JP2664070B2 - 複合酸化物超電導薄膜の作製方法 - Google Patents

複合酸化物超電導薄膜の作製方法

Info

Publication number
JP2664070B2
JP2664070B2 JP63214130A JP21413088A JP2664070B2 JP 2664070 B2 JP2664070 B2 JP 2664070B2 JP 63214130 A JP63214130 A JP 63214130A JP 21413088 A JP21413088 A JP 21413088A JP 2664070 B2 JP2664070 B2 JP 2664070B2
Authority
JP
Japan
Prior art keywords
thin film
composite oxide
superconducting
superconducting thin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63214130A
Other languages
English (en)
Other versions
JPH0264021A (ja
Inventor
賢次郎 檜垣
敬三 原田
直治 藤森
秀夫 糸▲崎▼
修示 矢津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63214130A priority Critical patent/JP2664070B2/ja
Priority to CN89107753A priority patent/CN1018311B/zh
Priority to US07/399,739 priority patent/US5051398A/en
Priority to CA000609633A priority patent/CA1337719C/en
Priority to DE89402352T priority patent/DE68907295T2/de
Priority to EP89402352A priority patent/EP0357500B1/en
Priority to AU40861/89A priority patent/AU615102B2/en
Priority to KR1019890012294A priority patent/KR900004047A/ko
Publication of JPH0264021A publication Critical patent/JPH0264021A/ja
Application granted granted Critical
Publication of JP2664070B2 publication Critical patent/JP2664070B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0604Monocrystalline substrates, e.g. epitaxial growth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • Y10S505/731Sputter coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • Y10S505/732Evaporative coating with superconducting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/742Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/782Bismuth-, e.g. BiCaSrCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は複合酸化物超電導薄膜の作製方法に関する。
より詳細には、本発明は、高い超電導臨界温度(Tc)を
有するBi−Sr−Ca−Cu系の複合酸化物超電導材料を、更
に、高い超電導臨界電流密度(Jc)を有する複合酸化物
超電導薄膜として作製する新規な方法に関する。
従来の技術 電子の相転移であるといわれる超電導現象は、特定の
条件下で導体の電気抵抗が零の状態となり完全な反磁性
を示す現象である。
超電導現象の代表的な応用分野であるエレクトロニク
スの分野では、各種の超電導素子が提案され、また開発
されている。代表的なものとしては、超電導材料どうし
を弱く接合した場合に、印加電流によって量子効果が巨
視的に現れるジョセフソン効果を利用した素子が挙げら
れる。また、トンネル接合型ジョセフソン素子は、超電
導材料のエネルギーギャップが小さいことから、極めて
高速な低電力消費のスイッチング素子として期待されて
いる。さらに、電磁波や磁場に対するジョセフソン効果
を正確な量子現象として現れることから、ジョセフソン
素子を磁場、マイクロ波、放射線等の超高感度センサと
して利用することも期待されている。
超高速電子計算機では、単位面積当たりの消費電力が
冷却能力の限界に達してきているため、超電導素子の開
発が要望されており、さらに、電子回路の集積度が高く
なるにつれて、電流ロスの無い超電導材料を配線材料と
して用いることが要望されている。
しかし、様々な努力にもかかわらず、超電導材料の超
電導臨界温度Tcは長期間に亘ってNb3Geの23Kを越えるこ
とができなかったが、1986年来、〔La,Ba〕2CuO4または
〔La,Sr〕2CuO4等の酸化物の焼結材が高いTcをもつ超電
導材料として発見され、非低温超電導を実現する可能性
が大きく高まっている。これらの物質では、30乃至50K
という従来に比べて飛躍的に高いTcが観測され、70K以
上のTcも観測されている。
また、YBCOと称されるY1Ba2Cu3C7-Xで表される複合酸
化物は、90K級の超電導体であることが発表されてい
る。さらに、Bi−Sr−Ca−Cu系およびTl−Ba−Ca−Cu系
複合酸化物超電導体は、Tcが100K以上であるばかりでな
く、化学的にも安定しており、YBCO等のように時間を経
るに従い、超電導特性を劣化することも少ない。
従来これらの複合酸化物超電導体を作製するには、複
合酸化物を構成する成分元素の酸化物または炭素塩の粉
末を混合し、焼結を行っていた。また、この焼結により
作製した複合酸化物をターゲットにして、RFスパッタリ
ング等の方法で薄膜を作製していた、さらに、焼結後ま
たは成膜後に酸素雰囲気中で熱処理を行い、結晶中の酸
素欠陥を調整することもある。
発明が解決すようとする課題 上述のようにな複合酸化物は、当初焼結体として得ら
れていたが、現在では薄膜として製作することが実用的
であると考えられている。複合酸化物系超電導材料の薄
膜は、スパッタリング法に代表される所謂物理蒸着法に
より作製できる。
しかしながら、従来作製された超電導体薄膜は、特に
臨界電流密度Jcが小さいために、例えば素子の材料とし
て使用することは到底適わなかった。
そこで、本発明の目的は、上記従来技術の問題点を解
決し、高い臨界電流密度Jcを有する複合酸化物超電導材
料の薄膜を作製する方法を提供することにある。
課題を解決するための手段 即ち、本発明に従うと、Bi、Sr、CaおよびCuの複合酸
化物を主として含む超電導薄膜を物理蒸着法により作製
する方法において、 成膜時の基板温度を670〜750℃の範囲内として、MgO
単結晶基板の(110)面上に超電導薄膜を堆積させるこ
とを特徴とする複合酸化物超電導薄膜の作製方法が提供
される。
更に、本発明の有利な一態様に従うと、上記本発明に
係る方法に従って成膜した複合酸化物薄膜を、成膜後に
870〜910℃、好ましくは880〜905℃の温度範囲でアニー
ル処理することが有利であり、このアニール処理は酸素
雰囲気下で行うことがより好ましい。
本発明に係る方法が有利に適用できる複合酸化物超電
導体としては、 式:α(β1-X,CaXmCunOp+y 〔ここで、αはBiであり、 βはSrであり、 mは6≦m≦10を満たし、 nは4≦n≦8を満たし、 p=6+m+nであり、 xは0<x<1を満たす数を表し、 yは−2≦y≦2を満たす数を表す〕 で表される組成を有する複合酸化物を例示することがで
きる。具体的には、 Bi2Sr2Ca2Cu3O10-xあるいは Bi4Sr4Ca4Cu6O2(10-x) 等が、特に高い臨界温度を示すものとして知られてい
る。また、このような組成を有する薄膜を作製する場合
使用できる好ましい基板として、MgO単結晶の(110)面
を挙げることができる。
更に、本発明に係る方法において、スパッタリング時
の圧力は1×10-2〜1×10-1Torrであることが好まし
く、スパッタリングガスはO2の分子百分率が10〜60%で
あるArとO2の混合ガスを使用することが好ましい。ま
た、ターゲットに印加する高周波数電力は0.064〜1.27W
/cm2の範囲内であることが、成膜速度は0.05〜1Å/分
の範囲内であることが好ましい。
作用 本発明に係る超電導薄膜の作製方法は、Bi、Sr、Ca、
Cuの複合酸化物超電導体を主として含む超電導薄膜を物
理蒸着法、例えばスパッタリング法により作製する際
に、特に基板温度の制御が得られる薄膜の特性に深い関
係を有することを見出した結果完成したものである。
即ち、従来の方法によって作製したBi−Sr−Ca−Cu系
複合酸化物超電導体薄膜は、Tcこそ100K以上と高かった
が、Jcは、せいぜい10000A/cm2程度であり実用性が低か
った。
本発明者等は、超電導薄膜の特性、特に超電導臨界電
流密度を改善すべく、種々検討した結果、成膜時の基板
温度が膜質に深く影響しており、臨界電流密度の改善に
有効であることを見出した。ここで、好ましい基板温度
の範囲は、670〜750℃、好ましくは670〜720℃、更に好
ましくは680〜710℃である。即ち、基板温度がこの範囲
を逸脱すると、具体的に後述するように、急激に臨界電
流密度が低下する。
更に、これらの研究を通じて、成膜後に所定の条件で
アニール処理を実施することも極めて有効であることが
見出された。また、このアニール処理は、酸素含有雰囲
気または酸素気流中で行うことが好ましい。但し、ここ
でも処理温度は極めて重要な制御因子であり、処理温度
は870〜910℃の温度範囲、より好ましくは880〜905℃の
温度範囲に所定の時間保つことが必要である。この範囲
外の条件で処理した場合は、条件によっては寧ろ薄膜の
特性が低下する場合もある。
以下に具体的な実施例を挙げて本発明をより具体的に
詳述するが、以下に開示するものは本発明の一実施例に
過ぎず、本発明の技術的範囲を何ら限定するものではな
い。
実施例 マグネトロンスパッタリング法により、Bi−Sr−Ca−
Cu系複合酸化物超電導体薄膜を作製した。
ターゲットとしては、市販のBi2O3粉末、SrCO3粉末、
CaCO3粉末、CuO粉末を、原子比Bi:Sr:Ca:Cuが1.4:1.0:
1.0:1.5となるように混合し、800℃で8時間焼結して得
たBi−Sr−Ca−Cu−O複合酸化物焼結体を用いた。
また、基板としてはMgO単結晶基板を使用し、成膜面
は(110)面とした。
各試料の共通な成膜条件は以下の通りであり、基板温
度を変化して6個の試料を作製した。
スパッタリングガス:ArとO2との混合気体(体重比)O2/
(Ar+O2)=0.2 スパッタリング圧力:2×10-2Torr 高周波電力:50W(0.64W/cm2) 各試料は、厚さが2000Åとなるまで成膜した。
こうして得られた各試料について、各試料の超電導現
象を抵抗測定によって確認した後77.3Kにおける超電導
臨界電流密度を測定した。各試料の示した臨界電流密度
を各試料の成膜時の基板温度と共に第1表に示す。
更に、上記の各試料のうち、最も優れた臨界電流密度
を示した試料と同じ条件で、更に5個の試料を作製し
て、これらについて第2表に示すような温度条件で、0.
6/cm2の酸素気流中で60分間のアニール処理を実施
し、得られた薄膜について同様に超電導臨界電流密度を
測定した。測定結果も第2表に併せて示す。
このように、Bi−Sr−Ca−Cu系の超電導薄膜の臨界電
流密度は、成膜時の基板温度並びに成膜後のアニール温
度に極めて強く影響され、これらの処理温度を適切に選
択することによって、超電導薄膜の臨界温度を目覚まし
く向上させることができる。
発明の効果 以上詳述の如く、本発明に係る作製方法に従って作製
されたBi−Sr−Ca−Cu系複合酸化物超電導体薄膜は、こ
の複合酸化物が本来有している優れた臨界温度(Tc)に
加えて、更に極めて高い超電導臨界電流密度(Jc)を有
している。
従って、この薄膜を使用して、液体窒素温度以上の高
い温度で動作する、ジョセフソン素子に代表される各種
の超電導素子を作製することができる。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 H01B 13/00 565Z H01L 39/24 ZAA H01L 39/24 ZAAB (72)発明者 糸▲崎▼ 秀夫 兵庫県伊丹市昆陽北1丁目1番1号 住 友電気工業株式会社伊丹製作所内 (72)発明者 矢津 修示 兵庫県伊丹市昆陽北1丁目1番1号 住 友電気工業株式会社伊丹製作所内 (56)参考文献 Japanese Journal of Applied Physics Vol.27 No.4 p.L632〜 L633 Japanese Journal of Applied Physics Vol.27 No.4 p.L643〜 L645

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】Bi、Sr、CaおよびCuの複合酸化物を主とし
    て含む超電導薄膜を物理蒸着法により作製する方法にお
    いて、 成膜時の基板温度を670〜750℃の範囲内として、MgO単
    結晶基板の(110)面上に超電導薄膜を堆積させること
    を特徴とする複合酸化物超電導薄膜の作製方法。
  2. 【請求項2】第1請求項に記載の方法であって、成膜後
    に870〜910℃の温度範囲内でアニール処理を実施するこ
    とを特徴とする複合酸化物超電導薄膜の作製方法。
JP63214130A 1988-08-29 1988-08-29 複合酸化物超電導薄膜の作製方法 Expired - Fee Related JP2664070B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP63214130A JP2664070B2 (ja) 1988-08-29 1988-08-29 複合酸化物超電導薄膜の作製方法
US07/399,739 US5051398A (en) 1988-08-29 1989-08-28 Process for preparing a bismuth-type superconducting thin film
CA000609633A CA1337719C (en) 1988-08-29 1989-08-28 Process for preparing a bismuth-type superconducting thin film
CN89107753A CN1018311B (zh) 1988-08-29 1989-08-28 铋系复合氧化物超导薄膜的成膜方法
DE89402352T DE68907295T2 (de) 1988-08-29 1989-08-29 Verfahren zum Herstellen einer supraleitenden Dünnschicht vom Wismut-Typ.
EP89402352A EP0357500B1 (en) 1988-08-29 1989-08-29 Process for preparing a bismuth-type superconducting thin film
AU40861/89A AU615102B2 (en) 1988-08-29 1989-08-29 Process for preparing a bismuth-type superconducting thin film
KR1019890012294A KR900004047A (ko) 1988-08-29 1989-08-29 Bi계 복합 산화물 초전도 박막의 성막방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214130A JP2664070B2 (ja) 1988-08-29 1988-08-29 複合酸化物超電導薄膜の作製方法

Publications (2)

Publication Number Publication Date
JPH0264021A JPH0264021A (ja) 1990-03-05
JP2664070B2 true JP2664070B2 (ja) 1997-10-15

Family

ID=16650722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214130A Expired - Fee Related JP2664070B2 (ja) 1988-08-29 1988-08-29 複合酸化物超電導薄膜の作製方法

Country Status (8)

Country Link
US (1) US5051398A (ja)
EP (1) EP0357500B1 (ja)
JP (1) JP2664070B2 (ja)
KR (1) KR900004047A (ja)
CN (1) CN1018311B (ja)
AU (1) AU615102B2 (ja)
CA (1) CA1337719C (ja)
DE (1) DE68907295T2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366510B2 (en) * 1988-10-03 1998-01-14 Sumitomo Electric Industries, Ltd. Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system
CA2037481C (en) * 1990-03-08 1998-11-10 Noriki Hayashi Method of preparing oxide superconducting film
EP0640994B1 (en) * 1991-06-04 1997-05-07 Matsushita Electric Industrial Co., Ltd. Superconductor thin film and manufacturing method
US7617474B2 (en) * 1997-09-17 2009-11-10 Synopsys, Inc. System and method for providing defect printability analysis of photolithographic masks with job-based automation
JP4172040B2 (ja) * 2004-03-23 2008-10-29 独立行政法人科学技術振興機構 固相フラックスエピタキシー成長法
CN113322514A (zh) * 2021-05-24 2021-08-31 沈阳大学 分子束外延技术制备(00l)择优取向低熔点铋薄膜的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772349B2 (ja) * 1987-05-12 1995-08-02 住友電気工業株式会社 大面積化合物薄膜の作製方法および装置
EP0327044B2 (de) * 1988-02-05 1998-04-22 Hoechst Aktiengesellschaft Supraleiter und Verfahren zu seiner Herstellung
US4880771A (en) * 1988-02-12 1989-11-14 American Telephone And Telegraph Company, At&T Bell Laboratories Bismuth-lead-strontium-calcium-cuprate superconductors
JPH0286014A (ja) * 1988-06-17 1990-03-27 Sumitomo Electric Ind Ltd 複合酸化物超電導薄膜と、その成膜方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Japanese Journal of Applied Physics Vol.27 No.4 p.L632〜L633
Japanese Journal of Applied Physics Vol.27 No.4 p.L643〜L645

Also Published As

Publication number Publication date
EP0357500A1 (en) 1990-03-07
AU615102B2 (en) 1991-09-19
AU4086189A (en) 1990-03-01
CN1018311B (zh) 1992-09-16
CN1041237A (zh) 1990-04-11
DE68907295T2 (de) 1993-11-25
US5051398A (en) 1991-09-24
CA1337719C (en) 1995-12-12
EP0357500B1 (en) 1993-06-23
KR900004047A (ko) 1990-03-27
DE68907295D1 (de) 1993-07-29
JPH0264021A (ja) 1990-03-05

Similar Documents

Publication Publication Date Title
EP0301962B1 (en) A superconducting thin film and a method for preparing the same
JP2567460B2 (ja) 超伝導薄膜とその作製方法
US5447906A (en) Thin film high TC oxide superconductors and vapor deposition methods for making the same
JP2664070B2 (ja) 複合酸化物超電導薄膜の作製方法
JP2501620B2 (ja) 超電導薄膜の作製方法
Higuma et al. Synthesis of superconducting Pb‐doped HgBa2CaCu2O y films by laser ablation and post‐annealing
EP0576284B1 (en) Metal oxide superconducting material and method of manufacturing the same
JP2501035B2 (ja) 超電導薄膜
JP3219563B2 (ja) 金属酸化物とその製造方法
US5206214A (en) Method of preparing thin film of superconductor
JP2645730B2 (ja) 超電導薄膜
EP0442210B1 (en) Bi oxide superconductors
JP2778119B2 (ja) 複合酸化物超電導薄膜と、その成膜方法
JP3242252B2 (ja) 金属酸化物材料及びそれを用いた超伝導装置
JP2668532B2 (ja) 超電導薄膜の作製方法
JP2501609B2 (ja) 複合酸化物超電導薄膜の作製方法
JP3247914B2 (ja) 金属酸化物材料
JPH0825744B2 (ja) 超電導材料の製造方法
JPH01164728A (ja) 酸化物超伝導材料
JPH0829938B2 (ja) 複合酸化物超電導薄膜とその作製方法
JPH02145404A (ja) 複合酸化物超電導薄膜の作製方法
JPH07100610B2 (ja) 超電導材料の製造方法
JPH0195419A (ja) 超電導薄膜の作製方法
JPH02199056A (ja) Bi―Sr―Ca―Cu系複合酸化物超電導体
Nemoto et al. Characteristics of rare-earth-free superconducting thin films

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees