CN103391397A - 使用相位差方法进行焦点检测的焦点检测设备和摄像设备 - Google Patents

使用相位差方法进行焦点检测的焦点检测设备和摄像设备 Download PDF

Info

Publication number
CN103391397A
CN103391397A CN2013101639747A CN201310163974A CN103391397A CN 103391397 A CN103391397 A CN 103391397A CN 2013101639747 A CN2013101639747 A CN 2013101639747A CN 201310163974 A CN201310163974 A CN 201310163974A CN 103391397 A CN103391397 A CN 103391397A
Authority
CN
China
Prior art keywords
signal
unit
picture element
luminance signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101639747A
Other languages
English (en)
Other versions
CN103391397B (zh
Inventor
生田智史
小川武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN103391397A publication Critical patent/CN103391397A/zh
Application granted granted Critical
Publication of CN103391397B publication Critical patent/CN103391397B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

本发明提供一种使用相位差方法进行焦点检测的焦点检测设备和摄像设备。该焦点检测设备能够通过进行运算以检测各分割PD的饱和,从而估计包括在分割PD的和信号中的、多个分割PD各自的信号。针对具有共享一个微透镜的多个PD的每一单位像素单元,检测以非破坏性方式从PD中的一个PD所读出的像素信号的饱和。基于第一亮度信号以及通过相加从PD输出的信号所获得的和像素信号,估计从PD中的另一PD所输出的另一像素信号。检测所估计出的像素信号的饱和,并且生成第二亮度信号。基于第一和第二亮度信号,计算光学单元的离焦量。

Description

使用相位差方法进行焦点检测的焦点检测设备和摄像设备
技术领域
本发明涉及一种通过使用具有共享微透镜的多个光电转换器的摄像装置而获得光瞳分割图像,从而使用相位差方法进行焦点检测的焦点检测设备和摄像设备,尤其涉及一种检测光电转换器的饱和的焦点检测设备和摄像设备。
背景技术
作为用于摄像设备的焦点检测方法,已知一种将与一个微透镜相对应的、构成固态摄像装置的一个像素的光电转换器(以下称为“PD”)分割成多个PD的技术。例如,提出这样一种方法,在该方法中,共享一个微透镜的两个PD(以下称为“分割PD”)获得通过光瞳分割所获得的各个图像信号以使用相位差方法进行焦点检测处理,并且与此并行,将来自这两个分割PD的输出的和作为一个像素输出进行处理,以获得用于摄像的图像信号(参考日本特开2001-83407)。
还提出了这样一种技术,为了提高上述分割像素结构的感光度特性,该技术以非破坏性方式读出分割PD中的一个分割PD的电荷,然后读出这两个分割PD的输出的和,并且通过运算来估计分割PD中另一个分割PD的像素值(参考日本专利4691930)。
在相位差运算中,可以通过使用亮度信号进行运算,获得与被摄体颜色无关的相关运算结果。此外,使用日本专利4691930所述技术,可以提高感光度特性。
然而,根据日本专利4691930所述技术,由于通过在以非破坏性方式对一部分分割PD进行读出之后读取来自所有分割PD的输出的和来计算差值,所以需要用于提供所读出的分割像素之间的输出信号的定时的延迟部件。在这种情况下,针对各个颜色设置延迟部件,这将导致电路大小增大。在用于避免该问题的方法之一中,考虑预先将来自各PD的信号转换成亮度成分信号、然后将其输入至延迟部件的方法,并且该方法节省了延迟部件,而且提高了焦点检测精度。
顺便提及,已知这样一个特性,当在日本特开2001-83407和日本专利4691930所述的分割PD中发生饱和时,与饱和量相对应的电荷可能泄漏至相邻的分割PD。由于该特性,位于与发生饱和的分割PD相同的微透镜下方的分割PD的信号,因为由饱和所引起的电荷泄漏而导致相位对比度图像崩溃。
为了避免该问题,希望在焦点检测处理之前针对各分割PD检测饱和,并且进行考虑饱和的焦点检测处理。然而,在这种情况下,在使用将各分割PD的信号预先转换成亮度成分信号的上述结构时,通过其他亮度成分信号之间的运算来计算亮度成分信号,因此难以获悉与所计算出的亮度成分信号相对应的各分割PD的原始输出信号。
发明内容
本发明提供一种能够通过进行运算来估计包括在分割PD的和信号中的、多个分割PD各自的信号,从而检测各分割PD的饱和的焦点检测设备和摄像设备。
因此,本发明的第一方面,提供一种焦点检测设备,包括:固态摄像装置,其具有多个单位像素单元的阵列,其中每个单位像素单元具有共享一个微透镜的多个光电转换器;第一饱和检测单元,用于针对每个单位像素单元,检测以非破坏性方式从所述多个光电转换器中的一个光电转换器所读出的像素信号的饱和;第一亮度信号生成单元,用于根据来自所述第一饱和检测单元的第一输出信号,生成第一亮度信号;估计单元,用于基于所述第一亮度信号、以及通过从所述多个光电转换器相加读出信号而获得的和像素信号,估计从所述多个光电转换器中的另一光电转换器所输出的另一像素信号;第二饱和检测单元,用于检测所述估计单元所估计出的另一像素信号的饱和;第二亮度信号生成单元,用于根据来自所述第二饱和检测单元的第二输出信号,生成第二亮度信号;以及焦点检测处理单元,用于基于所述第一亮度信号和所述第二亮度信号,计算对所述固态摄像装置所设置的光学系统的离焦量。
因此,本发明的第二方面,提供一种摄像设备,包括:焦点检测设备,其具有:固态摄像装置,其具有多个单位像素单元的阵列,其中每个单位像素单元具有共享一个微透镜的多个光电转换器;第一饱和检测单元,用于针对每个单位像素单元,检测以非破坏性方式从所述多个光电转换器中的一个光电转换器所读出的像素信号的饱和;第一亮度信号生成单元,用于根据来自所述第一饱和检测单元的第一输出信号,生成第一亮度信号;估计单元,用于基于所述第一亮度信号、以及通过从所述多个光电转换器相加读出信号而获得的和像素信号,估计从所述多个光电转换器中的另一光电转换器所输出的另一像素信号;第二饱和检测单元,用于检测所述估计单元所估计出的另一像素信号的饱和;第二亮度信号生成单元,用于根据来自所述第二饱和检测单元的第二输出信号,生成第二亮度信号;以及焦点检测处理单元,用于基于所述第一亮度信号和所述第二亮度信号,计算对所述固态摄像装置所设置的光学系统的离焦量;透镜组,用于在所述焦点检测设备所具有的固态摄像装置上形成光学图像;以及控制单元,用于基于从所述焦点检测设备所具有的焦点检测处理单元所输出的离焦量,驱动控制所述透镜组。
根据本发明,通过进行运算来估计包括在分割PD的和信号中的、多个分割PD各自的信号,从而检测各分割PD的饱和,并且这能够进行良好的焦点检测。
通过(以下参考附图)对典型实施例的说明,本发明的其他特征将显而易见。
附图说明
图1是示意性示出根据本发明实施例的主要与摄像设备中的焦点检测设备有关的部分的框图。
图2是示意性示出构成图1中的固态摄像装置的单位像素单元的结构的平面图。
图3是示意性示出图1中的A图像亮度信号生成单元的电路结构的框图。
图4是示出用于计算图1中的摄像设备中的B图像像素的亮度成分信号的方法的时序图。
图5是示出图1中的B图像亮度信号计算单元的电路结构、并详细示出B图像亮度信号计算单元所进行的信号处理的图。
图6是示出图1中的B图像信号估计单元的电路结构、并详细示出B图像信号估计单元所进行的信号处理的图。
图7A~7C是示意性示出使用图2中的分割PD的像素值的调焦操作的图。
图8是示出在图1中的摄像设备进行拍摄操作时CPU如何控制整个系统的流程图。
图9是在图8中的步骤S801所进行的实时取景操作的流程图。
图10是示出图1中的摄像设备所具有的B图像信号估计单元的变形例的电路结构、并详细示出B图像信号估计单元的变形例所进行的信号处理的图。
图11A~11C是示出通过图1中的摄像设备所具有的B图像信号估计单元估计B图像信号的例子的第一图。
图12A~12D是示出通过图1中的摄像设备所具有的B图像信号估计单元估计B图像信号的例子的第二图。
具体实施方式
参考示出本发明的实施例的附图,详细说明本发明。
图1是示意性示出根据本发明第一实施例的主要与摄像设备100中的焦点检测设备有关的部分的框图。摄像设备100具有光学单元101,并且基于来自稍后说明的驱动控制单元116的输出而驱动光学单元101,其中,由包括用于调节焦点的调焦透镜的光学透镜、快门、光圈和透镜控制器等构成光学单元101。通过光学单元101,在固态摄像装置102的表面上形成被摄体的光学图像。固态摄像装置102具有稍后说明的单位像素单元的二维矩阵,并且通过光学单元101所具有的快门来控制对固态摄像装置102的曝光量。
现参考图2,说明固态摄像装置102中的单位像素单元。图2是示意性示出构成固态摄像装置102的单位像素单元的结构的平面图。构成固态摄像装置102的单位像素单元1具有下面的结构:将未示出的颜色滤波器设置在一个微透镜2下方,并且将分割PD1a和1b(两个光电转换器)设置在颜色滤波器下方。分割PD1a和1b经由它们共享的同一微透镜2捕获入射光。根据它们的位置,分割PD1a和1b可以作为通过光瞳分割所获得的A图像像素和B图像像素来被处理。在固态摄像装置102的Bayer阵列中,重复配置单位像素单元1。
可以从共享同一微透镜2的分割PD1a和1b读出累积电荷并进行相加,并且,还可以以非破坏性方式选择性地从各分割PD1a和1b读出累积电荷。在本实施例中,首先进行来自固态摄像装置102的水平方向上的一个行的A图像像素信号的非破坏性读出,即,来自分割PD1a的分割像素信号的非破坏性读出。随后,进行来自固态摄像装置102的同一行上的A图像像素和B图像像素的和信号,即,来自分割PD1a和1b的单位像素信号的读出。应该注意,通过图1中的CPU115控制来自固态摄像装置102的这些信号的读出。
A/D转换单元103将作为从固态摄像装置102输出的电荷信号的模拟信号转换成数字信号(以下称为“读出像素信号117”),并且将读出像素信号117输出至信号分割单元104。信号分割单元104判断读出像素信号117的类型。当读出A图像像素时,信号分割单元104将作为A图像像素的像素信号的A图像信号118,输出至作为第一饱和检测单元的A图像饱和检测单元105,并且当读出摄像像素时,信号分割单元104将作为摄像像素的像素信号的A+B图像信号119输出至B图像亮度信号计算单元108。
A图像饱和检测单元105判断A图像信号118是否达到了预定饱和水平,向A图像信号118添加饱和位,然后将A图像信号118输出至作为第一亮度信号生成单元的A图像亮度信号生成单元106。此时,当输入像素达到了饱和水平时,判断为输入像素是饱和像素,并且向像素信号的MSB(最高有效位)或LSB(最低有效位)添加饱和位“1”。应该注意,通过处理像素信号的一部分作为饱和位,可以代替添加饱和位,另外,极性没有限制。
A图像亮度信号生成单元106将从A图像饱和检测单元105所接收到的信号转换成亮度信号Y的成分信号,并且将成分信号输出至延迟线107。这里参考示出A图像亮度信号生成单元106的电路结构的图3的框图,说明输入构成水平方向上的第一行的RA和GA的情况下的电路操作。应该注意,稍后说明的RA、GA和BA表示各个分割像素信号,也就是说,从位于各自具有红色、绿色和蓝色颜色滤波器的微透镜下方的A图像分割PD、以非破坏性方式所读出的红色、绿色和蓝色的A图像像素信号。
在水平方向上向A图像亮度信号生成单元106连续输入RA和GA。这样输入的RA和GA中的一个直接输出至乘法单元302,并且另一个经由用于提供定时的触发器301输出至乘法单元303。乘法单元302和303将RA和GA乘以预定系数K1和K2,并且将结果输出至加法单元304,其中,加法单元304对它们进行相加以生成A图像像素的亮度成分信号,然后将该亮度成分信号输出至后级的延迟线107。
此时,将来自加法单元304的输出输入至多路复用器305。
将来自加法单元304和后级的寄存器306的信号输入至多路复用器305。另外,多路复用器305使用在水平方向像素计数器(未示出)表示偶数时所输出的信号(Even)作为选择控制输入信号,并且基于选择控制输入信号,选择性地输出输入信号中的一个。当Even信号有效时,多路复用器305选择来自加法单元304的输出信号、并且输出该信号,并且当Even信号无效时,多路复用器305选择来自寄存器306的输出信号,并且输出该信号。因此,当Even信号有效时,更新寄存器306的值,并且当Even信号无效时,通过迭代寄存器306的值(紧挨着的之前所更新的值)来保持数据。
应该注意,仅说明了水平方向上第一行上的像素信号的情况下的操作,但是当在水平方向上的第二行上输入GA和BA时(参考图4),尽管系数K1和K2的值变化,但是进行相同处理。
延迟线107根据作为从信号分割单元104至B图像亮度信号计算单元108的摄像像素信号的A+B图像信号119的输入定时,将从A图像亮度信号生成单元106输出的A图像亮度信号输出至B图像亮度信号计算单元108。以下将从延迟线107输出的信号称为“YA成分信号120”。
B图像亮度信号计算单元108和B图像信号估计单元109是根据本实施例的焦点检测设备的特征组件,并且基于从延迟线107所接收到的YA成分信号120和从信号分割单元104所接收到的A+B图像信号119,估计B图像像素信号。接着,详细说明B图像亮度信号计算单元108和B图像信号估计单元109。
如图1所示,基于从延迟线107所接收到的YA成分信号120和从信号分割单元104所接收到的A+B图像信号119,B图像亮度信号计算单元108计算并输出YB成分信号121和A+B图像亮度成分信号122。应该注意,YB成分信号121是B图像信号的亮度信号Y的成分信号,并且A+B图像亮度成分信号122是A图像像素的亮度成分信号和B图像像素的亮度成分信号的和信号。
现参考图4的时序图,说明摄像设备100的用于计算YB成分信号121的方法。应该注意,在图4中,示出水平方向上的第一行和第二行,但是对于第三行和随后的行同样进行相同的计算处理。
如RA、GA和BA一样,R(A+B)、G(A+B)和B(A+B)表示红色、绿色和蓝色等各个颜色的A图像像素和B图像像素的和像素信号。在图4的上部分,示出从A/D转换单元103输出的读出像素信号117。如上所述,固态摄像装置102具有共享同一微透镜2的、分别与A和B图像像素相对应的两个分割PD1a和1b,并且每一微透镜2具有颜色滤波器,其中,该颜色滤波器具有Bayer图案。对于YB成分信号121的计算,使用作为A和B图像像素的亮度信号的红色-绿色成分和信号的Y(A+B)(R,G)、以及作为A和B图像像素的亮度信号的绿色-蓝色成分和信号的Y(A+B)(G,B)。根据R(A+B)和G(A+B)获得Y(A+B)(R,G),并且根据G(A+B)和B(A+B)获得Y(A+B)(G,B)。
作为以上参考图3所述的A图像像素的亮度信号的、图4的中间部分所示的YA成分信号120,包括作为红色-绿色成分和信号的YA(R,G)、以及作为绿色-蓝色成分和信号的YA(G,B)。根据RA、GA(红色和绿色的A图像像素信号)获得YA(R,G),并且根据GA、BA(绿色和蓝色的A图像像素信号)获得YA(G,B)。
作为B图像像素的亮度信号的YB成分信号121,包括作为红色-绿色成分和信号的YB(R,G)、以及作为绿色-蓝色成分和信号的YB(G,B)。通过从Y(A+B)(R,G)减去YA(R,G)获得YB(R,G),并且通过从Y(A+B)(G,B)减去YA(G,B)获得YB(G,B)。
具体说明计算YB成分信号121的处理。特别地,通过固态摄像装置102的水平方向上的第一行的非破坏性读出,读出RA和GA。将这样读出的RA和GA转换成亮度信号Y的成分信号,以用于焦点检测从而生成YA(R,G)。当完成非破坏性读出时,读出R(A+B)和G(A+B),作为来自构成固态摄像装置102的分割PD1a和1b的输出的和,然后作为R(A+B)和G(A+B)的和的结果,获得Y(A+B)(R,G)。此时,为了通过进行运算而获得YB(R,G),仅在一个行延迟之后,从Y(A+B)(R,G)减去YA(R,G)。同样,将颜色滤波器从R、G改变成G、B,并且针对水平方向上的第二行进行处理。
接着参考示出B图像亮度信号计算单元108的电路结构的图5,说明通过B图像亮度信号计算单元108所进行的信号处理。在下面的说明中,假定输入构成水平方向上的第一行的RA和GA。
将从延迟线107输出的YA成分信号120的YA(R,G)、以及从信号分割单元104输出的A+B图像信号119的R(A+B)和G(A+B),输入至B图像亮度信号计算单元108。YA(R,G)分支至被直接输出至后级的路径和被输入至加法单元501的路径。R(A+B)和G(A+B)分支至被直接输出至后级的路径和被输入至A+B图像亮度信号生成单元502的路径。
A+B图像亮度信号生成单元502具有与以上参考图3所述的A图像亮度信号生成单元106相同的电路结构,并且生成并输出作为在水平方向上连续输入的R(A+B)和G(A+B)的亮度成分信号的Y(A+B)(R,G)。A+B图像亮度信号生成单元502所输出的Y(A+B)(R,G)分支至被直接输出至后级的B图像信号估计单元109的路径和被输入至加法单元501的路径。加法单元501根据下面的[公式1]计算作为YB成分信号121的一部分的YB(R,G),并且将所计算出的YB(R,G)输出至后级的B图像信号估计单元109。
YB(R,G)=Y(A+B)(R,G)-YA(R,G)…[公式1]
因此,将包括通过A+B图像亮度信号生成单元502所生成的Y(A+B)(R,G)的A+B图像亮度成分信号122、以及包括通过加法单元501所计算出的YB(R,G)的YB成分信号121,输出至后级的B图像信号估计单元109。
应该注意,省略对将水平方向上的第二行上的YB(G,B)、G(A+B)和B(A+B)输入至B图像亮度信号计算单元108的情况的详细说明,但是在这种情况下,以与用于水平方向上的第一行相同的处理,计算Y(A+B)(G,B)和YB(G,B)。
B图像信号估计单元109通过进行预定运算,估计B图像像素的像素值。现参考示出B图像信号估计单元109的电路结构的图6,说明通过B图像信号估计单元109所进行的信号处理。这里假定将图5所示的水平方向上的第一行上的Y(A+B)(R,G)和YB(R,G)输入至B图像信号估计单元109。
将YB成分信号121的YB(R,G)、A+B图像亮度成分信号122的Y(A+B)(R,G)、以及作为摄像信号的A+B图像信号119的R(A+B)和G(A+B),输入至B图像信号估计单元109。将Y(A+B)(R,G)、R(A+B)和G(A+B)输入至比计算单元602。比计算单元602基于下面的[公式2]和[公式3]计算比K3和比K4,并且输出它们。
K3=R(A+B)/Y(A+B)(R,G)…[公式2]
K4=G(A+B)/Y(A+B)(R,G)…[公式3]
比K3是R像素信号与构成A+B图像亮度成分信号122的R像素(红色颜色滤波器下方的像素)和G像素(绿色颜色滤波器下方的像素)的信号成分的比。同样,比K4是G像素信号与构成A+B图像亮度成分信号122的R像素和G像素的信号成分的比。
将所计算出的比K3和K4输出至乘法单元601,并且根据下面的[公式4]和[公式5],将YB(R,G)乘以比K3和K4,从而估计分割PD中的B图像的非破坏性读出像素,即作为红色和绿色B图像像素信号的RB和GB。将包括根据[公式4]和[公式5]所计算出的RB和GB的B图像信号123,输出至作为第二饱和检测单元的B图像饱和检测单元110。
YB(R,G)×K3=RB…[公式4]
YB(R,G)×K4=GB…[公式5]
应该注意,以相同方式,根据YB成分信号121的YB(G,B)、A+B图像亮度成分信号122的Y(A+B)(G,B)、以及A+B图像信号119的G(A+B)和B(A+B),估计作为绿色和蓝色B图像像素信号的GB和BB。
现参考图11A~11C和图12A~12D,说明估计B图像信号123的例子。在图11A~11C和图12A~12D中,水平轴表示空间位置,并且垂直轴表示信号输出值。图11A是示出存在固态摄像装置102的水平方向上的第一行的区域中的各种信号的原始信号值的图。各种信号的详细情况如图11A所示。
图11B是示出从图11A所提取的、包括A图像成分的信号的图,并且“d1”表示GA(绿色A图像像素信号)达到了饱和水平(分割PD1a中累积的电荷已饱和)的区间(饱和区间)。图11C是示出从图11A所提取的、包括B图像成分的信号的图,并且“d2”表示GB(绿色B图像像素信号)达到了饱和水平(分割PD1b中累积的电荷已饱和)的区间(饱和区间)。
图12A是相互叠加根据摄像设备100的结构可以获得的信号和与饱和区间d1及d2有关的信息的图。根据摄像设备100的结构,可以通过A图像饱和检测单元105确定作为A图像像素信号的GA的饱和区间d1。然而,对于B图像,计算作为亮度成分信号的YB成分信号121,因此对于作为B图像像素信号的GB的饱和区间d2,不能获得作为B图像像素信号的RB和GB。另外,由于YB成分信号121没有达到摄像像素饱和水平,所以同样不能检测到RB和GB的饱和。
图12B是示出从图11A所提取的Y(A+B)、R(A+B)和G(A+B)、并且分别通过K3(x)和K4(x)表示特定点x处R(A+B)和G(A+B)与Y(A+B)的比的图。应该注意,可以分别使用上述[公式2]和[公式3]获得K3(x)和K4(x)。
图12C是绘制如上所述分别使用[公式4]和[公式5]所计算出的、B图像的来自分割PD1b的估计信号RB’和GB’的图。在图12C中,“d3”表示RB’或GB’达到了分割像素饱和水平的区间(饱和区间)。通过将分割PD1b的饱和水平应用于稍后说明的B图像饱和检测单元110的阈值,可以检测到饱和区间d3。
图12D是相互叠加图11A~11C和图12A~12D中的各种信号和饱和区间的图。饱和区间d3是与原始GB信号的饱和区间d2相同的区间,并且这意味着可以获得满意的饱和检测结果。
将通过B图像信号估计单元109所计算出的B图像信号123输入至B图像饱和检测单元110。B图像饱和检测单元110判断所接收到的B图像信号123是否达到了预先确定的预定饱和水平。当所接收到的B图像信号123达到了该饱和水平时,B图像饱和检测单元110判断为这是饱和像素,向像素信号的MSB或LSB添加作为饱和位的1,然后将作为结果的像素信号输出至作为第二亮度信号生成单元的B图像亮度信号生成单元111。应该注意,通过处理像素信号的一部分作为饱和位,可以代替添加饱和位,另外,极性没有限制。
B图像亮度信号生成单元111将从B图像饱和检测单元110所接收到的信号转换成作为B图像像素的亮度成分信号的YB成分信号124。应该注意,B图像亮度信号生成单元111的电路结构和由B图像亮度信号生成单元111所进行的处理的详细情况,与以上参考图3所述的A图像亮度信号生成单元106的电路结构和由A图像亮度信号生成单元106所进行的处理的详细情况相同,因此这里省略对其的详细说明。
将通过B图像亮度信号计算单元108输出的YA成分信号120和从B图像亮度信号生成单元111输出的YB成分信号,输入至焦点检测处理单元112。焦点检测处理单元112根据由与共享一个微透镜2的分割PD1a和1b相对应的A图像像素和B图像像素所构成的A图像和B图像的亮度信号,获得离焦量,并且将所获得的离焦量输出至CPU115(参考图1)。
现参考图7A~7C,说明使用A图像和B图像的示例性距离测量信息获得操作。图7A~7C是示意性示出使用分割PD1a和1b的像素值的调焦操作的图。固态摄像装置102由多个单位像素单元P的阵列构成,并且各单位像素单元P的结构如以上参考图2所述。也就是说,每一单位像素单元P(图7A~7C示出13个像素单元P1~P13)均由与共享一个微透镜的分割PD1a和1b相对应的分割像素a和b构成。众所周知,一对分割像素a和b是通过使用微透镜作为出射光瞳的光瞳分割所获得的像素。
对于距离测量,在列方向(或行方向)上将来自像素a和b的A像素输出和B像素输出组合在一起以生成A图像和B图像,作为来自相同颜色的单位像素单元的输出,并且获得它们作为数据。通过使用下面的[公式6]的相关运算,获得相应点之间的偏移量C。
C=Σ|YAn-YBn|…[公式6]
这里,(n)表示水平方向上配置的微透镜的数量。对在相应像素相对于YBn偏移时所获得的值进行标绘,并且在获得最小偏移量C时,获得调焦位置。
图7A示出来自被摄体图像的光束以角度α(a)会聚的聚焦状态,并且摄像光学系统在单位像素单元P7中共享微透镜的分割PD上形成图像,从而使得A图像像素组和B图像像素组大体相互相对应。此时,通过相关运算所获得的A图像像素组和B图像像素组之间的图像偏移量d(a)大体为0。
图7B示出来自被摄体图像的光束以大于角度α(a)的角度α(b)会聚、因此焦点在被摄体后面(所谓的后焦点)的状态。此时,摄像光学系统在例如A图像像素的单位像素单元P5的分割像素和B图像像素的单位像素单元P9的分割像素上形成图像。在这种情况下,在通过相关运算所获得的A图像像素组和B图像像素组之间存在图像偏移d(b)。
图7C示出来自被摄体图像的光束以小于角度α(a)的角度α(c)会聚、因此焦点在被摄体前面(所谓的前焦点)的状态。此时,摄像光学系统在例如针对A图像像素的单位像素单元P9的分割像素和针对B图像像素的单位像素单元P5的分割像素上形成图像。在这种情况下,在与图7B所示的后焦点的情况下的图像偏移方向相反的方向上,存在图像偏移,并且通过相关运算所获得的A图像像素组和B图像像素组之间的图像偏移量d(c)的绝对值,与后焦点情况下的图像偏移量d(b)的绝对值大体相等。也就是说,在聚焦状态下A图像像素组和B图像像素组看见相同被摄体,但是在后焦点的状态下和在前焦点的状态下,它们看见偏移特定图像偏移量的被摄体。
因此,为了实际进行摄像光学系统的调焦操作,基于所获得的图像偏移量和基线长度,使用众所周知的技术获得离焦量,从而驱动摄像系统以聚焦于被摄体。应该注意,在进行众所周知的相关运算时,例如,可以使用在获得调焦量时不使用根据设置了饱和位的像素值所计算出的值的方法、以及分配权重以降低可靠性的方法,但是本发明不局限于这些方法。
基于从焦点检测处理单元112输出的离焦量,CPU115获得与光学单元101中所包括的调焦透镜有关的驱动信息,并且如图1所示,将该驱动信息输出至驱动控制单元116。应该注意,CPU115控制摄像设备100的整个系统。基于从CPU115输出的控制信号,驱动控制单元116输出与包括在光学单元101中的调焦透镜和快门等的有关的驱动信息。该驱动信息是基于通过焦点检测处理单元112所计算出的离焦量的移动量。
如图1所示,图像处理单元113对作为从B图像信号估计单元109所输入的摄像信号的A+B图像信号119进行预定数字信号处理,并且经由DRAM(未示出)将作为结果的信号输出至显示单元114。应该注意,预定数字处理的例子包括缺陷像素校正、AE(自动曝光)、AF(自动调焦)、白平衡调整、伽马调整、降噪处理和同步化处理。显示单元114经由DRAM(未示出)将通过图像处理单元113所创建的图像数据(正拍摄的图像)显示在液晶面板等上。
接着参考图8的流程图,说明在摄像设备100正进行拍摄操作时CPU115如何控制整个系统。首先,CPU115检测用于接通系统电源的未示出的主开关(SW)的状态(步骤S800)。当主SW处于ON(接通)时(步骤S800为“是”),CPU115进入步骤S801的处理,并且当主SW处于OFF(断开)时(步骤S800为“否”),CPU115在步骤S800处于待机。
在步骤S801,CPU115进行实时取景操作,并且在此后,检测作为处于释放开关的第一阶段的开关的开关SW1的状态(步骤S802)。应该注意,开关SW1是所谓的用于聚焦于被摄体的开关。稍后参考图9详细说明实时取景操作。
当开关SW1处于ON时(步骤S802为“是”),CPU115进入步骤S803的处理,以进行主拍摄之前的拍摄待机操作,并且当开关SW1处于OFF时(步骤S802为“否”),CPU115返回至步骤S800的处理。
在步骤S803,CPU115基于通过实时取景操作所获得的图像信息,根据通过曝光设置单元(未示出)预先设置的曝光校正值来确定曝光条件,并且向驱动控制单元116输出光圈值和快门速度(曝光时间)。然后,CPU115通过基于通过实时取景操作所获得的离焦量而偏移驱动控制单元116的调焦透镜的位置,聚焦于被摄体(AF操作)(步骤S804)。此后,CPU115检测作为处于释放开关的第二阶段的开关的开关SW2的状态(步骤S805)。应该注意,开关SW2是用于通过驱动快门等进行拍摄操作的开关。
当开关SW2处于ON时(步骤S805为“是”),CPU115进入步骤S806的处理以进行主拍摄,并且当开关SW2处于OFF时(步骤S805为“否”),CPU115返回至步骤S801的处理。在步骤S806,CPU115通过控制摄像设备100的整个系统,进行主拍摄操作,此后,返回至步骤S805的处理。
应该注意,在主拍摄操作中,首先,进行固态摄像装置102的电荷清除操作和电荷累积开始操作,并且基于在步骤S803所确定的曝光条件,经由驱动控制单元116控制光学单元101以打开快门。然后,开始固态摄像装置102的主拍摄图像的曝光,并且以在步骤S803所确定的快门速度进行曝光。当关闭快门以完成固态摄像装置102中的电荷累积时,从分割PD读出电荷的和。经由A/D转换单元103、信号分割单元104和图像处理单元113,将从固态摄像装置102读出的电荷输出至以SD卡等为代表的存储卡(未示出)。
接着参考图9的流程图,说明步骤S801的实时取景操作。在实时取景操作中,首先,CPU115提供用于固态摄像装置102的电荷清除控制(步骤S900),此后,通过提供用于固态摄像装置102的实时取景图像曝光控制,开始电荷累积(步骤S901)。然后,CPU115判断是否经过了所设置的曝光时间(步骤S902),并且当没有经过曝光时间时(步骤S902为“否”),CPU115返回至进行曝光的步骤S901的处理。
当经过了曝光时间时(步骤S902为“是”),CPU115使用固态摄像装置102的电子快门进行电荷累积终止处理(步骤S903)。在完成步骤S903之后,CPU115从固态摄像装置102读出电荷,并且进行预定信号处理以执行以上参考图1和3~6所述的信号处理(步骤S904)。然后,CPU115读出焦点检测处理单元112在步骤S904所计算出的离焦量(步骤S905),并且基于来自图像处理单元113的输出,将用于实时取景的图像输出至诸如液晶面板等的显示单元114(步骤S906)。
如上所述,根据本实施例,通过使用利用运算所获得的像素值检测各分割PD的饱和,获得离焦量。这使得能够考虑相位对比度图像的崩溃来进行焦点检测。
在上述第一实施例中,基于各颜色成分与作为A和B图像像素的亮度信号的和的Y(A+B)的比,估计分割PD的B图像像素信号。另一方面,在第二实施例中,基于A图像信号和B图像信号与Y(A+B)的含量比,估计从分割PD输出的B图像像素信号。应该注意,下面仅说明作为与第一实施例的不同点的B图像信号估计单元,并且省略对重复部分的说明。
图10是示出B图像信号估计单元109A的电路结构、并示出由B图像信号估计单元109A所进行的信号处理的详细情况的图。这里假定将水平方向上的第一行上的Y(A+B)(R,G)和YB(R,G)输入至B图像信号估计单元109A。将作为B图像的亮度信号中的红色和绿色成分信号的和信号的YB(R,G)、作为A和B图像像素的亮度信号中的红色和绿色成分信号的和信号的Y(A+B)(R,G)、以及作为A和B图像像素的用于以红色和绿色进行摄像的和像素信号的R(A+B)和G(A+B),输入至B图像信号估计单元109A。
将YB(R,G)和Y(A+B)(R,G)输入至比计算单元1001,并且比计算单元1001根据下面的[公式7]获得YB(R,G)与Y(A+B)(R,G)的比K5,并且将比K5输出至乘法单元1002。
K5=YB(R,G)/Y(A+B)(R,G)…[公式7]
根据下面的[公式8]和[公式9],乘法单元1002将R(A+B)和G(A+B)各自乘以比K5以估计并输出RB和GB。
RB=R(A+B)×K5…[公式8]
GB=G(A+B)×K5…[公式9]
将使用[公式8]和[公式9]所估计出的RB和GB输出至后级的B图像饱和检测单元110,并且进行与第一实施例中相同的处理。因此,在第二实施例中,同样可以获得与第一实施例的相同的效果。
在上述实施例中,在共享一个微透镜2的分割PD的数量是2(分割PD1a和1b)的情况下,检测B图像像素信号的饱和。然而,共享一个微透镜的分割PD的数量没有限制,而且即使当共享一个微透镜的分割PD的数量是3个以上时,也可以进行相同处理。此外,上述实施例中所使用的运算方法仅是示例性的,而且例如,当固态摄像装置102具有不同结构时,根据结构改变运算方法,并且可以进行相同处理。
其他实施例
还可以利用读出并执行记录在存储器装置中的程序以进行上述实施例的功能的系统和设备的计算机(或者CPU或MPU等装置)或者通过下面的方法实现本发明的各方面,其中,通过系统或设备的计算机例如读出并执行记录在存储器装置上的程序来进行上述实施例的功能,以进行上述方法的步骤。为此,例如,可以通过网络或者通过用作存储器装置的各种类型的记录介质(例如计算机可读介质)将该程序提供给计算机。
尽管参考典型实施例说明了本发明,但是应该理解,本发明不局限于所公开的典型实施例。所附权利要求书的范围符合最宽的解释,以包含所有这类修改、等同结构和功能。
本申请要求2012年5月7日提交的日本申请2012-105990的优先权,其全部内容通过引用包含于此。

Claims (7)

1.一种焦点检测设备,包括:
固态摄像装置,其具有多个单位像素单元的阵列,其中每个单位像素单元具有共享一个微透镜的多个光电转换器;
第一饱和检测单元,用于针对每个单位像素单元,检测以非破坏性方式从所述多个光电转换器中的一个光电转换器所读出的像素信号的饱和;
第一亮度信号生成单元,用于根据来自所述第一饱和检测单元的第一输出信号,生成第一亮度信号;
估计单元,用于基于所述第一亮度信号、以及通过从所述多个光电转换器相加读出信号而获得的和像素信号,估计从所述多个光电转换器中的另一光电转换器所输出的另一像素信号;
第二饱和检测单元,用于检测所述估计单元所估计出的另一像素信号的饱和;
第二亮度信号生成单元,用于根据来自所述第二饱和检测单元的第二输出信号,生成第二亮度信号;以及
焦点检测处理单元,用于基于所述第一亮度信号和所述第二亮度信号,计算对所述固态摄像装置所设置的光学系统的离焦量。
2.根据权利要求1所述的焦点检测设备,其中,所述估计单元包括:
亮度信号计算单元,用于生成所述和像素信号的亮度信号,并且基于所述第一亮度信号以及所述和像素信号的亮度信号,计算从所述另一光电转换器所输出的另一像素信号的亮度信号;以及
信号估计单元,用于基于所述和像素信号、所述和像素信号的亮度信号、以及所述亮度信号计算单元所计算出的从所述另一光电转换器所输出的另一像素信号的亮度信号,计算从所述另一光电转换器所输出的另一像素信号。
3.根据权利要求2所述的焦点检测设备,其中,通过从所述和像素信号的亮度信号减去所述第一亮度信号,所述亮度信号计算单元计算从所述另一光电转换器所输出的另一像素信号的亮度信号。
4.根据权利要求2所述的焦点检测设备,其中,所述信号估计单元计算所述和像素信号与所述和像素信号的亮度信号的比,并且将从所述另一光电转换器所输出的另一像素信号的亮度信号乘以所述比,以计算从所述另一光电转换器所输出的另一像素信号。
5.根据权利要求2所述的焦点检测设备,其中,所述信号估计单元计算从所述另一光电转换器所输出的另一像素信号的亮度信号与所述和像素信号的亮度信号的比,并且将所述和像素信号乘以所述比,以计算从所述另一光电转换器所输出的另一像素信号。
6.根据权利要求1所述的焦点检测设备,其中,还包括延迟单元,所述延迟单元用于延迟所述第一亮度信号,以使将所述第一亮度信号输入至所述估计单元的定时与将所述和像素信号输入至所述估计单元的定时同步。
7.一种摄像设备,包括:
焦点检测设备,其具有:固态摄像装置,其具有多个单位像素单元的阵列,其中每个单位像素单元具有共享一个微透镜的多个光电转换器;第一饱和检测单元,用于针对每个单位像素单元,检测以非破坏性方式从所述多个光电转换器中的一个光电转换器所读出的像素信号的饱和;第一亮度信号生成单元,用于根据来自所述第一饱和检测单元的第一输出信号,生成第一亮度信号;估计单元,用于基于所述第一亮度信号、以及通过从所述多个光电转换器相加读出信号而获得的和像素信号,估计从所述多个光电转换器中的另一光电转换器所输出的另一像素信号;第二饱和检测单元,用于检测所述估计单元所估计出的另一像素信号的饱和;第二亮度信号生成单元,用于根据来自所述第二饱和检测单元的第二输出信号,生成第二亮度信号;以及焦点检测处理单元,用于基于所述第一亮度信号和所述第二亮度信号,计算对所述固态摄像装置所设置的光学系统的离焦量;
透镜组,用于在所述焦点检测设备所具有的固态摄像装置上形成光学图像;以及
控制单元,用于基于从所述焦点检测设备所具有的焦点检测处理单元所输出的离焦量,驱动控制所述透镜组。
CN201310163974.7A 2012-05-07 2013-05-07 使用相位差方法进行焦点检测的焦点检测设备和摄像设备 Expired - Fee Related CN103391397B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012105990A JP5979961B2 (ja) 2012-05-07 2012-05-07 焦点検出装置、焦点検出方法及び撮像装置
JP2012-105990 2012-05-07

Publications (2)

Publication Number Publication Date
CN103391397A true CN103391397A (zh) 2013-11-13
CN103391397B CN103391397B (zh) 2016-12-28

Family

ID=49512266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310163974.7A Expired - Fee Related CN103391397B (zh) 2012-05-07 2013-05-07 使用相位差方法进行焦点检测的焦点检测设备和摄像设备

Country Status (3)

Country Link
US (1) US9030596B2 (zh)
JP (1) JP5979961B2 (zh)
CN (1) CN103391397B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105245772A (zh) * 2014-07-07 2016-01-13 佳能株式会社 摄像元件、摄像元件的控制方法和摄像设备
CN107367817A (zh) * 2016-05-03 2017-11-21 株式会社三丰 可变焦距透镜系统中的相位差校准
CN109307472A (zh) * 2018-08-28 2019-02-05 江苏大学 基于附加相位片的微尺度透明体离焦距离测量装置及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6053479B2 (ja) 2012-11-29 2016-12-27 キヤノン株式会社 焦点検出装置、撮像装置、撮像システム、および、焦点検出方法
JP6366251B2 (ja) * 2013-01-07 2018-08-01 キヤノン株式会社 撮像装置および撮像装置の制御方法
JP6234054B2 (ja) * 2013-04-25 2017-11-22 キヤノン株式会社 撮像装置および撮像装置の制御方法
JP6071761B2 (ja) * 2013-05-31 2017-02-01 キヤノン株式会社 撮像装置及びその制御方法
JP2015129846A (ja) * 2014-01-07 2015-07-16 キヤノン株式会社 撮像装置およびその制御方法
JP6630058B2 (ja) * 2014-06-16 2020-01-15 キヤノン株式会社 撮像装置、撮像装置の制御方法、及び、プログラム
JP6403461B2 (ja) * 2014-07-01 2018-10-10 キヤノン株式会社 撮像装置及びその駆動方法
CN104506779B (zh) * 2014-12-24 2018-11-13 浙江宇视科技有限公司 一种红绿灯色彩矫正方法和摄像设备
JP6355595B2 (ja) * 2015-06-02 2018-07-11 キヤノン株式会社 撮像素子、撮像装置、撮像素子の制御方法、プログラムおよび記憶媒体
JP7009219B2 (ja) * 2018-01-10 2022-01-25 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080937A (ja) * 2004-09-10 2006-03-23 Sony Corp 物理情報取得方法および物理情報取得装置、並びに物理量分布検知の半導体装置、プログラム、および撮像モジュール
JP2008103885A (ja) * 2006-10-18 2008-05-01 Nikon Corp 撮像素子、焦点検出装置および撮像装置
CN101510040A (zh) * 2008-02-14 2009-08-19 株式会社尼康 图像处理装置、摄像装置及图像处理程序
US20100188532A1 (en) * 2008-11-27 2010-07-29 Nikon Corporaton Image sensor and image-capturing device
WO2011126103A1 (en) * 2010-04-08 2011-10-13 Sony Corporation Image pickup apparatus, solid-state image pickup device, and image pickup method

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320708A (ja) * 1989-03-03 1991-01-29 Olympus Optical Co Ltd 自動合焦装置
JP3774597B2 (ja) 1999-09-13 2006-05-17 キヤノン株式会社 撮像装置
JP4055927B2 (ja) * 2000-08-25 2008-03-05 シャープ株式会社 画像処理装置およびデジタルカメラ
JP2006148743A (ja) * 2004-11-24 2006-06-08 Seiko Epson Corp 撮像装置
JP4980132B2 (ja) * 2007-05-07 2012-07-18 株式会社日立国際電気 画像処理装置および画像処理方法
JP4325703B2 (ja) * 2007-05-24 2009-09-02 ソニー株式会社 固体撮像装置、固体撮像装置の信号処理装置および信号処理方法、ならびに撮像装置
JP4979482B2 (ja) * 2007-06-28 2012-07-18 オリンパス株式会社 撮像装置及び画像信号処理プログラム
JP4914303B2 (ja) * 2007-07-13 2012-04-11 シリコン ヒフェ ベー.フェー. 画像処理装置及び撮像装置、画像処理方法及び撮像方法、画像処理プログラム
JP2009063689A (ja) * 2007-09-05 2009-03-26 Nikon Corp 焦点検出装置および撮像装置
US7884866B2 (en) * 2007-09-14 2011-02-08 Ricoh Company, Ltd. Imaging apparatus and imaging method
JP5045350B2 (ja) * 2007-10-01 2012-10-10 株式会社ニコン 撮像素子および撮像装置
JP2009303043A (ja) * 2008-06-16 2009-12-24 Panasonic Corp 固体撮像装置及びその信号処理方法
WO2010032409A1 (ja) * 2008-09-17 2010-03-25 パナソニック株式会社 画像処理装置、撮像装置、評価装置、画像処理方法及び光学系評価方法
US8179458B2 (en) * 2009-10-13 2012-05-15 Omnivision Technologies, Inc. System and method for improved image processing
DE112009005418B4 (de) * 2009-12-04 2018-09-13 Canon Kabushiki Kaisha Bildverarbeitungsgerät
JP5640383B2 (ja) * 2010-01-14 2014-12-17 株式会社ニコン 撮像装置
JP5609232B2 (ja) * 2010-04-23 2014-10-22 株式会社ニコン 撮像装置
CN102823236B (zh) * 2010-06-09 2016-01-20 富士胶片株式会社 成像装置以及图像处理方法
JP5699480B2 (ja) * 2010-08-17 2015-04-08 株式会社ニコン 焦点検出装置およびカメラ
JP4821921B2 (ja) * 2010-09-03 2011-11-24 ソニー株式会社 固体撮像装置および電子機器
JP5442571B2 (ja) * 2010-09-27 2014-03-12 パナソニック株式会社 固体撮像装置及び撮像装置
JP5742313B2 (ja) * 2011-03-10 2015-07-01 株式会社ニコン 撮像装置
JP5956782B2 (ja) * 2011-05-26 2016-07-27 キヤノン株式会社 撮像素子及び撮像装置
JP5990004B2 (ja) * 2012-02-08 2016-09-07 キヤノン株式会社 撮像装置
JP6039381B2 (ja) * 2012-11-26 2016-12-07 キヤノン株式会社 焦点検出装置、撮像装置、撮像システム、および、焦点検出方法
JP2014106476A (ja) * 2012-11-29 2014-06-09 Canon Inc 焦点検出装置、撮像装置、撮像システム、焦点検出方法、プログラム、および、記憶媒体
JP6053479B2 (ja) * 2012-11-29 2016-12-27 キヤノン株式会社 焦点検出装置、撮像装置、撮像システム、および、焦点検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080937A (ja) * 2004-09-10 2006-03-23 Sony Corp 物理情報取得方法および物理情報取得装置、並びに物理量分布検知の半導体装置、プログラム、および撮像モジュール
JP2008103885A (ja) * 2006-10-18 2008-05-01 Nikon Corp 撮像素子、焦点検出装置および撮像装置
CN101510040A (zh) * 2008-02-14 2009-08-19 株式会社尼康 图像处理装置、摄像装置及图像处理程序
US20100188532A1 (en) * 2008-11-27 2010-07-29 Nikon Corporaton Image sensor and image-capturing device
WO2011126103A1 (en) * 2010-04-08 2011-10-13 Sony Corporation Image pickup apparatus, solid-state image pickup device, and image pickup method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105245772A (zh) * 2014-07-07 2016-01-13 佳能株式会社 摄像元件、摄像元件的控制方法和摄像设备
CN105245772B (zh) * 2014-07-07 2019-05-17 佳能株式会社 摄像元件、摄像元件的控制方法和摄像设备
CN110225242A (zh) * 2014-07-07 2019-09-10 佳能株式会社 摄像元件、摄像元件的控制方法和摄像设备
CN110225242B (zh) * 2014-07-07 2022-03-01 佳能株式会社 摄像元件、摄像元件的控制方法和摄像设备
CN107367817A (zh) * 2016-05-03 2017-11-21 株式会社三丰 可变焦距透镜系统中的相位差校准
CN107367817B (zh) * 2016-05-03 2019-10-11 株式会社三丰 可变焦距透镜系统中的相位差校准
CN109307472A (zh) * 2018-08-28 2019-02-05 江苏大学 基于附加相位片的微尺度透明体离焦距离测量装置及方法
CN109307472B (zh) * 2018-08-28 2020-11-03 江苏大学 基于附加相位片的微尺度透明体离焦距离测量装置及方法

Also Published As

Publication number Publication date
JP2013235054A (ja) 2013-11-21
US20130293763A1 (en) 2013-11-07
CN103391397B (zh) 2016-12-28
JP5979961B2 (ja) 2016-08-31
US9030596B2 (en) 2015-05-12

Similar Documents

Publication Publication Date Title
CN103391397A (zh) 使用相位差方法进行焦点检测的焦点检测设备和摄像设备
JP6405243B2 (ja) 焦点検出装置及びその制御方法
US20140347533A1 (en) Image processing device and image processing method
US9578228B2 (en) Focus detection apparatus, image pickup apparatus, image pickup system, and focus detection method
EP2698658B1 (en) Image pickup apparatus, semiconductor integrated circuit and image pickup method
CN102566005B (zh) 焦点检测设备及其控制方法
US8593547B2 (en) Image processing apparatus, image capturing apparatus, and image processing method
US20230186501A1 (en) Depth information generating apparatus, image capturing apparatus, depth information generating method, image processing apparatus, and image processing method
CN104065871A (zh) 摄像装置及其控制方法
CN105516582A (zh) 摄像装置以及摄像装置的控制方法
CN107370939B (zh) 焦点检测装置及其控制方法、摄像设备和计算机可读介质
US9197808B2 (en) Image capturing apparatus, method of controlling the same, and storage medium
CN104427251A (zh) 焦点检测设备、其控制方法、以及摄像设备
EP3002940A1 (en) Imaging apparatus and imaging method
US20160035099A1 (en) Depth estimation apparatus, imaging device, and depth estimation method
JP6530593B2 (ja) 撮像装置及びその制御方法、記憶媒体
US9602716B2 (en) Focus-detection device, method for controlling the same, and image capture apparatus
CN103795927B (zh) 一种拍照方法及系统
US9503661B2 (en) Imaging apparatus and image processing method
JP2009164859A (ja) 撮像装置及び撮像制御方法
JP2017194654A (ja) 撮像装置及びその制御方法、プログラム並びに記憶媒体
JP6039381B2 (ja) 焦点検出装置、撮像装置、撮像システム、および、焦点検出方法
JP6000627B2 (ja) 焦点検出装置、その制御方法、および制御プログラム、並びに撮像装置
JP6678505B2 (ja) 撮像装置及びその制御方法、プログラム並びに記憶媒体
JP6478587B2 (ja) 画像処理装置、画像処理方法およびプログラム、並びに撮像装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161228