超导薄膜的成膜方法。
本发明的特征是,在利用物理沉积法在基板上将至少含铋和铜的复合氧化物制成薄膜的成膜方法中,成膜的基板温度控制在670-750℃范围内,在670-720℃范围内更好、最好是控制在680-710℃范围内。
本发明的理想实施状态是在成膜后将所得的薄膜进一步在870-910℃、最好是在880-905℃温度范围内进行退火。这种退火处理一般进行10分钟至10小时。此外这种处理最好是在含氧气氛中或氧气气氛中进行。处理的氧气压力通常为1大气压左右。
本发明是以下述发现为基础而完成的,即用物理沉积法形成至少含铋和铜的复合氧化物超导体薄膜时,精确控制基板温度对所获得薄膜的超导电性产生极大影响。
也就是说,利用过去的方法成膜的超导体薄膜例如Bi-Sr-Ca-Cu系复合氧化物超导体薄膜,虽然具有100k以上的高临 界温度Tc,但是由于临界电流密度Jc最大为10000A/Cm2左右,所以实用性很差。为了改善铋系复合氧化物超导薄膜的临界电流密度Jc,本发明人进行了大量的研究,结果发现,成膜时的基板温度显著影响膜的性能,通过精确控制这种基板的温度可以大幅度改善临界电流密度Jc。
根据本发明人的实验,如果基板温度超出670-750℃范围(较好的范围是670-720℃、最好的是680-710℃)之外,则所获得薄膜的临界电流密度Jc急剧降低。
另外,通过这些研究发现,成膜之后在规定条件下进行退火处理是极为有效的。也就是说,在这种退火处理时,必须在退火处理气氛中在870-910℃温度范围、较好在880-905℃温度范围内保持规定的时间。在上述范围以外的条件下进行处理时,根据条件的不同,有时会使薄膜特性降低。
用以形成本发明薄膜的理想基板是MgO、SrTiO3、LaAlO3和LaGaO3等的单晶体。这些单晶体基板的{100}面或{110}面用作成膜面是令人满意的。
本发明的方法可以采用物理沉积法实现。作为物理沉积法,可以采用溅射法、真空蒸镀法和离子镀法,尤其是溅射法,其中又以射频磁控溅射法最为理想。
用于溅射的靶最好是构成薄膜的复合氧化物中的构成金属元素的复合氧化物的烧结体或烧结粉末,这种烧结体或烧结粉末可以由含至少一种构成薄膜的复合氧化物中的构成金属元素的氧化物、碳酸盐、硝酸盐和氟化物以所要求的构成金属元素的原子比混合而获得的混合粉末经烧结来获得。溅射气体最好是氩气和氧气的混合气,氧气的理 想比例是10-60%。这种溅射气体的理想压力是1×10-2-1×10-1乇。另外,在溅射时加在靶上的高频电能最好是在0.064-1.27W/Cm2范围内。溅射进行的时间为获得所希望膜厚的必要时间,理想的成膜速度通常在0.05-1
Figure 89107753_IMG2
/分的范围内。
在使用真空蒸镀法和离子镀法时,可以使用上述烧结体或烧结粉末作为蒸发源。
本发明能够适用于含铋的任意复合氧化物,特别是适用于Bi、Sr、Ca和Cu的复合氧化物。这种Bi-Sr-Ca-Cu系复合氧化物由下述通式表示:
〔式中m、n、x和y分别表示满足6≤m≤10、4≤n≤8、0<x<1、-2≤y≤+2的范围的数,p=(6+m+n)〕。可以列举下述复合氧化物作为这种系列的复合氧化物的例子:
本发明也适用于上述以外的含铋复合氧化物。可以举出象下述这样的系作为它的例子:
Bi-Y-Ba-Cu-O系    (100k)
Bi-Pb-Sr-Ca-Cu-O系    (107k)
Bi-(Sr,Ln)-Cu-O系    (30-42k)
(Bi,Tl,Pb)-Ca-Sr-Cu-O系(110k)
(注)Ln表示镧系元系
按照本发明方法成膜的铋系复合氧化物超导薄膜,在保持这种复 合氧化物原有的优异临界温度Tc的同时,超导临界电流密度Jc得到大幅度提高。
因而,采用这种薄膜使得制造在液氮温度以上高温工作的以约瑟夫逊元件为代表的各种超导元件成为可能。
下面通过实施例更详细地说明本发明,但实施例不过是本发明的一个例子,不是对本发明的技术范围的任何限定。
实施例
利用磁控溅射法制成Bi-Sr-Ca-Cu系复合氧化物超导薄膜。
将市售的Bi2O3粉末、SrCO3粉末、CaCO3粉末和CuO粉末按Bi∶Sr∶Ca∶Cu(原子比)=1.4∶1.0∶1.0∶1.5的比例进行混合然后在800℃烧结8小时得到Bi-Sr Ca-Cu-O复合氧化物烧结体,用它作为靶。
另外,基板采用MgO单晶基板,{110}面作为成膜面。
改变基板温度,制成6个试样。各试样的共同成膜条件如下。
溅射气体:氩与氧的混合气
O2/(Ar+O2)=0.2(体积比)
溅射压力:2×10-2
高频电能:50W(0.64w/Cm2
各试样成膜至厚度2000
Figure 89107753_IMG3
这样得到的试样,通过测定电阻确认各试样的超导现象,然后,测定它们在77.3k时的超导临界电流密度。各试样显示的临界电流密度和各试样成膜时的基板温度一起示于表1。
表1
试样号    成膜时的基板温度    超导临界电流密度
(℃) (A/cm2,77.3k)
1    660    0
2 680 1.0×105
3 690 1.2×106
4 700 9.5×105
5 720 5.8×105
6    760    0
另外,按照与上述试样中显示最大临界电流密度的试样相同的条件再制成5个试样,这些试样在表2所示的温度条件下、在0.6l/cm2的氧气流中退火处理60分钟,然后同样测定所得薄膜的超导临界电流密度。测定结果也一起示于表2。
表2
试样号    退火时的温度    超导临界电流密度
(℃) (A/cm2、77.3k)
7    860    0
8 880 1.2×105
9 890 9.8×105
10 900 1.7×106
11    925    0
因此,成膜时的基板温度和成膜后的退火温度极大地影响Bi-Sr-Ca-Cu系超导薄膜的临界电流密度,通过适当选择这种处理的温度可以显著提高超导薄膜的临界温度。

Claims (15)

1、在含氧气氛中利用物理沉积法在MgO基板上将至少含有铋和铜铅的复合氧化物制成超导薄膜的成膜方法,其特征是,在670-750℃范围内加热的MgO基板之{110}面上成膜。
2、权利要求1所述的方法,其特征是,成膜之后,将所获得的薄膜进一步在870-910℃温度范围内进行退火。
3、权利要求2所述的方法,其特征是,上述退火进行10分钟以上。
4、权利要求1所述的方法,其特征是,上述物理沉积法是溅射法。
5、权利要求4所述的方法,其特征是,溅射时使用的靶是含构成薄膜的上述复合氧化物中的构成金属元素的复合氧化物烧结体或烧结粉。
6、权利要求5所述的方法,其特征是,上述烧结体或烧结粉是均至少含有一种构成薄膜的上述复合氧化物中的构成金属元素的氧化物、碳酸盐、硝酸盐或氟化物粉以所要求的构成金属元素原子比混合后经烧结而获得的。
7、权利要求4所述的方法,其特征是,溅射在氩和氧的混合气体中进行,氧的百分比是10-60%。
8、权利要求4所述的方法,其特征是,溅射时溅射气体的压力是1×10-2-1×10-1乇。
9、权利要求4所述的方法,其特征是,成膜速度在0.05-1
Figure 89107753_IMG1
/分的范围内。
10、权利要求1所述的方法,其特征是,薄膜由Bi、Sr、Ca和Cu的复合氧化物制成。
11、权利要求10所述的方法,其特征是,上述复合氧化物主要含有由通式Bi4(Sr1-x,CaxmCunOP+Y表示的复合氧化物式中“m”、“n”、“x”、和“y”分别表示满足6≤m≤10、4≤n≤8、0<x<1、-2≤y≤+2范围的数,p=(6+m+n)。
12、权利要求10所述的方法,其特征是,上述物理沉积法是溅射法。
13、权利要求12所述的方法,其特征是,溅射时使用的靶是含构成薄膜的上述复合氧化物中的构成金属元素的复合氧化物烧结体或烧结粉。
14、权利要求12所述的方法,其特征是,溅射在氩和氧的混合气体中进行,氧的百分比是10-60%。
15、权利要求14所述的方法,其特征是,溅射时溅射气体的压力是1×10-2-1×10-1乇。
CN89107753A 1988-08-29 1989-08-28 铋系复合氧化物超导薄膜的成膜方法 Expired CN1018311B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP214130/88 1988-08-29
JP63214130A JP2664070B2 (ja) 1988-08-29 1988-08-29 複合酸化物超電導薄膜の作製方法

Publications (2)

Publication Number Publication Date
CN1041237A CN1041237A (zh) 1990-04-11
CN1018311B true CN1018311B (zh) 1992-09-16

Family

ID=16650722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89107753A Expired CN1018311B (zh) 1988-08-29 1989-08-28 铋系复合氧化物超导薄膜的成膜方法

Country Status (8)

Country Link
US (1) US5051398A (zh)
EP (1) EP0357500B1 (zh)
JP (1) JP2664070B2 (zh)
KR (1) KR900004047A (zh)
CN (1) CN1018311B (zh)
AU (1) AU615102B2 (zh)
CA (1) CA1337719C (zh)
DE (1) DE68907295T2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68921138T3 (de) * 1988-10-03 1998-07-16 Sumitomo Electric Industries Verfahren zur Herstellung eines Oxidverbindungssupraleiters des Bi-Sr-Ca-Cu-Systems.
CA2037481C (en) * 1990-03-08 1998-11-10 Noriki Hayashi Method of preparing oxide superconducting film
DE69224214T2 (de) * 1991-06-04 1998-04-30 Matsushita Electric Ind Co Ltd Herstellungsverfahren für Dünnschicht-Supraleiter
US7617474B2 (en) * 1997-09-17 2009-11-10 Synopsys, Inc. System and method for providing defect printability analysis of photolithographic masks with job-based automation
JP4172040B2 (ja) * 2004-03-23 2008-10-29 独立行政法人科学技術振興機構 固相フラックスエピタキシー成長法
CN113322514A (zh) * 2021-05-24 2021-08-31 沈阳大学 分子束外延技术制备(00l)择优取向低熔点铋薄膜的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772349B2 (ja) * 1987-05-12 1995-08-02 住友電気工業株式会社 大面積化合物薄膜の作製方法および装置
EP0327044B2 (de) * 1988-02-05 1998-04-22 Hoechst Aktiengesellschaft Supraleiter und Verfahren zu seiner Herstellung
US4880771A (en) * 1988-02-12 1989-11-14 American Telephone And Telegraph Company, At&T Bell Laboratories Bismuth-lead-strontium-calcium-cuprate superconductors
JPH0286014A (ja) * 1988-06-17 1990-03-27 Sumitomo Electric Ind Ltd 複合酸化物超電導薄膜と、その成膜方法

Also Published As

Publication number Publication date
JPH0264021A (ja) 1990-03-05
DE68907295T2 (de) 1993-11-25
EP0357500A1 (en) 1990-03-07
AU615102B2 (en) 1991-09-19
EP0357500B1 (en) 1993-06-23
KR900004047A (ko) 1990-03-27
DE68907295D1 (de) 1993-07-29
CA1337719C (en) 1995-12-12
US5051398A (en) 1991-09-24
AU4086189A (en) 1990-03-01
JP2664070B2 (ja) 1997-10-15
CN1041237A (zh) 1990-04-11

Similar Documents

Publication Publication Date Title
DE3855246T2 (de) Supraleitende dünne Schicht und Verfahren zu ihrer Herstellung
US5179070A (en) Semiconductor substrate having a superconducting thin film with a buffer layer in between
CN1151513C (zh) 具有低超导各向异性的掺镁高温超导体及其制造方法
CN1018311B (zh) 铋系复合氧化物超导薄膜的成膜方法
EP0325877A1 (en) A semiconductor substrate having a superconducting thin film
US5149687A (en) Method for making oriented bismuth and thallium superconductors comprising cold pressing at 700 MPa
US5034359A (en) Insulating composition
JP3289134B2 (ja) 不確定性原理に基づく低異方性高温超伝導体とその製造方法
AU614606B2 (en) Semiconductor substrate having a superconducting thin film, and a process for producing the same
US5206214A (en) Method of preparing thin film of superconductor
JP2797186B2 (ja) 超電導体層を有する半導体基板
US5512542A (en) Metallic oxide with boron and process for manufacturing the same
EP0516148A2 (en) Oxide superconductive material and method of preparing the same
JP3258824B2 (ja) 金属酸化物材料、それを用いた超伝導接合素子及び超伝導素子用基板
JP2645730B2 (ja) 超電導薄膜
US6482775B2 (en) Oxide superconductor
US5063202A (en) High transition temperature superconductors
EP0323342A2 (en) A semiconductor substrate having a superconducting thin film
JP3058515B2 (ja) 超電導ジョセフソン素子およびその製法
EP0366510A1 (en) Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system
JP2555505B2 (ja) 金属酸化物材料
JP2519337B2 (ja) 酸化物超電導体作製用の基板材料及び酸化物超電導体の作製方法
JP3242252B2 (ja) 金属酸化物材料及びそれを用いた超伝導装置
JP2817170B2 (ja) 超電導材料の製造方法
JP3247914B2 (ja) 金属酸化物材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee