CN1035281A - 采用渗碳工艺改进陶瓷复合材料体的方法及制品 - Google Patents

采用渗碳工艺改进陶瓷复合材料体的方法及制品 Download PDF

Info

Publication number
CN1035281A
CN1035281A CN88108773A CN88108773A CN1035281A CN 1035281 A CN1035281 A CN 1035281A CN 88108773 A CN88108773 A CN 88108773A CN 88108773 A CN88108773 A CN 88108773A CN 1035281 A CN1035281 A CN 1035281A
Authority
CN
China
Prior art keywords
mother metal
carbide
metal
zirconium
zbc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN88108773A
Other languages
English (en)
Inventor
特里·丹尼斯·卡尔
吉尔哈德·汉森·史罗斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxide Technology Co LP
Original Assignee
Lanxide Technology Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxide Technology Co LP filed Critical Lanxide Technology Co LP
Publication of CN1035281A publication Critical patent/CN1035281A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/652Directional oxidation or solidification, e.g. Lanxide process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种通过用渗碳技术生产复合材料体,例如ZrB2-ZrC-Zr复合体的新方法。此外,本发明涉及按该方法制备的新产品。通过将所述残余金属暴露在渗碳环境下,新方法改善了存留在复合体中的残余母材。因此,通过改进残余母材的组成,也改进了所得复合体的性能。锆、钛和钛一类的母材非常适宜用本发明的渗碳法处理。

Description

概括地讲,本发明涉及一种采用渗碳技术生产复合材料体(如ZrB2-ZrC-Zr)的新方法和采用这种方法生产的新产品。更确切地说,本发明涉及一种改进含有一种或多种含硼化合物(如硼化物和碳化物)的复合材料体的方法,所述复合材料体是通过以下方法制备的,即通过使熔融母材向含碳化硼的床层或物质和根据情况选用的一种或多种惰性填料反应性渗透从而形成体材。
近年来,人们增加了对使用陶瓷代替传统上沿用金属作为结构(件)应用的兴趣。促使人们感兴趣的因素在于,与金属相比,陶瓷某些特性相当优越,例如耐蚀性、硬度、耐磨性、弹性模量和耐火性。
然而,为此而使用陶瓷的一个主要局限性是生产所需陶瓷结构的可行性和成本。例如,采用热压法、反应性烧结法和反应性热压法生产硼化物陶瓷体是公知的。按照以上讨论的方法已经有限而成功地生产出硼化物陶瓷体,同时,仍需要更有效和更经济的方法制备致密的含硼化物的材料。
另外,用陶瓷作为结构应用的第二种主要局限性在于陶瓷通常表现出缺乏韧性(即破坏容限或耐断裂性)。这种韧性的缺乏往往导致陶瓷在相当缓和的拉应力应用场合下易产生突然和灾难性的断裂。这种缺乏韧性往往在整块硼陶瓷体中特别常见。
已试图克服以上讨论的问题,一种方法是使用与金属结合的陶瓷体,例如金属陶瓷或金属基体复合材料。这种公知的方法目的是获得陶瓷最佳性能(如刚度和/或硬度)与金属最佳性能(如延展性)的综合平衡。在金属陶瓷领域已总体上成功地生产出硼化物化合物,但另一方面仍需要更有效和更经济的方法制备含硼化合物的材料。
与生产含硼化合物材料有关的许多上述问题已在共同未决的美国专利(申请号073,533,申请人Danny    R.White,Michael    K.Aghajanian和T.Dennis    Claar,申请日1987年7月15日,题目“制备自撑体材的方法及其制备的产品”)中已经论述。申请号073,533的主题(以下称作申请    533)在此援引以作参考。
以下定义在申请    533中采用,而且本发明也将采用这些定义。
“母材”指的是多晶氧化反应产物(即母材硼化物或其它母材硼化合物)的前体金属(如锆),包括纯的或较纯的金属、市售的含杂质和/或合金组份的金属以及其中金属前体是主要成份的合金;当具体金属指的是母材(如锆)时,给出的金属在概念上应读作这种定义,除非上下文另有标明。
“母材硼化物”和“母材硼化合物”意指一种通过碳化硼和母材之间的反应形成的含硼反应产物,包括硼与母材的二元化合物以及三元或多元化合物。
“母材金属碳化物”意指一种通过碳化硼与母材之间的反应形成的含碳反应产物。
简要概括申请    533所披露的内容,即在碳化硼的存在下用母材渗透和反应工艺(即反应性渗透)来生产自撑式陶瓷体。具体地说,碳化硼床层或物质由熔融母材渗透,且该床层可完全由碳化硼构成,这样致使自撑体含有一种或多种母材含硼化合物,所述化合物包括母材硼化物或母材碳硼化物或这两者,一般还可包括母材碳化物。该专利申请还披露,待渗透的碳化硼物质还可含有一种或多种混有碳化硼的惰性填料。所以,通过结合惰性填料,得到一种具有由母材反应性渗透产生的基体的复合体,所述基体含有至少一种含硼化合物,该基体还可包括一种母材碳化物且基体嵌入惰性填料中。还应指出,在上述实施方案每种中(即加填料或不加填料)最后的复合材料体产物可包含有一种残余金属作为原始母材至少一种金属成份。
概括地讲,在所讨论的申请    533的方法中,含碳化硼的物质置于邻近或接触熔融金属体或金属合金体,后者在特定的温度内、在基本上惰性的环境中熔化。熔化了的金属渗透碳化硼物质并与碳化硼反应,形成至少一种反应产物。在工艺温度条件下,熔融母材可还原碳化硼、至少部分还原,从而形成母材含硼化合物(如一种母材硼化物和/或硼化合物)。通常也生成母材碳化物,并且在一定的情况下还生成母材硼化物。至少有一部分反应产物与金属保持接触,熔融金属通过虹吸或毛细作用被吸向或输向未反应的碳化硼。这些被输送的金属形成了进一步的母材硼化物、碳化物和/或碳硼化物,且陶瓷体不断形成或增长直至母材或碳化硼耗尽,或直至反应温度变化到反应温度以外的温度。生成的结构包括一种或多种母材硼化物,母材硼化物、母材碳化物、金属(申请    533中所用的金属包括合金和金属化合物)或空隙或以上的混合体。但是,这几种可在一维或多维相连或不相连。用改变一种或多种条件(如碳化硼体的初始密度,碳化硼与母材的相对量、合金化母材、用填料稀释碳化硼、温度和时间)可控制含硼化合物(即硼化物和硼化合物)、含碳化合物的最终体积分数比,金属相和内联度。
申请 533中采用的典型环境或气氛是在工艺条件下呈较惰性或不反应性的。具体地说,该申请披露,氩气或真空适用作工艺气氛。此外,该申请还披露,当用锆作为母材时,所得的复合材料含有二硼化锆、碳化锆和残余金属锆;当工艺中采用铝母材时,得到一种碳硼化铝,例如Al3B43C2、AlB12C2和/或AlB24C4,而铝母材和母材的其它未反应未氧化成份仍可能存在。所披露的、工艺条件下适用的其它母材包括硅、钛、铪、镧、铁、钙、钒、铌、镁和铍。
所以,申请    533公开了一种新方法和用该方法得到的新体材,它克服了以上讨论的先有技术的许多缺陷,使长期的愿望得到满足。
鉴于以上情况,本发明已有进展并克服了先有技术的不足。
本发明提供了一种改进复合材料体中所含的生成量的母材的方法。更具体地说,通过将复合材料体暴露在一种可改善残余母材的组成的渗碳环境(如既可以是气态渗碳物也可以是固态碳物质),可控制或改善母材含量(即复合材料体中的残余母材),从而改善残余母材的特性。不仅如此,还可改善所得复合材料体的特性。按照本发明,象锆、钛和铪一类的母材很适合用渗碳法处理。本申请中主要指的是ZrB2-ZrC-Zr复合材料体类,以下称作“ZBC”复合体。但是,不用说,尽管特别强调的是ZBC复合体,类似生产步骤也适于母材钛和铪。
概括地讲,在按照申请1533披露的方法形成ZBC复合体之后,将该复合体埋入装一合适的耐热容器中的石墨或碳给体物质床中。装入了复合体的耐热容器在例如含氩气氛的电热炉中加热。在加热过程中,据信少量的H2O或O2对反应变得有利。这种少量的H2O或O2既可以是氩气中原有的,也可以是从石墨床物质或ZBZBC复合体释放出的。所以,通过加热,石墨床物质中的碳可与氧反应,生成一种气态碳化物。也可以提供一种直接碳化物源,例如CO/CO2混合物或H2/CH4混合物。理论上讲,来自碳化物的碳溶解在ZBC复合体中的ZrC1-X相中,然后由空位扩散机理,碳可输送到整个ZBC复合体中。所以输送的碳可用以接触剩余母材,形成额外量的母材碳化物相(例如若锆是母材,则由于渗碳处理可得到ZrC1-X相)。尽管如此,某些来自石墨床物质的碳还可直接扩散到ZrC1X相中。
这种渗碳方法比较有利,因为它允许残余母材相转化成例如一种更硬或更耐热的相。特别是在要求高温强度的场合下,ZBC复合体在残余母材的熔点或熔点温度以上开始失去强度。通过用渗碳法后处理ZBC复合体,母材相转变成一种母材碳化物(如Zr母材转变成ZrC)。按照申请    533中所述的方法生产出的ZBC复合体中,典型存留的母材含量约为5-40%(体积)。在ZBC复合体暴露到碳化物的情况下,存留的残余锆母材的量可减少到例如约0~约2%(体积)。
改进的ZBC复合体可用于宇航部件,例如喷嘴嵌件,低的金属含量能使ZBC复合体在比前述认为可能的温度更高的条件下使用,而不会显著损伤ZBC复合体的断裂韧性和抗热冲击性。因此,本发明的渗碳处理特别适用于要求耐高温烧蚀的应用场合,具有良好的热冲击性,在例如2200~2700℃的温度下,具有相当高的高温强度。
但是,由于渗碳法依赖于时间,在ZBC复合体上可产生碳化区或碳化表面。所以,ZBC复合体的外表面可制成耐磨表面,而ZBC复合体的心部仍保持高金属含量,具有相应的高的断裂韧性。这种ZBC复合体将特别适于制作耐磨板、耐磨环和各种耐腐蚀和磨蚀的工业泵用的叶轮嵌件。特别是,锆金属对强酸的耐蚀性非常高,但其金属本身的耐磨性很差。所以,通过改进ZBC复合体,可制成耐磨陶瓷外表面,而复合体内部是耐蚀的。不仅如此,如果大体上全部的金属锆转化成ZrC1-X相且继续渗碳的话,那么还可以提高ZrC1-X相中的碳含量(如大约ZrC0.58~约ZrC0.96)。如果产生这种转化,则ZBC复合体的硬度和耐热性预期可得到提高。
由此可见,本方法和由本方法生产的新的复合材料体更进一步扩展了ZBC复合体可能的应用范围。
图1是正剖面示意图,该图示出了埋入石墨粉床2并装在耐热容器1中的要按本发明进行处理的ZBC复合体3。
本发明是基于这种发现,即陶瓷复合材料体、特别是通过使一种母材如锆、铪或钛向碳化硼物质反应性渗碳而生产的陶瓷复合材料体的性质可通过渗碳后处理法得到改善。这种渗碳处理可改变一部分或大体上全部ZBC复合体的显微结构和由此得到的机械性能。
按照申请    533生产的ZBC复合体可通过将其暴露在一种气态渗碳物下而得到改善。举例来说,通过将ZBC复合体埋入石墨床中并在一个控制气氛的炉中使至少一部分石墨床与湿气或氧反应,可制备出这种气态渗碳物。但是,炉中气氛一般应该主要包括一种不反应性气体,例如氩气。
使用Matheson Gas Products公司出售的氩气可得到期望的结果。现在还不清楚,是氩气中存在的杂质供给了形成渗碳物所需的O2,还是氩气仅起着载体的作用而含有由某种类型的组分在石墨床或ZBC复合体中挥发产生的杂质。除此之外,在ZBC复合体的加热期间,气态渗碳物可直接引入控制气氛的炉中。
在气态渗碳物引入控制气氛炉的情况下,叠层组件(lay-up)应这样放置,以使渗碳物能至少接触一部分埋入松装石墨中的ZBC复合体的表面。据信,渗碳物中的碳或来自石墨床的碳将溶解在内连的碳化锆相中,然后需要的话,经由空位扩散法将溶解的碳输送到基本上全部的ZBC复合体中。碳扩散到残余母材锆的速度很低。所以,在缺少碳化锆相的情况下,试图将碳在ZBC复合体中的全部残余金属锆中溶解是不实际或不经济的,因为该方法异常耗时。在这方面,碳化锆相中的碳和锆金属相中的碳都依赖于时间。但是,碳化锆相中的碳的输送速率远高于锆金属相中的碳的输送速率。一旦需要量的碳扩散到ZBC复合体并接触残余母材锆,则该母材锆使转化成ZrC。这种转化是需要的,因为在有限地损伤挠曲强度和韧性的条件下,改进的ZBC复合体的硬度得到提高,而且弹性模量也得到提高。不仅如此,由于ZBC复合体中金属含量很低,使得高温性能也得到改善。已经发现,残余母材含量在5%~30%(体积)的ZBC复合体可通过渗碳后处理得到改进,致使ZBC复合体中存留的母材的含量为约0~约2%(体积),典型的是约1/2%~约2%(体积)。因此,大体上全部的母材(尽管典型的约为4 1/2 %~28%(体积)的母材可从锆转变成ZrC。
此外,通过控制ZBC复合体在渗碳物中的暴露时间和进行渗碳工艺的温度,可在ZBC复合体的外表面上形成一层渗碳区或渗碳层。这种工艺可得到一种表面硬而耐磨、心部具有高金属含量和高的断裂韧性的ZBC复合材料。
综上所述,业已发现在一种可提供至少一些湿气或氧气、其余气体是氩的气氛下,将一种典型地含约5-30%(体积)的残余母材锆的ZBC复合体暴露在于控制气氛炉(操作温度为1500-2200℃)中的渗碳物中,历时约5-48小时,ZBC化合物将被碳化,得到一种更理想的复合材料体。
下面是本发明的实施例。该实施例旨在说明后处理复合材料体、特别是ZBC复合体的各个方面,而不应理解为限制本发明的范围。
实施例1
制备按申请1533中披露的实施例1的方法形成的ZBC复合体。表1示出了所形成的ZBC复合材料体的各种机械性能。ZBC复合体的全部表面用丙酮和乙醇超声法脱酯。然后,将ZBC复合体埋入平均粒径约为75微米的高纯度石墨粉床中。石墨粉由Lonza公司购制,牌号为KS-75。石墨粉床装在石墨坩埚内(Union Carbiole销售,牌号ATJ)。坩埚顶面同石墨盖板覆盖。然后,将埋入了ZBC复合体的全部组件放置在密闭气氛的耐热炉中。炉内气氛是氩气(由Matheson Gas Produets公司销售)。首先,在室温下把炉子抽真空到1×10-4,然后再充氩气。然后,把炉子抽真空到约1×10-2,之后在真空下加热到约500℃。把炉子再充氩气,然后保持在流速约1升/分钟且压力保持在约2Psi。将炉子加热到约1750℃,历时6小时,然后在1750℃下保温约12小时。之后,将炉子冷却约6小时。冷却后,从炉中取出渗碳的ZBC复合体,用喷砂法除去任何多余的石墨粉。
表1示出了渗碳处理之后的ZBC复合体的机械性能。很明显,残余母材锆的含量从约10%减少到约1/2%(体积),而硬度、弹性模量和减切模量均得到提高。但是,这些性能的提高是以有限的挠曲强度的损失为代价的。应当指出的是,挠曲强度约为500MPa对许多宇航应用来说是合适的。
表1
渗碳处理前    渗碳处理后
锆含量,vol%    9.9    0.5
硬度    80.6    HRA    81.9    HRA
1011KH    1388HK
弹性模量,Gpa    364    442
减切模量,Gpa    158    184
挠曲强度,Mpa(4点)    875    497
本发明已经以其最佳实施方案形式加以公开,不用说本发明并不限于这里所描述的确切内容,而且在不背离所附权利要求定义的本发明的范围的条件下,本技术领域专业人员可以对其做出各种变化、改进和改形。

Claims (8)

1、一种生产自撑式陶瓷体的方法,它包括生产一种第一复合材料体:
选择一种母材;
在一种基本上惰性的气氛下,将所述母材加热到其熔点温度以上形成熔融金属体,并使所述熔融母材与一种含碳化硼的物质相接触;
在所述温度下保温一段时间,以足以使熔融母材渗透到所述物质中并使熔融母材与所述碳化硼反应,形成至少一种含硼化合物;
使所述渗透反应持续一段时间,以足以生产出所述含至少一种母材含硼化合物的自撑式陶瓷体;以及
将所述自撑式陶瓷体暴露在环境之下,从而使自撑式陶瓷体中的残余母材转变成一种母材碳化物组分。
2、按照权利要求1的方法,其中将自撑式陶瓷体埋入石墨粉中并使氩气接触所述粉末和所述自撑式陶瓷体,从而在高温下产生一种渗碳物。
3、按照权利要求1的方法,其中使一种选自CO/CO2和H2CH4的渗碳气体接触所述自撑式陶瓷体。
4、按照权利要求1的方法,其中所述渗碳反应发生在约1500-2200℃。
5、按照权利要求1的方法,其中所述渗碳反应时间约为5-48小时。
6、按照权利要求1的方法,其中所述渗碳反应是在约1500-2200℃下进行约5-48小时。
7、一种复合材料,它包括一种选自锆、钛和铪的金属相,其含量约为0.5-2%(体积);一种延伸到所述复合材料边界的三维内连陶瓷相,所述陶瓷相含有一种选自碳化锆、碳化锂和碳化铪的碳化物,另外还含有一种相应于所述碳化物的金属的硼化物,所述硼化物具有片晶状结构。
8、权利要求7的复合材料,其中所述金属相是锆,所述碳化物是一种碳化锆,所述硼化物是一种硼化锆。
CN88108773A 1987-12-23 1988-12-22 采用渗碳工艺改进陶瓷复合材料体的方法及制品 Withdrawn CN1035281A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/137,382 US4915736A (en) 1987-12-23 1987-12-23 Method of modifying ceramic composite bodies by carburization process and articles produced thereby
US137382 1987-12-23

Publications (1)

Publication Number Publication Date
CN1035281A true CN1035281A (zh) 1989-09-06

Family

ID=22477170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88108773A Withdrawn CN1035281A (zh) 1987-12-23 1988-12-22 采用渗碳工艺改进陶瓷复合材料体的方法及制品

Country Status (30)

Country Link
US (1) US4915736A (zh)
EP (1) EP0322346B1 (zh)
JP (1) JP2667484B2 (zh)
KR (1) KR890009809A (zh)
CN (1) CN1035281A (zh)
AT (1) ATE87604T1 (zh)
AU (1) AU620832B2 (zh)
BG (1) BG60372B1 (zh)
BR (1) BR8806735A (zh)
CA (1) CA1317317C (zh)
CS (1) CS276909B6 (zh)
DD (1) DD283367A5 (zh)
DE (1) DE3879908T2 (zh)
DK (1) DK707588A (zh)
FI (1) FI93348C (zh)
HU (1) HUT63134A (zh)
IE (1) IE62841B1 (zh)
IL (1) IL88576A (zh)
IN (1) IN169718B (zh)
MX (1) MX166360B (zh)
NO (1) NO885540L (zh)
NZ (1) NZ227463A (zh)
PH (1) PH25593A (zh)
PL (1) PL158307B1 (zh)
PT (1) PT89319B (zh)
RO (1) RO107121B1 (zh)
RU (1) RU1794075C (zh)
TR (1) TR26136A (zh)
YU (1) YU233388A (zh)
ZA (1) ZA889566B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106542802A (zh) * 2016-10-21 2017-03-29 安徽青花坊瓷业股份有限公司 一种表面渗碳陶瓷餐具及其制备工艺

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL86947A (en) * 1987-07-15 1992-08-18 Lanxide Technology Co Ltd Process for preparing self-supporting bodies and products made thereby
US5180697A (en) * 1987-07-15 1993-01-19 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5296417A (en) * 1987-07-15 1994-03-22 Lanxide Technology Company, Lp Self-supporting bodies
US5162098A (en) * 1987-12-23 1992-11-10 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5143870A (en) * 1987-12-23 1992-09-01 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5298051A (en) * 1987-12-23 1994-03-29 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5238883A (en) * 1989-01-13 1993-08-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5187128A (en) * 1989-01-13 1993-02-16 Lanxide Technology Company, Lp Process for preparing self-supporting bodies
US4904446A (en) * 1989-01-13 1990-02-27 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US5372178A (en) * 1989-01-13 1994-12-13 Lanxide Technology Company, Lp Method of producing ceramic composite bodies
IL92396A0 (en) * 1989-01-13 1990-07-26 Lanxide Technology Co Ltd Method of producing ceramic composite bodies
US5104029A (en) * 1989-01-13 1992-04-14 Lanxide Technology Company, Lp Method of bonding a ceramic composite body to a second body and articles produced thereby
US4978644A (en) * 1989-01-13 1990-12-18 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US5149678A (en) * 1989-01-13 1992-09-22 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5112654A (en) * 1990-06-25 1992-05-12 Lanxide Technology Company, Lp Method for forming a surface coating
US5250324A (en) * 1990-06-25 1993-10-05 Lanxide Technology Company, L.P. Method for forming a surface coating using powdered solid oxidants and parent metals
WO1992000939A2 (en) * 1990-07-12 1992-01-23 Lanxide Technology Company, Lp Reduced metal content ceramic composite bodies
US5232040A (en) * 1990-07-12 1993-08-03 Lanxide Technology Company, Lp Method for reducing metal content of self-supporting composite bodies and articles formed thereby
US5154425A (en) * 1990-10-19 1992-10-13 Lanxide Technology Company, Lp Composite golf club head
JPH06503523A (ja) * 1990-12-05 1994-04-21 ランキサイド テクノロジー カンパニー,リミティド パートナーシップ 成形のための成形用具の材料
US5166105A (en) * 1990-12-10 1992-11-24 Lanxide Technology Company, Lp Process for preparing self-supporting ceramic composite bodies and bodies produced thereby
US5500182A (en) * 1991-07-12 1996-03-19 Lanxide Technology Company, Lp Ceramic composite bodies with increased metal content
US5435966A (en) * 1991-07-12 1995-07-25 Lanxide Technology Company, Lp Reduced metal content ceramic composite bodies
US5750450A (en) * 1996-01-08 1998-05-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ablation resistant zirconium and hafnium ceramics
EP3273313A1 (fr) * 2016-07-19 2018-01-24 The Swatch Group Research and Development Ltd. Élément d'habillage d'aspect métallique à système de communication intégré
CN112521157A (zh) * 2020-12-24 2021-03-19 西北工业大学 一种超高温陶瓷基复合材料及制备方法
CN113943161A (zh) * 2021-11-25 2022-01-18 王耀民 一种Ti(BCN)粉末及其制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2741822A (en) * 1951-01-29 1956-04-17 Carborundum Co Preparation of refractory products
US3255027A (en) * 1962-09-07 1966-06-07 Du Pont Refractory product and process
US3298842A (en) * 1963-03-22 1967-01-17 Du Pont Process for preparing hollow refractory particles
US3296002A (en) * 1963-07-11 1967-01-03 Du Pont Refractory shapes
US3419404A (en) * 1964-06-26 1968-12-31 Minnesota Mining & Mfg Partially nitrided aluminum refractory material
US3473987A (en) * 1965-07-13 1969-10-21 Du Pont Method of making thin-walled refractory structures
US3421863A (en) * 1966-03-04 1969-01-14 Texas Instruments Inc Cermet material and method of making same
US3437468A (en) * 1966-05-06 1969-04-08 Du Pont Alumina-spinel composite material
US3789096A (en) * 1967-06-01 1974-01-29 Kaman Sciences Corp Method of impregnating porous refractory bodies with inorganic chromium compound
US3473938A (en) * 1968-04-05 1969-10-21 Du Pont Process for making high strength refractory structures
US3864154A (en) * 1972-11-09 1975-02-04 Us Army Ceramic-metal systems by infiltration
US3973977A (en) * 1973-11-01 1976-08-10 Corning Glass Works Making spinel and aluminum-base metal cermet
CH654031A5 (de) * 1983-02-10 1986-01-31 Alusuisse Verfahren zur herstellung von festkoerperkathoden.
DE3381519D1 (de) * 1983-02-16 1990-06-07 Moltech Invent Sa Gesinterte metall-keramikverbundwerkstoffe und ihre herstellung.
NZ211405A (en) * 1984-03-16 1988-03-30 Lanxide Corp Producing ceramic structures by oxidising liquid phase parent metal with vapour phase oxidising environment; certain structures
NZ212704A (en) * 1984-07-20 1989-01-06 Lanxide Corp Producing self-supporting ceramic structure
US4851375A (en) * 1985-02-04 1989-07-25 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
US4605440A (en) * 1985-05-06 1986-08-12 The United States Of America As Represented By The United States Department Of Energy Boron-carbide-aluminum and boron-carbide-reactive metal cermets
US4655830A (en) * 1985-06-21 1987-04-07 Tomotsu Akashi High density compacts
US4731118A (en) * 1986-06-25 1988-03-15 Scm Metal Products, Inc. High impact strength power metal part and method for making same
US4702770A (en) * 1985-07-26 1987-10-27 Washington Research Foundation Multipurpose boron carbide-aluminum composite and its manufacture via the control of the microstructure
US4793859A (en) * 1985-07-31 1988-12-27 General Electric Company Infiltration of mo-containing material with silicon
US4777014A (en) * 1986-03-07 1988-10-11 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4718941A (en) * 1986-06-17 1988-01-12 The Regents Of The University Of California Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
IL86947A (en) * 1987-07-15 1992-08-18 Lanxide Technology Co Ltd Process for preparing self-supporting bodies and products made thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106542802A (zh) * 2016-10-21 2017-03-29 安徽青花坊瓷业股份有限公司 一种表面渗碳陶瓷餐具及其制备工艺

Also Published As

Publication number Publication date
DK707588A (da) 1989-06-24
IE883826L (en) 1989-06-23
BG60372B1 (bg) 1994-11-15
ATE87604T1 (de) 1993-04-15
DD283367A5 (de) 1990-10-10
HUT63134A (en) 1993-07-28
FI885928A (fi) 1989-06-24
EP0322346B1 (en) 1993-03-31
DE3879908D1 (de) 1993-05-06
RO107121B1 (ro) 1993-09-30
JP2667484B2 (ja) 1997-10-27
PH25593A (en) 1991-08-08
IL88576A0 (en) 1989-07-31
JPH01224255A (ja) 1989-09-07
AU2676288A (en) 1989-06-29
AU620832B2 (en) 1992-02-27
ZA889566B (en) 1990-08-29
EP0322346A2 (en) 1989-06-28
PL276564A1 (en) 1989-08-21
RU1794075C (ru) 1993-02-07
PT89319B (pt) 1993-08-31
IN169718B (zh) 1991-12-14
BR8806735A (pt) 1989-08-29
TR26136A (tr) 1994-01-06
KR890009809A (ko) 1989-08-04
NO885540L (no) 1989-06-26
EP0322346A3 (en) 1990-07-18
YU233388A (en) 1990-06-30
DE3879908T2 (de) 1993-09-09
DK707588D0 (da) 1988-12-20
CA1317317C (en) 1993-05-04
NZ227463A (en) 1990-11-27
FI93348C (fi) 1995-03-27
IL88576A (en) 1992-08-18
PT89319A (pt) 1989-12-29
CS859388A3 (en) 1992-03-18
NO885540D0 (no) 1988-12-14
US4915736A (en) 1990-04-10
MX166360B (es) 1993-01-04
CS276909B6 (en) 1992-09-16
PL158307B1 (en) 1992-08-31
IE62841B1 (en) 1995-03-08
FI93348B (fi) 1994-12-15

Similar Documents

Publication Publication Date Title
CN1035281A (zh) 采用渗碳工艺改进陶瓷复合材料体的方法及制品
JP2931005B2 (ja) 自己支持体の製造方法
JP2911939B2 (ja) 自己支持性セラミック複合体の製造方法
CN1022033C (zh) 自支承陶瓷体的生产方法
US5019539A (en) Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
CN1022102C (zh) 自支承陶瓷体的制备方法
JPH05311274A (ja) 自己支持性複合セラミック体
CA1309575C (en) Method for producing composite ceramic structures
CN1035104A (zh) 生产陶瓷复合材料体和改进其性能的方法
US5149678A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
JP2911936B2 (ja) セラミック複合体の製造方法
US5162098A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
EP0378501B1 (en) A method of bonding a ceramic composite body to a second body and articles produced thereby
US5298051A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5143870A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WW01 Invention patent application withdrawn after publication