CN103380487A - 绝缘膜的形成方法 - Google Patents

绝缘膜的形成方法 Download PDF

Info

Publication number
CN103380487A
CN103380487A CN2012800085403A CN201280008540A CN103380487A CN 103380487 A CN103380487 A CN 103380487A CN 2012800085403 A CN2012800085403 A CN 2012800085403A CN 201280008540 A CN201280008540 A CN 201280008540A CN 103380487 A CN103380487 A CN 103380487A
Authority
CN
China
Prior art keywords
silicon dioxide
dielectric film
dioxide microparticle
polysilazane
dispersion liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012800085403A
Other languages
English (en)
Other versions
CN103380487B (zh
Inventor
高野祐辅
长原达郎
S·尼纳德
岩田孝文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
AZ Electronic Materials Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZ Electronic Materials Japan Co Ltd filed Critical AZ Electronic Materials Japan Co Ltd
Publication of CN103380487A publication Critical patent/CN103380487A/zh
Application granted granted Critical
Publication of CN103380487B publication Critical patent/CN103380487B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明提供可形成均匀且具有高的填充密度、并且缺陷少的绝缘膜的方法。一种绝缘膜的形成方法,其中,在基板表面涂布包含二氧化硅微粒、聚合物、表面活性剂和分散介质的二氧化硅分散液,接着涂布聚硅氮烷组合物,然后进行加热而形成绝缘膜。

Description

绝缘膜的形成方法
技术领域
本发明涉及电子元器件中的绝缘膜的制造方法。本发明更具体涉及:在半导体器件等电子元器件的制造中,用于形成电子元器件中所使用的绝缘膜例如金属布线层间绝缘膜、前金属绝缘膜、以及浅沟槽隔离结构的二氧化硅膜的形成方法。
背景技术
一般而言,在半导体装置那样的电子元器件中,将半导体器件例如晶体管、电阻以及其它的器件配置于基板上,但需要将它们进行电绝缘。因此,需要在这些器件之间设置用于将器件分离的区域,将其称为隔离区域。以往,该隔离区域一般通过在半导体基板的表面选择性地形成绝缘膜从而进行。
另一方面,在电子元器件领域,近年来正在进行高密度化以及高集成化。在推进这样的高密度以及高集成度化时,则不易形成与必需的集成度相称的微细的隔离结构,要求开发出来符合这样的需求的新的隔离结构。作为这样的隔离结构,列举出沟槽隔离结构。该结构是:在半导体基板的表面形成微细的沟槽,在该沟槽的内部填充绝缘物,从而将形成于沟槽的两侧的器件之间进行电分离的结构。与以往的方法相比,这样的用于将器件分离的结构可使隔离区域变狭窄,因而是可有效用于实现近来所要求的高集成度的器件分离结构。
作为用于形成这样的沟槽隔离结构的方法之一,正在研究涂布聚硅氮烷组合物并且将其转化为二氧化硅的方法(例如,专利文献1和2)。在这样的方法中,一般性地,将聚硅氮烷组合物涂布于形成有沟槽结构的基板表面从而将聚硅氮烷组合物填充于沟槽内,接着通过将聚硅氮烷组合物焙烧等等而进行固化从而转化为二氧化硅,利用化学机械研磨方法(Chemical MechanicalPolishing:以下称为CMP)将形成在基板表面的剩余的二氧化硅去除。
但是,近来的半导体装置要求具有非常高的精度,相对于此,却存在有通过以往的方法形成出的绝缘膜无法发挥充分的功能的情况。例如,在形成于基板表面的沟槽的深宽比高的情况下,沟槽的内部的氧化有时变得不充分。即,为了使填充于沟槽内的聚硅氮烷发生氧化,需要充分供给氧气、水分,但是在沟槽的内部特别是距离表面的距离长的沟槽底部,聚硅氮烷有时无法充分氧化。其结果,存在有隔离结构的高密度化变得不充分,在其后的湿法蚀刻处理等中无法进行所期待的加工等等问题。
另外,在沟槽隔离结构以外的隔离结构方面也期望着更精密的隔离结构。然而,基于以往的方法而得到的绝缘膜等仍留有改良的余地。即,在将包含聚硅氮烷的组合物涂布于基板表面进行固化而形成金属层间绝缘膜、前金属绝缘膜的情况下,固化时的体积收缩比较大,因而有时在绝缘膜中生成裂纹,或者有时引起界面处的结晶缺陷。
现有技术文献
专利文献
专利文献1:日本特许第3178412号公报(段落0005~0016)
专利文献2:日本特开2001-308090号公报
发明内容
发明要解决的问题
本发明进一步改良这样的现有技术,想要提供可形成更均匀且具有高的填充密度、并且裂纹等缺陷少的绝缘膜的方法。
用于解决问题的方案
本发明的绝缘膜的形成方法的特征在于,其包含如下工序:
(1)将包含二氧化硅微粒、聚合物、表面活性剂和分散介质的二氧化硅分散液涂布于基板表面的二氧化硅微粒涂布工序,
(2)在涂布了二氧化硅分散液的基板表面进一步涂布聚硅氮烷组合物的聚硅氮烷涂布工序,以及
(3)将涂布了聚硅氮烷组合物的基板进行加热从而将聚硅氮烷转化为二氧化硅,形成包含前述二氧化硅微粒以及源自聚硅氮烷的二氧化硅的绝缘膜的加热工序。
另外,本发明的二氧化硅微粒分散液是前述的绝缘膜的形成方法中使用的二氧化硅微粒分散液,其特征在于,通过包含二氧化硅微粒、聚合物、表面活性剂和分散介质而形成。
发明的效果
根据本发明,即使在填充深宽比高的沟槽的情况下,也可在沟槽内的底部实现均匀且高密度的填充密度,可实现高的蚀刻耐受性。进一步也可减低绝缘膜的裂纹、界面处的结晶缺陷。
具体实施方式
以下对本发明的实施方式进行详细说明。
绝缘膜的形成方法
本发明的绝缘膜以三个工序为必需。对各工序进行如下说明。
(1)二氧化硅微粒涂布工序
首先,准备形成绝缘膜的基板。基板的材质没有特别限定,可使用以往所知的任意的基板例如硅基板。在想要形成金属布线层间绝缘膜的情况下,也可在基板上配置各种半导体器件。另外,在想要形成浅沟槽隔离的情况下,也可在基板表面形成沟槽、孔等凹凸结构。为了在基板表面形成凹凸结构,可使用任意的方法,例如也记载于专利文献1或2。具体的方法如以下所示。
首先,在硅基板表面,利用例如热氧化法而形成二氧化硅膜。此处形成的二氧化硅膜的厚度一般为5~30nm。
根据需要,在所形成的二氧化硅膜上,利用例如减压CVD法形成氮化硅膜。此氮化硅膜可以作为之后的蚀刻工序中的掩模或者后述的研磨工序中的阻挡层而发挥功能。在形成氮化硅膜的情况下,一般以100~400nm厚度形成。
在这样地形成出的二氧化硅膜或者氮化硅膜之上涂布光致抗蚀剂。根据需要将光致抗蚀膜进行了干燥或者固化,然后以所希望的图案曝光以及显影从而形成图案。曝光的方法可通过掩模曝光、扫描曝光等任意的方法来进行。另外,关于光致抗蚀剂,也可从分辨率等观点考虑通过选择任意的光致抗蚀剂而使用。
以所形成的光致抗蚀膜作为掩模,将氮化硅膜以及处于其下的二氧化硅膜顺次蚀刻。通过此操作,从而在氮化硅膜以及二氧化硅膜中形成所希望的图案。
以形成了图案的氮化硅膜以及二氧化硅膜作为掩模,对硅基板进行干法蚀刻,从而形成沟槽隔离沟槽。
形成的沟槽隔离沟槽的宽度根据将光致抗蚀膜进行曝光的图案而确定。半导体器件中的沟槽隔离沟槽的宽度根据作为目标的半导体器件而恰当地设定,但在本发明中即使是深宽比更高的沟槽也可均匀且高密度地填充。特别是在本申请发明中,沟槽的宽度优选为5~50nm,优选为5~40nm。另外,沟槽的深度相对于沟槽的宽度之比、即深宽比优选为3~100,更优选为10~50。
在这样地准备出的基板上,涂布二氧化硅微粒。二氧化硅微粒以包含二氧化硅微粒、聚合物、表面活性剂和分散介质的分散液的形态涂布。
关于二氧化硅微粒,在二氧化硅中存在有多种的硅溶胶、气相二氧化硅、以及其它的制造方法、性状不同的二氧化硅,可以为其中的任一个。从获取容易性等观点出发,一般选择硅溶胶。另外,关于微粒的尺寸,根据形成于想要涂布的基板的凹凸结构、分散液的涂布方法等而任意选择,但是一般选择平均粒径为4~50μm的微粒,优选4~20μm的微粒。另外,想要在具有沟槽、孔的基板上形成绝缘膜的情况下,为了在这些沟槽、孔的内侧均匀地形成绝缘膜,优选使用小于它们的沟槽宽度、孔径的二氧化硅微粒。二氧化硅微粒通常在粒径方面存在有分布,因而即使在利用了平均粒径大于沟槽宽度、孔径的二氧化硅的情况下,也包含微小的微粒,因而也填充沟槽内、孔内,但为了更显著地发挥本发明的效果,应当使用平均粒径小于沟槽宽度或者孔径的二氧化硅微粒。此处本发明中的平均粒径根据利用BET法测定的比表面积而计算出。
二氧化硅微粒分散液中所含的二氧化硅微粒的含量没有特别限定,可根据想要涂布的基板的种类、所形成出的凹凸结构的尺寸、涂布方法等而任意调整,但是以二氧化硅微粒分散液的总重量为基准,优选为2~30%,更优选为5~20%。
可认为聚合物具有使二氧化硅微粒的分散状态稳定化的作用,以及在涂布分散液之后作为粘合剂而起作用。作为这样的粘合剂,优选的是均匀溶解于后述的分散介质、另外与二氧化硅微粒、基板表面的亲和性高的粘合剂。例如分散介质为水的情况下,优选从由丙烯酸聚合物、甲基丙烯酸聚合物、聚乙烯基吡咯烷酮以及它们的衍生物组成的组中选出的聚合物。具体列举出:聚乙烯醇、聚丙烯酸、聚甲基丙烯酸、聚乙烯基吡咯烷酮、聚α-三氟甲基丙烯酸、乙烯基甲基醚-马来酸酐共聚物、乙二醇-丙二醇共聚物、N-乙烯基吡咯烷酮-乙酸乙烯酯共聚物、N-乙烯基吡咯烷酮-乙烯醇共聚物、N-乙烯基吡咯烷酮-丙烯酸共聚物、N-乙烯基吡咯烷酮-丙烯酸甲酯共聚物、N-乙烯基吡咯烷酮-甲基丙烯酸共聚物、N-乙烯基吡咯烷酮-甲基丙烯酸甲酯共聚物、N-乙烯基吡咯烷酮-马来酸共聚物、N-乙烯基吡咯烷酮-马来酸共聚物、N-乙烯基吡咯烷酮-马来酸二甲酯共聚物、N-乙烯基吡咯烷酮-马来酸酐共聚物、N-乙烯基吡咯烷酮-衣康酸共聚物、N-乙烯基吡咯烷酮-衣康酸甲酯共聚物、N-乙烯基吡咯烷酮-衣康酸酐共聚物、氟化聚醚等。
这些聚合物也存在各种分子量不同的聚合物,但是从分散状态改良、涂布性的观点考虑优选分子量大的。具体而言,重均分子量优选为1,000以上,更优选为2,000以上。另一方面,为了适当地保持分散液的粘度而使涂布容易进行,因而优选使分子量为一定以下。具体而言,重均分子量优选为100,000以下,更优选为30,000以下。
二氧化硅微粒分散液中所含的聚合物的含量没有特别限定,可根据聚合物的种类,想要涂布的基板的种类、所形成出的凹凸结构的尺寸、涂布方法等而任意调整,但是以二氧化硅微粒分散液的总重量为基准,优选为0.05~3%,更优选为0.1~1%。
表面活性剂主要是为了改良二氧化硅微粒分散液的涂布性,为了实现均匀的涂布而使用。作为这样的表面活性剂,可选自阳离子性表面活性剂、阴离子性表面活性剂、非离子性表面活性剂、两性表面活性剂等任意的表面活性剂。它们之中,优选非离子性表面活性剂、阴离子性表面活性剂、两性表面活性剂。作为非离子类表面活性剂的具体例子,列举出聚氧化乙烯烷基醚(例如聚氧化乙烯十二烷基醚、聚氧化乙烯油烯基醚、聚氧化乙烯十六烷基醚)、聚氧化乙烯脂肪酸二酯、聚氧化乙烯脂肪酸单酯、聚氧化乙烯聚氧化丙烯嵌段共聚物、炔二醇(アセチレングリコール)及其衍生物(例如环氧烷加成物)。另外,作为阴离子类表面活性剂的具体例子,列举出烷基二苯基醚二磺酸、烷基二苯基醚磺酸、烷基苯磺酸、聚氧化乙烯烷基醚硫酸、以及烷基磺酸、以及它们的铵盐或者有机胺盐。另外,作为两性表面活性剂的具体例子,列举出2-烷基-N-羧甲基-N-羟乙基咪唑鎓甜菜碱、月桂酰胺丙基羟基砜基甜菜碱等。
这样的表面活性剂之中,优选从由烷基磺酸盐、环氧乙烷型活性剂组成的组中选出的表面活性剂。更具体而言,优选使用烷基磺酸盐表面活性剂。
二氧化硅微粒分散液中所含的表面活性剂的含量没有特别限定,可根据想要涂布的基板的种类、所形成出的凹凸结构的尺寸、涂布方法等而任意调整,但是以二氧化硅微粒分散液的总重量为基准,优选为0.01~5%,更优选为0.01~1%。
另外,本发明的二氧化硅微粒分散液包含分散介质。该分散介质是可将前述的成分溶解或者分散的分散介质。作为这样的分散介质,从处理性、成本的观点考虑优选使用水。特别是,优选使用蒸馏水、去离子水等去除了杂质成分的纯水。另外,根据需要,也可使用除了水以外的有机溶剂例如醇、酯等。
分散介质中,可根据需要而使用多种的分散介质。例如,使用水作为主要的分散介质,为了改良聚合物、表面活性剂的溶解性,也可组合醇等有机溶剂。
本发明的二氧化硅微粒分散液,也可根据需要而包含其它的成分。作为这样的成分,列举出用于调整pH的酸化合物或者碱性化合物、用于调整粘度的增稠剂等。
将包含这样的成分的二氧化硅微粒分散液涂布于基板表面。涂布方法可选自以往所知的任意的涂布方法。具体而言,列举出旋涂、帘式涂布、浸渍涂布、以及其它涂布方法。它们之中,从涂膜面的均匀性等观点考虑特别优选旋涂。涂布的涂膜的厚度、即、基板表面的没有沟槽的部分处的涂膜的厚度优选为300nm以下,更优选为100~200nm。根据需要,也可仅在沟槽内填充二氧化硅微粒分散液。
(2)聚硅氮烷涂布工序
接着,在这样地涂布了二氧化硅微粒分散液的硅基板上涂布聚硅氮烷组合物而形成涂膜。关于该聚硅氮烷组合物,可使用以往所知的通过将任意的聚硅氮烷化合物溶解于溶剂而得到的聚硅氮烷组合物。
本发明中使用的聚硅氮烷化合物没有特别限定,只要不损害本发明的效果就可任意选择。它们可以为无机化合物或者有机化合物中的任一种聚硅氮烷化合物。这些聚硅氮烷之中,作为优选的聚硅氮烷,列举出包含下述通式(Ia)~(Ic)所示的单元的组合的聚硅氮烷:
(式中,m1~m3是表示聚合度的数)
其中,作为特别优选的聚硅氮烷,优选苯乙烯换算重均分子量为700~30,000的聚硅氮烷。
另外,作为其它的聚硅氮烷的例子,例如,主要列举出具有由通式(II)所示结构单元形成的骨架的、数均分子量为约100~50,000的聚硅氮烷或者其改性物:
Figure BDA00003651391600091
(式中,R1、R2以及R3各自独立地表示氢原子、烷基、烯基、环烷基、芳基、或这些基团以外的与硅直接连接的基团为碳原子的氟烷基等、烷基甲硅烷基、烷基氨基或者烷氧基。其中,R1、R2以及R3中的至少一个为氢原子,n是表示聚合度的数)。这些聚硅氮烷化合物也可组合两种以上而使用。
本发明中使用的聚硅氮烷组合物包含可溶解前述的聚硅氮烷化合物的溶剂。此处使用的溶剂与前述的浸渍用溶液中使用的溶剂不同。作为这样的溶剂,如果是可溶解前述的各成分的溶剂则没有特别限定,但是作为优选的溶剂的具体例子,列举出下面的溶剂:
(a)芳香族化合物,例如苯、甲苯、二甲苯、乙苯、二乙苯、三甲基苯、三乙苯等,(b)饱和烃化合物,例如正戊烷、异戊烷、正己烷、异己烷、正庚烷、异庚烷、正辛烷、异辛烷、正壬烷、异壬烷、正癸烷、异癸烷等,(c)脂环式烃化合物,例如乙基环己烷、甲基环己烷、环己烷、环己烯、对薄荷烷、十氢萘、二戊烯、柠檬烯等,(d)醚类,例如二丙基醚、二丁基醚、乙醚、甲基叔丁基醚(以下称为MTBE)、苯甲醚等,以及(e)酮类,例如甲基异丁基酮(以下称为MIBK)等。它们之中,更优选为(b)饱和烃化合物、(c)脂环式烃化合物、(d)醚类、以及(e)酮类。
关于这些溶剂,为了调整溶剂的蒸发速度、降低对人体的有害性或者调制各成分的溶解性,也可使用通过适当混合两种以上而得到的溶剂。
本发明中使用的聚硅氮烷组合物,也可根据需要含有其它的添加剂成分。作为这样的成分,例如列举出:促进聚硅氮烷的交联反应的交联促进剂等、转化为二氧化硅的反应的催化剂、用于调制组合物的粘度的粘度调整剂等。另外,在用于半导体装置时出于钠的吸杂效果等的目的,也可含有磷化合物、例如、三(三甲基甲硅烷基)磷酸酯等。
另外,前述的各成分的含量根据涂布条件、加热条件等而变化。但是,以聚硅氮烷组合物的总重量为基准,聚硅氮烷化合物的含有率优选为1~30重量%,更优选设为2~20重量%。但是,聚硅氮烷组合物中所含的聚硅氮烷的浓度不受其限定,如果可形成绝缘膜,那么可使用任意浓度的聚硅氮烷组合物。另外,聚硅氮烷以外的各种添加剂的含量根据添加剂的种类等而变化,但是相对于聚硅氮烷化合物的添加量优选为0.001~40重量%,更优选为0.005~30重量%,进一步优选为0.01~20重量%。
前述的聚硅氮烷组合物可以任意的方法涂布于基板上。具体列举出旋涂、帘式涂布、浸渍涂布、以及其它的涂布方法。它们之中,从涂膜面的均匀性等观点考虑特别优选旋涂。涂布的涂膜的厚度、即基板表面的没有沟槽的部分处的涂膜的厚度优选为20~150nm,更优选为30~100nm。该涂膜的厚度过度高时,则在具有凹凸结构的情况下,有时无法在凹部内也形成均匀的绝缘膜,另一方面膜厚过薄时,则填充于二氧化硅微粒的间隙的聚硅氮烷组合物有时不足,有时无法形成均匀的绝缘膜,因而需要注意。
(3)加热工序
在聚硅氮烷涂布工序后,接着将聚硅氮烷涂膜加热,从而将涂膜整体转化为二氧化硅膜。在该加热的作用下,聚硅氮烷转化为二氧化硅,关于转化为绝缘膜的焙烧(该绝缘膜与在涂布聚硅氮烷组合物之前涂布的二氧化硅微粒已一体化),优选通过使用固化炉、热板,在包含水蒸气的非活性气体或者氧气气氛下进行。
关于水蒸气,在存在含硅的化合物或者含硅的聚合物、以及共同存在的情况下,对于将聚硅氮烷化合物充分转化为二氧化硅是重要的,优选为1%以上,更优选为10%以上,最优选为20%以上。特别是当水蒸气浓度为20%以上时,则硅氮烷化合物向二氧化硅膜的转化变得容易进行,孔隙等缺陷的产生变少,二氧化硅膜的特性得到改良,因而优选。在使用非活性气体作为气氛气体的情况下,使用氮气、氩气、或者氦气等。
用于固化的温度条件根据所使用的聚硅氮烷组合物的种类、工序的组合方式而变化。但是温度越高,则聚硅氮烷化合物转化为二氧化硅膜的速度倾向于越变快,另外,温度越低则硅基板的氧化或者晶体结构的变化对设备特性造成的不良影响倾向于越变小。从这样的观点考虑,在本发明的方法中,通常在1000℃以下进行加热,优选在400~900℃进行加热。此处,直到目标温度为止的升温时间一般为1~100℃/分钟,到达目标温度后的固化时间一般为1分钟~10小时,优选为15分钟~3小时。也可根据需要将固化温度或者固化气氛的组成阶段性地变化。
本发明的绝缘膜的形成方法中,以前述的(1)~工序(3)为必需,但也可根据需要而组合下述的补助工序。
(a)预备加热工序
在二氧化硅微粒涂布工序与聚硅氮烷涂布工序之间,为了将二氧化硅微粒分散液中所含的溶剂的至少一部分去除,可将基板加热。该工序的目的在于,将二氧化硅微粒分散液中所含的分散介质的至少一部分去除。
通常,在预备加热工序中,采用实质上在一定温度加热的方法。该工序的目的在于,通过去除过量的分散介质,从而改良其后的聚硅氮烷组合物的涂布性。因此,预备加热工序的温度应当设为可蒸发分散介质的温度,根据分散介质的种类而恰当地确定。例如在分散介质为水的情况下,一般为90~120℃的范围内,优选为100~110℃的范围内。预备加热工序的所需时间一般为3分钟以下,优选为0.5~1.5分钟。
(b)前加热工序
在涂布工序之后、焙烧工序之前,可将涂布了聚硅氮烷组合物的基板进行前加热处理。该工序的目的在于,将涂膜中所含的溶剂的至少一部分去除。
通常,在前加热工序中,采用实质上在一定温度加热的方法。此时,应当在实质上不引起聚硅氮烷的氧化或者聚合反应的条件下进行溶剂去除。因此,前加热工序中的温度通常为50~250℃,优选为80~200℃的范围内。前加热工序的所需时间一般为0.5~10分钟,优选为1~5分钟。
(c)研磨工序
将聚硅氮烷涂膜固化后,优选将固化了的二氧化硅膜的不需要的部分去除。特别是在形成浅沟槽隔离结构的情况下,首先利用研磨工序,使形成于基板上的沟槽部内侧的二氧化硅膜残留下来,利用研磨而去除形成于基板表面的平整部上的二氧化硅膜。该工序为研磨工序。关于该研磨工序,在固化处理之后进行,除此之外,在组合前加热工序的情况下,也可紧接在前加热工序之后进行。
研磨一般通过CMP来进行。基于该CMP而进行的研磨可通过一般的研磨剂以及研磨装置来进行。具体而言,作为研磨剂,可使用二氧化硅、氧化铝、或者二氧化铈等研磨材料、根据需要的将其它的添加剂分散而得到的水溶液等,作为研磨装置,可使用市售的一般CMP装置。
(d)蚀刻工序
在前述的研磨工序中,形成于基板表面的平整部上的源自聚硅氮烷组合物的二氧化硅膜基本上被去除,但是为了去除残存于基板表面的平整部的二氧化硅膜,可进一步进行蚀刻处理。蚀刻处理一般使用蚀刻液,作为蚀刻液,如果是可去除二氧化硅膜的蚀刻液则没有特别限定,但是通常使用含有氟化铵的氟化氢水溶液。该水溶液的氟化铵浓度优选为5%以上,更优选为30%以上。
使用诸例说明本发明时则如以下那样。
实施例101
首先,准备了在表面具有沟槽结构的硅基板。该沟槽的宽度为50nm,深度为570nm(深宽比约11)。
接着,准备了平均粒径12nm的硅溶胶(PL-1(商品名)、扶桑化学工业株式会社制)。向其中混合作为分散介质的纯水、作为聚合物的聚丙烯酸(ARON(注册商标)A-210(商品名)、东亚合成株式会社制,重均分子量约3,000)、作为表面活性剂的十二烷基苯磺酸,通过搅拌使硅溶胶分散而制备了二氧化硅微粒分散液。配混量如表1所示,此处各成分的浓度是以分散液的总重量为基准的重量百分率。
将所获得的二氧化硅微粒分散液旋转涂布于前述的硅基板从而涂布。涂布条件设为500rpm并且5秒,接着设为1000rpm并且30秒。接着,在150℃将涂布了二氧化硅微粒分散液的基板进行预备加热3分钟,从而去除了溶剂。
接着,在该基板的表面涂布了聚硅氮烷组合物。聚硅氮烷组合物通过将全氢化聚硅氮烷(重均分子量3,810)溶解于二丁基醚而制备。以聚硅氮烷组合物的总重量为基准,全氢化聚硅氮烷的含有率为10重量%。涂布条件设为500rpm并且5秒,接着设为1000rpm并且30秒。
对于涂布聚硅氮烷组合物后的基板,首先在大气中在150℃进行前加热3分钟,接着在水蒸气含有率80%的大气中在350℃加热60分钟而将聚硅氮烷氧化,进一步在氮气气氛下在850℃追加加热了60分钟。通过这样的处理,从而获得了实施例1的绝缘膜。
比较例100
相对于实施例101,不涂布二氧化硅微粒分散液,仅仅涂布聚硅氮烷组合物,从而形成了绝缘膜。另外,以聚硅氮烷组合物的总重量为基准,聚硅氮烷组合物中的全氢化聚硅氮烷的含有率为20重量%。
实施例102~108以及比较例101~106
相对于实施例101,将二氧化硅微粒分散液的组成变更为如表1所示,此外与实施例101同样地操作,尝试了绝缘膜的形成。
评价
将所获得的绝缘膜在垂直于沟槽方向的方向切断,浸没于0.5%HF水溶液30秒,然后利用扫描型电子显微镜观察剖面,对沟槽内的膜质进行了评价。所获得的结果如表1所示。另外,评价基准如以下那样。
A:沟槽内的膜质被均匀地填充
B:沟槽内的膜质以可实用的水平大致均匀地填充
C:沟槽内的膜质不均匀,无法实用
D:在沟槽内基本上没有形成绝缘膜
实施例201~208以及比较例200~208
作为二氧化硅微粒,使用平均粒径6nm的硅溶胶(PL-06(商品名)、扶桑化学工业株式会社制),从而制备如表2所示的二氧化硅微粒分散液,与实施例101同样地评价。另外,所获得的结果如表2所示。
表2
表1
Figure BDA00003651391600161
表中:
DBS:十二烷基苯磺酸
SF-485:炔二醇(アセチレングリコール)的环氧乙烷加成物(Surfynol 485(商品名)、日信化学工业株式会社制)
A-210:聚丙烯酸(ARON(注册商标)A-210(商品名)、东亚合成株式会社制,重均分子量约3,000)
A-10SL:聚丙烯酸(ARON(注册商标)A-10SL(商品名)、东亚合成株式会社制,重均分子量约6,000)
12pF:聚乙烯基吡咯烷酮(Kollidon 12pF(商品名)、BASF公司制,重均分子量约2,000)
湿法蚀刻耐受性的评价
使用比较例100以及实施例203的试样,进行了蚀刻耐受性的评价。将形成了聚硅氮烷涂膜后的试样浸没于23℃的0.25%HF水溶液,测定二氧化硅膜相对于浸没时间的膜厚减少,从而算出了湿法蚀刻速度。
比较例100以及实施例203的湿法蚀刻耐受性分别为95
Figure BDA00003651391600171
/分钟以及65
Figure BDA00003651391600172
/分钟。可知,通过本发明形成了的二氧化硅膜相对于通过以往的方法而形成的二氧化硅膜湿法而言蚀刻耐受性优异、即、膜的填充密度高。

Claims (14)

1.一种绝缘膜的形成方法,其特征在于,其包含如下工序:
(1)二氧化硅微粒涂布工序,将包含二氧化硅微粒、聚合物、表面活性剂和分散介质的二氧化硅分散液涂布于基板表面,
(2)聚硅氮烷涂布工序,在涂布了二氧化硅分散液的基板表面进一步涂布聚硅氮烷组合物,以及
(3)加热工序,将涂布了聚硅氮烷组合物的基板进行加热从而将聚硅氮烷转化为二氧化硅,形成包含所述二氧化硅微粒以及源自聚硅氮烷的二氧化硅的绝缘膜。
2.根据权利要求1所述的绝缘膜的形成方法,其中,加热工序中的加热温度为200~1500℃。
3.根据权利要求1或2所述的绝缘膜的形成方法,其中,在含水蒸气的气氛下进行加热工序。
4.根据权利要求1~3中任一项所述的绝缘膜的形成方法,其中,在单位面积的基板上涂布的二氧化硅分散液中所含的硅的重量与在单位面积的基板上涂布的聚硅氮烷组合物中所含的硅的重量之比为1:15~6:1。
5.根据权利要求1~4中任一项所述的绝缘膜的形成方法,其中,在所述加热工序之后,进一步包含:进一步在非活性气体气氛下加热的追加加热工序。
6.根据权利要求1~5中任一项所述的绝缘膜的形成方法,其中,在二氧化硅微粒涂布工序与聚硅氮烷涂布工序之间,进一步包含将基板加热而将分散介质的至少一部分蒸发的预备加热工序。
7.根据权利要求1~6中任一项所述的绝缘膜的形成方法,其中,所述基板具有用于器件绝缘的沟槽结构,所形成的绝缘膜形成沟槽隔离结构。
8.根据权利要求1~6中任一项所述的绝缘膜的形成方法,其中,所述绝缘膜为金属膜下绝缘膜或者金属布线层间绝缘膜。
9.一种二氧化硅微粒分散液,其特征在于,其为权利要求1~8的绝缘膜的形成方法中使用的二氧化硅微粒分散液,通过包含二氧化硅微粒、聚合物、表面活性剂和分散介质而形成。
10.根据权利要求8所述的二氧化硅微粒分散液,其中,以二氧化硅微粒分散液的总重量为基准,二氧化硅微粒的含量为2~30%。
11.根据权利要求9或10所述的二氧化硅微粒分散液,其中,所述聚合物从由丙烯酸聚合物、甲基丙烯酸聚合物、聚乙烯基吡咯烷酮以及它们的衍生物组成的组中选出。
12.根据权利要求9~11中任一项所述的二氧化硅微粒分散液,其中,以二氧化硅微粒分散液的总重量为基准,所述聚合物的含量为1~10%。
13.根据权利要求9~12中任一项所述的二氧化硅微粒分散液,其中,所述表面活性剂从由烷基磺酸、环氧乙烷型活性剂组成的组中选出。
14.根据权利要求9~13中任一项所述的二氧化硅微粒分散液,其中,以二氧化硅微粒分散液的总重量为基准,所述表面活性剂的含量为0.01~5%。
CN201280008540.3A 2011-02-18 2012-02-17 绝缘膜的形成方法 Active CN103380487B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011032897A JP5781323B2 (ja) 2011-02-18 2011-02-18 絶縁膜の形成方法
JP2011-032897 2011-02-18
PCT/JP2012/053756 WO2012111789A1 (ja) 2011-02-18 2012-02-17 絶縁膜の形成方法

Publications (2)

Publication Number Publication Date
CN103380487A true CN103380487A (zh) 2013-10-30
CN103380487B CN103380487B (zh) 2016-02-10

Family

ID=46672700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280008540.3A Active CN103380487B (zh) 2011-02-18 2012-02-17 绝缘膜的形成方法

Country Status (9)

Country Link
US (1) US9165818B2 (zh)
EP (1) EP2677535B1 (zh)
JP (1) JP5781323B2 (zh)
KR (1) KR101663506B1 (zh)
CN (1) CN103380487B (zh)
IL (1) IL227985B (zh)
SG (1) SG192172A1 (zh)
TW (1) TWI549187B (zh)
WO (1) WO2012111789A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720041A (zh) * 2014-12-19 2016-06-29 三星Sdi株式会社 用于形成二氧化硅类层的组成物、二氧化硅类层及电子装置
CN106661272A (zh) * 2014-07-29 2017-05-10 Az电子材料(卢森堡)责任有限公司 用作光电组件中的涂覆试剂的杂化材料
US10093830B2 (en) 2014-12-19 2018-10-09 Samsung Sdi Co., Ltd. Composition for forming a silica based layer, method for manufacturing silica based layer, and electronic device including the silica based layer
US10106687B2 (en) 2015-07-31 2018-10-23 Samsung Sdi Co., Ltd. Composition for forming silica layer, method for manufacturing silica layer and silica layer
CN112635296A (zh) * 2019-09-24 2021-04-09 长鑫存储技术有限公司 涂布处理方法和半导体器件

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929654B2 (ja) * 2012-09-11 2016-06-08 三菱マテリアル株式会社 強誘電体薄膜形成用組成物及びその薄膜の形成方法
KR101715083B1 (ko) * 2014-08-25 2017-03-22 한국화학연구원 폴리실라잔 화합물을 포함하는 박막 트랜지스터 게이트 절연막 및 이를 포함하는 박막 트랜지스터
US10020185B2 (en) * 2014-10-07 2018-07-10 Samsung Sdi Co., Ltd. Composition for forming silica layer, silica layer, and electronic device
US10647578B2 (en) 2016-12-11 2020-05-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude N—H free and SI-rich per-hydridopolysilzane compositions, their synthesis, and applications
WO2019165093A1 (en) 2018-02-21 2019-08-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Perhydropolysilazane compositions and methods for forming oxide films using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020137260A1 (en) * 2001-01-11 2002-09-26 Roger Leung Dielectric films for narrow gap-fill applications
CN1669816A (zh) * 2004-03-19 2005-09-21 爱克发-格法特公司 改进的喷墨记录材料
US20080233416A1 (en) * 2007-01-26 2008-09-25 Kyocera Corporation Paste composition, green ceramic body, and methods for manufacturing ceramic structure
US20090061633A1 (en) * 2007-08-31 2009-03-05 Fujitsu Limited Method of manufacturing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116406B2 (ja) * 1986-07-08 1995-12-13 東レ株式会社 半導体素子のパツシベ−シヨン方法
JPH03178412A (ja) 1989-12-07 1991-08-02 Mazda Motor Corp インモールドコート方法
JP3178412B2 (ja) 1998-04-27 2001-06-18 日本電気株式会社 トレンチ・アイソレーション構造の形成方法
JP5020425B2 (ja) 2000-04-25 2012-09-05 Azエレクトロニックマテリアルズ株式会社 微細溝をシリカ質材料で埋封する方法
US6653718B2 (en) * 2001-01-11 2003-11-25 Honeywell International, Inc. Dielectric films for narrow gap-fill applications
JP2006319161A (ja) * 2005-05-13 2006-11-24 Seiko Epson Corp 薄膜トランジスタの製造方法、電気光学装置、及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020137260A1 (en) * 2001-01-11 2002-09-26 Roger Leung Dielectric films for narrow gap-fill applications
CN1669816A (zh) * 2004-03-19 2005-09-21 爱克发-格法特公司 改进的喷墨记录材料
US20080233416A1 (en) * 2007-01-26 2008-09-25 Kyocera Corporation Paste composition, green ceramic body, and methods for manufacturing ceramic structure
US20090061633A1 (en) * 2007-08-31 2009-03-05 Fujitsu Limited Method of manufacturing semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106661272A (zh) * 2014-07-29 2017-05-10 Az电子材料(卢森堡)责任有限公司 用作光电组件中的涂覆试剂的杂化材料
CN106661272B (zh) * 2014-07-29 2020-01-10 Az电子材料(卢森堡)责任有限公司 用作光电组件中的涂覆试剂的杂化材料
CN105720041A (zh) * 2014-12-19 2016-06-29 三星Sdi株式会社 用于形成二氧化硅类层的组成物、二氧化硅类层及电子装置
US10093830B2 (en) 2014-12-19 2018-10-09 Samsung Sdi Co., Ltd. Composition for forming a silica based layer, method for manufacturing silica based layer, and electronic device including the silica based layer
US10427944B2 (en) 2014-12-19 2019-10-01 Samsung Sdi Co., Ltd. Composition for forming a silica based layer, silica based layer, and electronic device
CN105720041B (zh) * 2014-12-19 2019-12-31 三星Sdi株式会社 用于形成二氧化硅类层的组成物、二氧化硅类层及电子装置
US10106687B2 (en) 2015-07-31 2018-10-23 Samsung Sdi Co., Ltd. Composition for forming silica layer, method for manufacturing silica layer and silica layer
CN112635296A (zh) * 2019-09-24 2021-04-09 长鑫存储技术有限公司 涂布处理方法和半导体器件

Also Published As

Publication number Publication date
KR20140022807A (ko) 2014-02-25
US20130323904A1 (en) 2013-12-05
JP2012174756A (ja) 2012-09-10
KR101663506B1 (ko) 2016-10-07
SG192172A1 (en) 2013-08-30
CN103380487B (zh) 2016-02-10
IL227985A0 (en) 2013-09-30
US9165818B2 (en) 2015-10-20
EP2677535A4 (en) 2014-11-19
EP2677535A1 (en) 2013-12-25
WO2012111789A1 (ja) 2012-08-23
EP2677535B1 (en) 2019-02-13
IL227985B (en) 2018-07-31
JP5781323B2 (ja) 2015-09-16
TWI549187B (zh) 2016-09-11
TW201304006A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
CN103380487B (zh) 绝缘膜的形成方法
KR101623764B1 (ko) 실리카질 막의 제조에 사용하는 침지용 용액 및 이를 사용한 실리카질 막의 제조법
CN102153951B (zh) 含有聚硅氮烷的涂布组合物
CN103354948A (zh) 二氧化硅膜的制造方法
TWI462158B (zh) Film forming composition
TWI752669B (zh) 濕式蝕刻組合物及方法
CN101366103B (zh) 制备硅质膜的方法以及带有由该方法制备的硅质膜的衬底
CN102559063B (zh) 具有可调介电抛光选择性的浆料组合物及抛光基材的方法
CN103189972B (zh) 隔离结构的形成方法
KR20120036878A (ko) 에칭액 및 그것을 사용한 트렌치?아이솔레이션 구조의 형성 방법
CN105720041A (zh) 用于形成二氧化硅类层的组成物、二氧化硅类层及电子装置
US6930393B2 (en) Composition for forming porous film, porous film and method for forming the same, interlayer insulator film, and semiconductor device
JP2017011252A (ja) 半導体基板の製造方法
JP2015173283A (ja) 絶縁膜形成に用いられる組成物
CN101512737A (zh) 硅质薄膜形成用组合物及应用所述组合物的硅质薄膜的形成方法
KR20160036328A (ko) 실리카 박막용 린스액, 및 이를 이용하여 제조된 실리카 박막

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: MERCK PATENT GMBH

Free format text: FORMER OWNER: AZ ELECTRONIC MATERIALS IP (JAPAN) K.K.

Effective date: 20150401

TA01 Transfer of patent application right

Effective date of registration: 20150401

Address after: Darmstadt

Applicant after: Merck Patent GmbH

Address before: Tokyo, Japan

Applicant before: AZ Electronic Materials (Japan) K. K.

C14 Grant of patent or utility model
GR01 Patent grant