CN103255130A - 高纯度质粒dna制备物及其制备方法 - Google Patents

高纯度质粒dna制备物及其制备方法 Download PDF

Info

Publication number
CN103255130A
CN103255130A CN2013100183991A CN201310018399A CN103255130A CN 103255130 A CN103255130 A CN 103255130A CN 2013100183991 A CN2013100183991 A CN 2013100183991A CN 201310018399 A CN201310018399 A CN 201310018399A CN 103255130 A CN103255130 A CN 103255130A
Authority
CN
China
Prior art keywords
seq
polypeptide
plasmid dna
acid
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100183991A
Other languages
English (en)
Other versions
CN103255130B (zh
Inventor
N·S·坦普尔顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STERLECCO BIOLOGICAL CO., LTD.
Original Assignee
Gradalis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gradalis Inc filed Critical Gradalis Inc
Publication of CN103255130A publication Critical patent/CN103255130A/zh
Application granted granted Critical
Publication of CN103255130B publication Critical patent/CN103255130B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1017Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by filtration, e.g. using filters, frits, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/32Bonded phase chromatography
    • B01D15/325Reversed phase
    • B01D15/327Reversed phase with hydrophobic interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/101Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明通常涉及高纯质粒组合物及其制备方法,所述高纯质粒组合物具有低的或者不可检测水平的荚膜异多糖酸及其他污染物。也描述了在该方法中有用的多肽。本文描述的方法及组合物具有一系列的用途,包括在生物恐怖主义、环境科学、食品科学、法医学、分子生物学以及健康和医学领域内的各种应用。

Description

高纯度质粒DNA制备物及其制备方法
本申请是申请日为2009年4月30日、申请号为200980125536.3、发明名称为“高纯度质粒DNA制备物及其制备方法”的中国专利申请的分案申请。
相关申请的交叉引用
本发明要求以下美国临时申请的权益:系列号61/125,916,于2008年4月30日递交,以及系列号61/125,923,于2008年4月30日递交,其各个在此以全文形式结合作为参考。
发明领域
本发明通常涉及高纯度质粒组合物及其制备方法,所述组合物具有低的,或者不可检测的荚膜异多糖酸及其他污染物的水平。也描述了在该方法中的有用的多肽。在此描述的方法及组合物具有一系列的用途,包括在生物恐怖主义、环境科学、食品科学、法医学、分子生物学以及健康和医学领域内的各种应用。
背景
在将核酸引入生物体的任何应用中,关键的步骤是制造高度纯化的,通常是药物级别的核酸。该纯化的核酸必须满足安全性、能力及效力的药物质量标准。此外,期待有可放大的方法,其能够用于产生多克的量的DNA。因此,期待有生产高纯度核酸的方法,其不需要有毒的化学品、诱变剂、有机溶剂或其他危害所得的核酸的安全性或效力的试剂,或者使得扩大规模困难或者不可行。也期待制备不含有污染性内毒素的核酸,所述内毒素若给予患者会引起毒性反应。污染性内毒素的去除是尤其地重要的,例如,自革兰氏阴性(-)细菌来源中纯化的质粒DNA具有高水平的内毒素及荚膜异多糖酸,后者为细胞外膜的必须组分。
质粒是自我复制的遗传性元素,其在宿主细菌中存在及复制。从本质上,涉及特定DNA片段操作的所有分子遗传学方法都使用质粒DNA制造大量的特定的DNA片段(或者得自所述片段的蛋白质/RNA)。
细菌宿主的选择,或质粒的来源通常反应了历史上的观点。StanleyCohen及Herb Bayer选择了大肠杆菌(E.Coli)的K-12株用于其1970年代初期的开创性的分子遗传学实验,由于其容易培养并对于代谢研究而言容易控制。这些相同的性质也使得大肠杆菌K-12成为用于细菌遗传学研究的首选的微生物。分子生物学家现在使用相同株的大肠杆菌用于成熟的步骤,这是由于其对于多种分子遗传学应用而言证明是尤其好的宿主。此外,在过去的25年中,大肠杆菌K-12已经证明是对于重组DNA分子增长反应的无害的生物宿主。毒性减弱的大肠杆菌K-12株在实验室环境外不能繁盛生长,其也不能与通常在人类肠中发现的遗传学上更加强壮的大肠杆菌血清型竞争。
在其他技术中,当前可得的用于分离及纯化质粒DNA的方法应用离子交换层析(Duarte等人,Journal of Chromatography A,606(1998),31-45)以及尺寸排阻层析(Prazeres,D.M.,Biotechnology Techniques Vol.1,No.6,June1997,p417-420),其结合添加剂的使用,所述添加剂如聚乙二醇(PEG)、去污剂及其他组分如六氨合钴、亚精胺及聚乙烯吡咯烷酮(PVP)。将DNA从污染物中分离的其他方法依靠尺寸排阻层析,其涉及基于尺寸上的小差别,将核酸从内毒素及其他污染物分离。这些方法通常是可以接受的,然而可能无法以期待的纯度水平提供有效力的,及成本上合算的核酸(如DNA,包括超螺旋的和/或带切口的(或者松弛的))分离。
同时,质粒DNA制备物,其通过细菌制备物制备,并通常含有松弛的及超螺旋的质粒DNA的混合物,经常要求内毒素的去除,如FDA所要求的,由于多种细菌宿主产生的内毒素已知在接受所述质粒DNA的宿主中导致炎症反应,例如发烧或者败血病,或者在一些案例中死亡。这些内毒素通常为脂多糖,或者其片段,其为革兰氏(-)阴性细菌的外膜的组分,并存在于宿主细胞及宿主细胞膜或者大分子的DNA制备物中。因此,内毒素的去除可能是质粒DNA的纯化的关键步骤,所述质粒DNA用作治疗或者预防上的用途。从质粒DNA溶液的内毒素去除主要地利用内毒素的负电性结构。然而,质粒DNA,也是负电性的,并因此分离通常使用阴离子交换树脂达到,所述树脂结合这两种分子,并在一定的情况下,优先地洗脱质粒DNA而结合内毒素。该分离仅仅导致部分去除,这是由于显著量的内毒素与质粒DNA一起洗脱和/或达到非常少的质粒DNA回收。
因此,质粒DNA从小体积或大体积的微生物发酵物中的小规模及大规模的分离和纯化需要开发改进的质粒制备方法。对于基于质粒的研究和治疗而言这也是期待的,即核酸能以可再现的方式分离纯化并保持相同的结构,以及为了避免杂质对于哺乳动物体的不良效果,要求所述核酸被分离及纯化到高纯度。
用于基因疗法的质粒DNA典型地分离自E.coli K-12。内毒素,也已知为脂多糖(LPS),已知为革兰氏阴性细菌如大肠杆菌的细胞膜的主要组分。实际上,一些报导表示E.coli外膜的脂质部分完全由内毒素分子组成。(Qiagen Plasmid Purification Handbook,July1999)。
LPS含有疏水的脂类A部分,这是一系列复杂的糖残基及负电性的磷酸酯基团。LPS的脂类A部分证明内毒素活性并在哺乳动物中引发强烈的、潜在地危及生命的炎症反应。该炎症反应的特征在于发烧,降低的血压,局部的炎症以及感染性休克。脂类A通过结合于血清脂多糖结合蛋白(LBP)并通过在单核细胞、内皮细胞以及多形核白细胞上表达的CD14受体引发信号转导(Ingalls,R.R.等人1998.J.Immunol.161:54135420)。内毒素当注射到小鼠中时是极为致命的,其在注射的1小时内导致死亡。内毒素也已知剧烈地减少细胞中的转染效率(Weber,M.,等人1995.Biotechniques19:930940)。因此,使用不含内毒素的质粒DNA用于基因疗法的应用的重要性长期以来被强调。
多个科学家为了减少用于基因治疗的DNA样品的毒性,努力从DNA样品中除去LPS及其他的内毒素。然而,近期的证据指出具有可忽略不计的量的LPS的DNA样品当以显著量给予的话,仍然是有毒的。因此,必须鉴定DNA样品中额外的有毒组分并去除,以确保临床上使用的DNA制备物的安全性。
内毒素分子的化学结构及性质,及其形成胶团结构的倾向在一开始导致LPS及质粒DNA的共纯化。例如,DNA经常与LPS在CsCl超离心步骤中共纯化,这是由于LPS及质粒DNA在CsCl中具有类似的密度。此外,胶团LPS在尺寸排阻树脂上与大的DNA分子一起分离。类似地,存在于LPS分子上的负电荷与阴离子交换树脂相互作用,以至于导致其与DNA在阴离子交换树脂上共纯化。
已经报道细胞壁多糖污染分离自多种来源的DNA,所述来源包括细菌、酵母、植物、蓝绿藻、原生动物、真菌、昆虫及哺乳动物(Edelman,M..1975.Anal.Biochem.65:293-297;Do,N.和Adams,R.P.1991.Biotechniques10:162-166;Chan,J.W.和Goodwin,P.H.1995.Biotechniques18:419-422)。
污染植物基因组DNA的植物多糖据报道抑制限制性内切酶处理及聚合酶链式反应(Robbins,M.等人1995.Benchmarks18:419-422)。进一步地,由多头绒泡菌黏质物纯化的多糖据报道抑制DNA聚合酶的活性(Shioda,M.和K.Murakami-Murofushi.1987.Biochem.Biophys.Res.Commun.146:61-66)以及已知来自海胆胚胎的酸性多糖抑制RNA聚合酶的活性(Aoki,Y.和H.Koshihara.1972.Biochim.Biophys.Acta272:33-43)。
文献中描述了几种方法纯化质粒DNA,然而这些方法通常仅去除一部分多糖,如果去除的话。例如,脂类A纯化方法基于脂类A的疏水性质。因此,这些方法将脂类A及与脂类A共价连接的多糖去除。然而,由于仅有小部分的E.coli荚膜多糖共价地连接于脂类A,仅有其少数在质粒DNA的标准制备及纯化步骤中被去除(Jann,B.和K.Jann.1990.Curr.Top.Microbiol.Immunol.150:19-42;Wicken,A.J.1985.In:Bacterial Adhesion,D.M.Pletcher(ed.),Plenum Press:New York,pp.45-70)。一些E.coli荚膜多糖具有磷脂酸作为脂类部分;然而,所述磷脂酸典型地在标准的质粒分离步骤中水解。因此,这些多糖在当前使用的基于疏水性(例如,脂类A结合的存在)减少内毒素的方法下不能从DNA中去除。
已经开发了几种方法从分离自E.coli的DNA中减少内毒素-阳性LPS的水平(Neudecker,F.和S.Grimm.2000.Biotechniques28:107-110),其包括几种商业上可得的试剂盒(Qiagen,Inc.,Valencia,CA;Sigma Chemical Co.,Inc.,St.Louis,MO)。使用Qiagen试剂盒纯化的DNA通常认为是洁净的质粒DNA的“黄金标准”。Qiagen试剂盒不仅设计用于去除LPS,其还包括RNA酶以消化质粒DNA制备物中的RNA。实际上,多数的DNA制备方法包括RNA酶消化步骤。然而,能够加入质粒DNA的RNA酶是受限的,这是由于高数量的RNA酶会开始消化DNA。
难以使用当前的标准纯化步骤将多糖从DNA中分离。DNA及多糖均由有机溶剂沉淀,所述有机溶剂如乙醇和聚乙二醇(PEG)。由于多糖是阴离子性的,采用阴离子交换树脂会与DNA共纯化多糖。进一步,高分子量多糖和质粒DNA在CsCl中具有类似的密度。
已经提出了亲和层析从DNA中去除多糖污染物。例如,早期的论文报道了从多种来源的DNA的纯化,所述来源包括植物、昆虫、真菌以及藻类,其使用亲和层析,其中脱蛋白的DNA组分通过连接于琼脂糖的伴刀豆球蛋白A的柱(Edelman,M.1975.Anal.Biochem.65:293-29)。不幸的是,E.Coli多糖通常不含有与伴刀豆球蛋白A结合的糖。类似地,据报道凝集素亲和层析在从分离自真菌及植物的DNA中去除多糖污染物中是有用的(Do,N.和R.P.Adams.1991.Biotechniques10:162-166);然而由凝集素识别的糖不存在于来自有机体的大多数多糖中,所述有机体如E.coli。
革兰氏阴性细菌沉淀物的盐洗也被提出作为纯化细菌基因组DNA的方法(Cahn,J.W.和P.H.Goodwin.1995.Biotechniques18:519-422)。由于存在于DNA中的多糖引起的限制性酶切的干扰,提出了盐洗作为改进DNA的纯化的方式。然而上述方法无一成功地去除在见于质粒DNA中的全部多糖。
WO 95/20594及美国专利5,969,129描述了用于成批纯化来自玉米及其他植物的基因组DNA的方法。该纯化方法使用含有硼酸盐基团的聚合物凝胶,以从DNA/多糖混合物中分离DNA。
尽管在制备用于临床应用的“干净的”DNA中,临床医生的整个重心在于LPS的去除,近期的研究指出“无LPS”的DNA在高剂量下仍然显示毒性。例如,在DNA-脂质体复合物的静脉注射后,科学家观察到导致小鼠死亡的毒性,所述DNA-脂质体复合物含有50-300mg的DNA及量减少的LPS,然而等浓度的脂质体的注射没有毒性的效果。也观察到在使用具有量减少的LPS的DNA转染之后,基因表达减少了。近期的报告还提出,在肌肉注射据认为纯的DNA后,产生了炎症和显著的免疫响应(Fields,P.A.等人2000.Molec.Therap.1:225-235)。因此,甚至据认为是纯的,临床级别以及具有低水平的LPS的DNA在动物中也产生毒性的响应。
发明简述
在本发明的不同方面中,提供了高纯质粒DNA组合物。也描述了用于制备该质粒组合物的方法,以及具有荚膜异多糖酸降解活性的多肽。这些多肽在制备高纯质粒DNA制备物中是有用的,并在用于降解荚膜异多糖酸的方法中也是有用的。
简单来说,因此,本发明涉及革兰氏阴性细菌质粒组合物。该组合物包含革兰氏阴性细菌质粒DNA以及少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的荚膜异多糖酸。在一个实施方案中,例如,所述组合物包含少于约0.05mg每毫克革兰氏阴性细菌质粒DNA的荚膜异多糖酸。在另一个实施方案中,所述组合物不包含可检测的荚膜异多糖酸。在这些及其他实施方案中,所述组合物可能还含有少于0.1mg每毫克革兰氏阴性质粒DNA的糖醛酸,和/或少于0.1mg每毫克革兰氏阴性质粒DNA的岩藻糖。在一个实施方案中,例如,所述组合物进一步包含少于0.05mg每毫克革兰氏阴性质粒DNA的糖醛酸。在另一个实施方案中,所述组合物包含每毫克革兰氏阴性质粒DNA的少于0.05mg岩藻糖。在另一个实施方案中,所述组合物不包含可检测的糖醛酸和/或岩藻糖。
本发明的另一个方面涉及革兰氏阴性细菌质粒组合物,其包含革兰氏阴性细菌质粒DNA,少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的荚膜异多糖酸,以及少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的糖醛酸。
本发明的另一个方面涉及革兰氏阴性细菌质粒组合物,其包含革兰氏阴性细菌质粒DNA,少于约0.05mg每毫克革兰氏阴性细菌质粒DNA的荚膜异多糖酸,以及少于约0.05mg每毫克革兰氏阴性细菌质粒DNA的岩藻糖酸。在一个实施方案中,所述组合物不包含可检测的荚膜异多糖酸、岩藻糖、糖醛酸、染色体DNA或基因组DNA、RNA、蛋白质和/或内毒素污染物。
本发明的另一个方面涉及用于纯化质粒DNA的方法。在一个实施方案中,所述方法包括用多肽处理含有质粒DNA的含水组合物以消化荚膜异多糖酸,以及将质粒DNA从处理的含水组合物中分离。
本发明的另一个方面涉及用于纯化质粒DNA的方法,所述方法包括:(a)通过使含水组合物与阴离子交换树脂组合来预处理含有质粒DNA的含水组合物;(b)用多肽处理经预处理的含水组合物以分解荚膜异多糖酸;(c)将质粒DNA从经处理的含水组合物中分离,该分离包括将经处理的含水组合物与亲和层析树脂组合,随后将经处理的含水组合物与疏水相互作用层析树脂组合;以及(d)过滤质粒DNA。
本发明的另一个方面涉及多肽,所述多肽与SEQ ID NO:1及其保守的氨基酸替换具有至少90%的同源性。在一个实施方案中,所述多肽与SEQ IDNO:1及其保守的氨基酸替换具有至少95%的同源性。在另一个实施方案中,所述多肽具有SEQ ID NO:1的氨基酸序列。
本发明的另一个方面涉及多肽,所述多肽与SEQ ID NO:2及其保守的氨基酸替换具有至少90%的同源性。在一个实施方案中,所述多肽与SEQ IDNO:2及其保守的氨基酸替换具有至少95%的同源性。在另一个实施方案中,所述多肽具有SEQ ID NO:2的氨基酸序列。
本发明的另一个方面涉及分离的多核苷酸,其包含核酸序列,该序列与SEQ ID NO:7或其互补序列具有至少90%的序列同一性。在一个实施方案中,所述核酸序列与SEQ ID NO:7或其互补序列具有至少95%的序列同一性。在另一个实施方案中,所述多核苷酸具有SEQ ID NO:7的核酸序列。
本发明的另一个方面涉及分离的多核苷酸,其包括核酸序列,该序列与SEQ ID NO:8或其互补序列具有至少90%的序列同一性。在一个实施方案中,所述核酸序列与SEQ ID NO:8或其互补序列具有至少95%的序列同一性。在另一个实施方案中,所述多核苷酸具有SEQ ID NO:8的核酸序列。
本发明的其他方面涉及包含多核苷酸的载体,其中,该载体选自质粒、病毒及噬菌体。在一个方面,其多核苷酸与SEQ ID NO:7或其互补序列具有至少90%的序列同一性。在另一个方面,其多核苷酸与SEQ ID NO:8或其互补序列具有至少90%的序列同一性。在任一方面的一个实施方案中,所述载体为质粒或者噬菌体。在任一方面的优选的实施方案中,所述载体为噬菌体。
本发明的另一个方面涉及在生物材料中消化荚膜异多糖酸的方法,该方法包括使生物材料与多肽接触,所述多肽能够消化荚膜异多糖酸。在一个实施方案中,所述生物材料选自粗细菌裂解液,部分纯化的细菌裂解液以及含有提取的细菌核酸的含水溶液。在另一个实施方案中,所述生物材料为细菌粘液。在另一个实施方案中,所述生物材料为生物膜。
本发明的另一个方面涉及从含水组合物中去除内毒素的方法,所述组合物含有细菌大分子,该方法包括消化该含水组合物中的荚膜异多糖酸,以及随后将该含水组合物与层析材料组合,以从细菌大分子中分离内毒素。在特定的实施方案中,所述含水组合物得自细菌裂解液。
其他的方面及特征或者为显而易见的,或者在此后指出。
前述内容指出了本发明相当广泛的数个方面,从而可能更好地理解随后的本发明详述。本发明的附加特征及优点于此后描述,其形成了本发明的权利要求的主题。本领域技术人员应当意识到,所公开的观念和特定的实施方案可能容易地作为修改或者重新设计组合物及方法的基础,用于实现与本发明相同的目的。本领域技术人员应当了解,该修改或重新设计的组合物及方法不悖离本发明在所附的权利要求中的精神及范围。
附图简述
图1A、1B、1C及1D显示了根据一个实施方案的荚膜异多糖酸降解酶的核苷酸及氨基酸序列。
图2显示了凝胶,其中几种不同的DNA质粒样品以该凝胶电泳方法检测多糖可视化及定量。
图3-8显示了SEQ ID NOS:1-6的多肽序列。
图9-10显示了SEQ ID NO:7及SEQ ID NO:8的多核苷酸序列。
图11显示了SEQ ID NO:9-17的多肽序列。
图12-14显示了表格,为从120只小鼠的高剂量DNA-BIV脂质体复合物静脉注射之后的结果,所述脂质体复合物根据在此描述的方法纯化。
缩写及定义
除非另外地定义,所有在此使用的工艺、符号及其他科学术语或者专门用语意为具有本发明所属领域的技术人员一般理解的意义。在一些情况下,为了清楚和/或便于引用,本文对具有广泛理解的意义的术语进行定义,并且该定义在此包含不应该必然地解释为描述与本领域通常理解地基本上不同。在此描述或引用的多种技术和步骤被本领域技术人员使用常规的方法学而充分理解并广泛采用,例如广泛地使用的分子克隆方法学,其描述于Sambrook等人的Molecular Cloning:A Laboratory Manual 2nd.edition(1989)Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.中。视情况而定,涉及商业上可得的试剂盒及试剂的使用的步骤通常地根据生产商所规定的步骤和/或参数进行,除非另外指出。
术语“类似物”指与另一个分子在结构上相似或者具有相似的或者对应的属性(如CAE相关蛋白)的分子。例如,CAE蛋白的类似物可能被特异结合CAE的抗体或者T细胞特异地结合。
术语“抗体”以最广泛的含义使用。因此“抗体”可能为天然地产生的或人造的,如单克隆抗体,其由常规的杂交瘤技术制备。抗-CAE抗体包括单克隆及多克隆的抗体,以及含有所述抗原结合结构域和/或这些抗体的一个或者多个互补性决定区域的片段。“抗体片段”定义为免疫球蛋白分子可变区域的至少一部分,所述部分结合于其靶点,即抗原结合区域。在一个实施方案中,其特别地涵盖单一的抗-CAE抗体及其克隆(包括激动剂,拮抗剂及中和抗体)及具有多表位特异性的抗-CAE抗体组合物。
术语“同系物”指显示与另一个分子的同源性的分子,例如,通过在对应的位置上具有相同或者类似的序列或者化学残基。
术语“杂交”、“杂交(hybridizing)”,“杂交(hybridizes)”等等,用于核酸的环境下,意为指常规的杂交条件,优选地如在50%甲酰胺/6xSSC/0.1%SDS/100μg/ml ssDNA中杂交,其中用于杂交的温度高于37°C以及用于在0.1xSSC/0.1%SDS中洗涤的温度高于55°C。
短语“分离的”或者“生物纯的”指这样的物质,其基本上或本质上不含在物质见于天然状态下与其正常地共存的组分。因此,根据本发明的分离的肽优选地不含有在肽的原位环境下通常与其结合的物质。例如,核酸或多核苷酸被称为“分离的”是这样一种情况:核酸或多核苷酸基本上与污染物多核苷酸分离,所述污染物多核苷酸对应于或互补于靶基因之外的基因,或者编码靶基因产物或其片段之外的多肽。技术人员能够容易地使用核酸分离步骤来获得分离的多核苷酸。例如当采用物理、机械或者化学方法将目标蛋白或者多肽从正常地与所述蛋白结合的细胞组分中去除时,该蛋白被称为是“分离的”。技术人员能够容易地使用标准纯化方法获得纯化的蛋白质。可选地,分离的蛋白质可以通过化学的方式制备。
术语“哺乳动物”指分类为哺乳类的任意生物体,其包括小鼠、大鼠、兔子、狗、猫、牛、马和人类。在本发明的一个实施方案中,所述哺乳动物为小鼠。在本发明的另一个实施方案中,所述哺乳动物为人类。
术语“单克隆抗体”指由相同的核酸分子编码的抗体的集合,所述核酸分子可选地由单一的杂交瘤或者其他细胞系产生,或者由转基因哺乳动物产生,从而各个单克隆抗体典型地识别抗原上的相同表位。术语“单克隆”不限于任意特定用于产生抗体的方法,该术语也不限制于在特定的物种中所产生的抗体,所述物种如小鼠、大鼠等等。术语“多克隆抗体”指抗体的异种混合物,其识别并结合于相同抗原上的不同表位。多克隆抗体可以从例如粗血清制备物获得,或者可以使用例如抗原亲和层析或者蛋白A/蛋白G亲和层析纯化。
本文关于多肽序列所说明的术语“氨基酸序列同一性百分比(%)”,定义为在候选序列中氨基酸残基与特定的多肽序列中氨基酸残基相同的百分比,如必要,在比对序列和引入缺口之后进行以达到最大百分比的序列同一性,而并不考虑作为序列同一性的部分的任何保守替换。为了确定氨基酸序列同一性百分比的比对可以以本领域技术范围内的多种方式实现,例如,使用公众可用的电脑软件如BLAST,BLAST-2,ALIGN,ALIGN-2或者Megalign(DNASTAR)软件。本领域普通人员能够确定测量比对的合适参数,包括任何为了在所比较的序列的全长上达到最大比对所需要的算法。例如,氨基酸序列同一性百分比可以使用序列比较程序NCBI-BLAST2(Altschul等人,Nucleic Acids Res.25:33893402(1997))确定。所述NCBI-BLAST2序列比较程序可以得自位于Bethesda,Md的National Institute of Health。NCBI-BLAST2使用几个搜索参数,其中所有那些搜索参数设定为默认值,包括例如unmask=yes,strand=all,expected occurrences=10,minimum low complexitylength=15/5,multi-pass e-value=0.01,constant for multi-pass=25,dropoff forfinal gapped alignment=25以及scoring matrix=BLOSUM62。
本文关于编码多肽的核酸序列说明的术语“核酸序列同一性百分比(%)”定义为在候选序列中与目标多肽核酸序列中的核苷酸一致的核苷酸的百分比,如必要,在比对序列和引入缺口之后进行以达到最大百分比的序列同一性。为了确定核酸序列同一性百分比的比对可以以在本领域技术范围内的多种方式实现,例如,使用公众可用的电脑软件如BLAST,BLAST-2,ALIGN,ALIGN-2或者Megalign(DNASTAR)软件。本领域普通人员能够确定测量比对的合适参数,包括任何为了在所比较的序列的全长上达到最大比对所需要的算法。例如,核酸序列同一性百分比也可以使用序列对比程序NCBI-BLAST2(Altschul等人,Nucleic Acids Res.25:33893402(1997))来确定。所述NCBI-BLAST2序列比较程序可能得自位于Bethesda,Md的NationalInstitute of Health。NCBI-BLAST2使用几个搜索参数,其中所有那些搜索参数设定为默认值,包括例如unmask=yes,strand=all,expected occurrences=10,minimum low complexity length=15/5,multi-pass e-value=0.01,constant formulti-pass=25,dropoff for final gapped alignment=25以及scoringmatrix=BLOSUM62。
术语“多核苷酸”意为聚合物形式的核苷酸,其长度为至少10个碱基或者碱基对,其为核糖核苷酸或者脱氧核苷酸,或者核苷酸任意一种类型的修饰形式,并意图包含单链或者双链形式的DNA和/或RNA。在本领域中,该术语通常与“寡核苷酸”可交换地使用。多核苷酸可以包括本文公开的核苷酸序列,其中胸腺嘧啶(T)也可以为尿嘧啶(U);该定义属于DNA与RNA的化学结构之间的差别,具体地观察到RNA中的四种主要碱基中之一为尿嘧啶(U)而非胸腺嘧啶(T)。
术语“多肽”意为至少约4,5,6,7或8个氨基酸的聚合物。在本说明书中,使用标准的三字母或者单字母的氨基酸名字。在本领域中,该术语通常与“肽”或者“蛋白质”可交换地使用。
“重组”的多核苷酸(如DNA或者RNA分子)或者“重组”的多肽为在体外进行分子操作的多核苷酸或者多肽。
具有本领域普通技术人员能容易地确定杂交反应的“严格性”,该严格性是通常地凭经验计算的,其取决于探针长度,洗涤温度以及盐浓度。通常地,为了适当的变性,较长的探针要求较高的温度,而较短的探针需要较低的温度。杂交通常地取决于当互补链存在于低于其解链温度的环境下时,变性的核酸序列再退火的能力。探针与可杂交序列的想要的同源性程度越高,则能使用越高的相对温度。结果是,随后更高的相对温度将倾向于使反应条件更严格,而更低的温度较不如此。杂交反应严格性的额外细节以及解释参见Ausubel等人,Current Protocols in Molecular Biology,Wiley IntersciencePublishers,(1995)。
以下可以确定为本文定义的“严格的条件”或者“高严格性的条件”,而其不限于此:(1)洗涤采用低离子强度及高温度,例如0.015M氯化钠/0.0015M柠檬酸钠/0.1%十二烷基硫酸钠在50°C下;(2)在杂交中采用变性剂,如甲酰胺,例如具有下列成分的50%(v/v)甲酰胺:0.1%胎牛血清白蛋白/0.1%聚蔗糖/0.1%聚乙烯吡咯烷酮/pH为6.5的具有750mM的氯化钠、75mM柠檬酸钠的42℃的50mM磷酸钠缓冲液;或者(3)42°C采用50%甲酰胺,5X SSC(0.75M NaCl,0.075M柠檬酸钠),50mM磷酸钠(pH6.8),0.1%焦磷酸钠,5x Denhardt溶液,超声的鲑鱼精子DNA(50μg/ml),0.1%SDS以及10%硫酸葡聚糖,并且在42°C的0.2xSSC(氯化钠/柠檬酸钠)以及55°C的50%甲酰胺中洗涤,随后通过含EDTA的0.1xSSC在55°C下进行高严格性洗涤。"“中等严格的条件”描述为,然而不限于Sambrook等人Molecular Cloning:ALaboratory Manual,New York:Cold Spring Harbor Press,1989中的那些条件,并包括不如上述严格的洗涤溶液以及杂交的条件(例如温度,离子强度以及%SDS)的使用。中等严格条件的实例为在溶液中,37°C下过夜孵育,所述溶液包含:20%甲酰胺,5X SSC(150mM NaCl,15mM柠檬酸三钠),50mM磷酸钠(pH7.6),5X Denhardt溶液,10%硫酸葡聚糖以及20mg/ml的经变性剪切的鲑鱼精子DNA,随后使用约37-50°C的1xSSC洗涤滤器。技术人员能认识到如何在必要时调节温度,离子强度等等,从而适应如探针长度等等因素。
术语“变体”指显示描述的类型或者标准的变化的分子,如与具体描述的蛋白质(如示于图1或者图2的CAE-蛋白)在相应的位置(或者多个位置)具有一个或者多个不同的氨基酸残基的蛋白质。类似物是变体蛋白的实例。剪接同等型及单核苷酸多态性(SNP)是变体的其它实例。
本发明的具有荚膜异多糖酸降解(CAE)活性的多肽包括在此具体指出的那些,以及等位基因的变体,保守的替换变体,类似物以及同源物,其可以在本文列出或者在本领域中容易获得的的方法之后,在经过度实验分离/产生及表征。也包括组合了不同CAE蛋白或其片段的部分的融合蛋白,以及CAE蛋白与异种多肽的融合蛋白。该CAE蛋白共同地指CAE相关的蛋白,本发明的蛋白或CAE。术语“CAE相关蛋白”指至少10,15,25,50,100,150,200,250,300,350,400,450,500,550,600,650,700或者多于700个氨基酸的多肽片段或者CAE蛋白质序列。
详述
本发明总的来说涉及“超洁净”的质粒DNA制备物,其制备方法及在这些方法中有用的酶。经报导地,发现多糖特别是荚膜异多糖酸污染“洁净”的质粒DNA制备物,当使用时,例如用于基因治疗时,其在人类和哺乳动物中诱导毒性作用。据信诱导这些毒性作用的组合物尚未在文献中确定。可能被DNA制备物中的多糖污染的存在不利地影响的其他应用包括临床诊断,法医学及其他生物技术方法,如其上包括核酸的芯片及微阵列,以及在分子研究(如建立染色体,转录起始位点的分析,X-射线晶体学以及DNA结构研究等)中。存在从DNA制备物中去除此类污染分子的急需。
除了别的之外,因此,本发明提供了分离的,纯化的以及重组的多肽及涉及其应用的方法,所述多肽具有荚膜异多糖酸降解活性。本发明还提供了编码该多肽的分离的多核苷酸。本文描述的多肽具有一系列的应用,并使得在生物材料中消化荚膜异多糖酸的方法,以及在从包括生物大分子的组合物中去除内毒素的方法成为可能。值得注意的是,所述多肽也使得质粒DNA制备物的制备成为可能,优选地为革兰氏阴性细菌质粒DNA,其包含少于约0.1mg每毫克的质粒DNA的荚膜异多糖酸,以及更优选地少于约0.05mg每毫克的质粒DNA的荚膜异多糖酸。在特定的优选实施方案中,在由本文描述的方法制备的质粒组合物中找不到可检测的荚膜异多糖酸。所述质粒组合物可能还具有非常低水平的,或者不可检测水平的其他多糖污染物,例如糖醛酸及岩藻糖。
本发明部分涉及这一发现:本发明的多肽化合物能够消化荚膜异多糖酸(也称作M-抗原),其为由一系列的肠细菌产生的胞外多糖,所述肠细菌包括大多数大肠杆菌株。取决于细菌,例如,荚膜异多糖酸可以包括多种比例的岩藻糖、葡萄糖、半乳糖及葡萄糖醛酸以及乙酸盐和丙酮酸盐(参见例如Sutherland,Biochem.J.115,935-945(1969)。如前文所记录的,发现了内毒素及多糖,特别是荚膜异多糖酸污染核酸的制备物,所述制备物例如用于治疗用途,同时使用现有的标准纯化步骤很难将内毒素及多糖如荚膜异多糖酸从核酸中分离出来。
相应地,本文描述的多肽可以通常地用于材料中荚膜异多糖酸的消化。通常地,含有荚膜异多糖酸的任意材料可以使用本文描述的多肽处理,典型地,所述材料为生物材料。所述生物材料可以得自微生物,人类或者动物的组织以及环境样品的部分,所述环境样品如考古学上的残留物、堆肥或者其他分解物质、泥炭沼、植物物质、沉淀物、污泥、泥土以及废水,废水例如其从来源上为地面上或者地面下的。在特定的实施方案中,所述生物材料为生物粘液。根据这些实施方案,例如,所述荚膜异多糖酸可以存在于完整细菌的细胞膜中。在其他的实施方案中,所述生物材料可以为粗细菌裂解液,部分地纯化的细菌裂解液以及包括提取的细菌核酸的含水溶液。在另一个实施方案中,所述生物材料可以为生物膜。在另一个实施方案中,所述生物材料可以为浆粕或者浆粕衍生物(例如,如那些机械地或者化学地由木头或者纤维来源制备的)。如前文所记载的,根据本发明的其他方面,本文描述的多肽可以用于从包含细菌大分子(例如,质粒DNA)的含水组合物中去除内毒素的方法中。在特定的优选方面,所述多肽用于纯化质粒DNA的方法中,所述质粒DNA典型地为革兰氏阴性细菌质粒DNA。
质粒DNA组合物
本发明的一个关键的方面是高度纯化的质粒组合物及药物级别的质粒DNA组合物。这些组合物,例如,可以通常由本文描述的荚膜异多糖酸酶促消化方法制备,其可以与或者可以不与常规的纯化技术组合,常规的纯化技术如一种或多种层析或者过滤步骤的组合。因此,本发明包括,或者进一步地包括制备及分离高度纯化的质粒组合物的方法,所述质粒组合物基本上不含多糖,所述多糖包括荚膜异多糖酸,岩藻糖以及糖醛酸,以及其他的污染物,并因此为药物级别的DNA。除了具有非常低的,优选地不可检测水平的荚膜异多糖酸和其他多糖之外,由本文描述的方法制备及分离的所述质粒DNA通常包括非常低水平的内毒素,所述内毒素包括一种或者多种污染性的染色体DNA、RNA、蛋白质及内毒素,并优选地含有绝大多数闭环形式的质粒DNA。根据本文描述的方法制备的所述质粒DNA具有足够的纯度用于研究及基于质粒的疗法。
本发明的质粒组合物可以包括任意类型具有任意尺寸的载体。例如,可以由本文描述的方法纯化的质粒DNA的尺寸范围可以为从约0.3kbp(小环或者最小的转录单位)到约50kbp,典型地3kbp到20kbp,或者更大(例如5到100kbp,或者更大,如得自噬菌体的穿梭载体、HAC、YAC、MAC及得自EBV或者其他的非整合病毒的游离体)。在某些实施方案中,所述DNA包括约0.3kbp、0.5kbp、0.75kbp、1kbp、3kbp、5kbp、10kbp、15kbp或者20kbp的载体骨架,治疗性的基因以及相关的调节序列。这可以应用于单链DNA(即0.3kb到50kb等等,如得自M13的那些)。因此例如,载体骨架可以能够携带约1-50kbp或者更大(例如3-20kbp)或者约1-50kb,或者更大(例如3-20kbp)的插入物。该插入物通常地取决于该质体组合物将用于的应用。对于基因疗法或者基于疫苗的应用,例如,该插入物可以包括来自任何生物体的DNA,然而典型地为哺乳动物来源的,并除了编码治疗蛋白的基因之外,可以包括调节序列(如启动子)、聚腺苷酸化序列、增强子、基因座控制区等等。编码治疗蛋白的基因可以为基因组来源的,并从而含有如在其基因组组织中所反映的外显子及内含子,或者其可以得自互补的DNA。该载体可以包括,例如能以高拷贝数量复制的载体骨架,所述骨架对于治疗基因的插入具有多聚接头,编码可选择标记物的基因(例如四环素或者卡那霉素抗性基因),并且其在物理上是小的及稳定的。所述质粒的载体骨架有利地允许哺乳动物片段、其他真核的、原核的或者病毒DNA的插入,并且所得的质粒可以按照本文描述地纯化,并用于体内或者离体的基于质粒的疗法或者其他应用。所述质粒组合物可以还包含其他药学上可接受的组分,缓冲剂、稳定剂或者用于改进基因转移以及特别是质粒DNA转移进入细胞或者生物体的化合物。
通常,本文提供“超净”质粒DNA组合物。典型地,所述质粒DNA组合物为革兰氏阴性细菌质粒DNA组合物。如本文所描述的,开发了有效的基于酶促的方法,其使得荚膜异多糖酸污染从多种细菌材料中去除,所述细菌材料如质粒DNA样品。在不同的实施方案中,所述方法的第一步可以涉及检测作为污染源(如质粒DNA污染)的荚膜异多糖酸。这可以直接或者间接地实现,例如,通过测试样品中岩藻糖的存在(如下所述),这是由于已知岩藻糖占荚膜异多糖酸的约22%。
在一个实施方案中,所述质粒DNA组合物为革兰氏阴性细菌质粒DNA组合物,其包含革兰氏阴性细菌质粒DNA以及少于约0.1mg每毫克的革兰氏阴性细菌质粒DNA的荚膜异多糖酸。在该实施方案中更优选地,所述组合物包含少于约0.05mg每毫克的革兰氏阴性细菌质粒DNA的荚膜异多糖酸。在一个尤其优选的实施方案中,所述革兰氏阴性细菌质粒DNA组合物不包含可检测的荚膜异多糖酸。
如本文另外记载的,本发明的所述质粒DNA组合物也优选地包括低水平的或者不可检测的水平的其他多糖污染物,如糖醛酸或者岩藻糖。因此,在一个实施方案中,所述革兰氏阴性细菌质粒DNA组合物包含少于约0.1mg每毫克的革兰氏阴性细菌质粒DNA的糖醛酸。在该实施方案中更优选地,所述革兰氏阴性细菌质粒DNA组合物包含少于约0.05mg每毫克革兰氏阴性细菌质粒DNA的糖醛酸。优选地,在所述的质粒DNA组合物中不能发现可检测的糖醛酸。
在这些和其他实施方案中,所述革兰氏阴性细菌质粒DNA组合物优选包含少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的岩藻糖。在该实施方案中更优选地,所述革兰氏阴性细菌质粒DNA组合物包含少于约0.05mg每毫克革兰氏阴性细菌质粒DNA的岩藻糖。优选地,在所述的质粒DNA组合物中不能发现可检测的岩藻糖。
组合来说,所述革兰氏阴性细菌质粒DNA组合物可以包含少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的荚膜异多糖酸,以及少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的糖醛酸。例如,所述革兰氏阴性细菌质粒DNA组合物可以包含0.05mg每毫克革兰氏阴性细菌质粒DNA的荚膜异多糖酸,以及少于约0.05mg每毫克革兰氏阴性细菌质粒DNA的糖醛酸。优选地,在所述革兰氏阴性细菌质粒DNA组合物中不存在可检测的荚膜异多糖酸以及可检测的糖醛酸。
按照另一种组合,所述革兰氏阴性细菌质粒DNA组合物可以包含少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的荚膜异多糖酸,以及少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的岩藻糖。例如,所述革兰氏阴性细菌质粒DNA组合物可以包含每毫克革兰氏阴性细菌质粒DNA的0.05mg的荚膜异多糖酸,以及少于约0.05mg每毫克革兰氏阴性细菌质粒DNA的岩藻糖。优选地,所述革兰氏阴性细菌质粒DNA组合物中不存在可检测的荚膜异多糖酸以及可检测的岩藻糖。
在再另一个组合中,所述革兰氏阴性细菌质粒DNA组合物可以包含少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的荚膜异多糖酸,少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的糖醛酸,以及少于约0.1mg每毫克革兰氏阴性细菌质粒DNA的岩藻糖。例如,所述革兰氏阴性细菌质粒DNA组合物可以包含0.05mg每毫克革兰氏阴性细菌质粒DNA的荚膜异多糖酸,少于约0.05mg每毫克革兰氏阴性细菌质粒DNA的糖醛酸,以及少于约0.05mg每毫克革兰氏阴性细菌质粒DNA的岩藻糖。优选地,在所述革兰氏阴性细菌质粒DNA组合物中不存在可检测的荚膜异多糖酸、可检测的糖醛酸以及可检测的岩藻糖。
除了前述的荚膜异多糖酸、糖醛酸和/或岩藻糖的减少的水平,本文描述的质粒组合物可以也包括,例如,少于0.01mg每毫克革兰氏阴性细菌质粒DNA的染色体DNA或者基因组DNA、RNA、蛋白质和/或内毒素污染物;更优选地,所述组合物包括每毫克革兰氏阴性细菌质粒DNA的少于0.001mg,少于0.0001mg或者少于0.00001mg的染色体DNA或者基因组DNA、RNA、蛋白质和/或内毒素污染物。在一个实施方案中,例如,所述质粒组合物可以包含少于0.1mg(更优选地少于0.05mg,再更优选地无可检测的量)每毫克革兰氏阴性细菌质粒DNA的荚膜异多糖酸,以及少于0.01mg(更优选地少于0.001mg,再更优选地0.0001mg)每毫克革兰氏阴性细菌质粒DNA的宿主细胞染色体DNA或者基因组DNA污染物。所述质粒组合物可以还包含每毫克革兰氏阴性细菌质粒DNA组合物的少于0.1mg(更优选地少于0.05mg,再更优选地无可检测的量)的荚膜异多糖酸,以及每毫克革兰氏阴性细菌质粒DNA的少于0.01mg(更优选地少于0.001mg,再更优选地0.0001mg)的宿主细胞蛋白污染物。
用于检测荚膜异多糖酸、糖醛酸、岩藻糖以及其他多糖的水平的测试在本领域内为公知(或者本文所描述);检测可能存在于质粒组合物中的染色体DNA或者基因组DNA、RNA、蛋白质和/或内毒素的方法也是本领域公知的。
在一个实施方案中,例如,本发明的质粒组合物可已包括每mg的革兰氏阴性细质粒DNA的少于0.1mg,优选地少于0.05mg的荚膜异多糖酸(例如,0.04、0.03、0.02或者0.01mg),更优选地不含有可检测的荚膜异多糖酸,其按照二喹啉甲酸(BCA)测试进行测量。适用的BCA测试描述于例如Meeuwsen等人的Biosci.Bioeng.89,107-109(2000);以及Verhoef等人的Carbohyd.Res.340(11),1780-1788(2005)中。示例性的用于测量荚膜异多糖酸水平的BCA测试见于实施例16。
在另一个实施方案中,所述质粒组合物可以包括荚膜异多糖酸,其水平列举于前段中,以及进一步地包含每mg的革兰氏阴性质粒DNA的少于约0.1mg的,优选地少于约0.05mg的糖醛酸(如0.04、0.03、0.02或者0.01mg),以及更优选地按照糖醛酸测试没有可检测的糖醛酸。通常地,质粒DNA样品的糖醛酸含量使用标准曲线进行测量,所述标准曲线由硫酸肝素或者葡萄糖醛酸作为标准获得。例如,硫酸肝素类似于来自E.Coli的多糖污染物,这是由于糖醛酸包含约25%的硫酸肝素总重。硫酸肝素按重量50%由糖组成。这些糖的半数为葡萄糖胺,糖的另外一半为艾杜糖醛酸以及葡萄糖醛酸,剩下的硫酸肝素由糖的修饰提供,所述修饰包括硫酸酯以及乙酰胺。可选地,葡萄糖醛酸可以用于产生用于直接测量糖醛酸的标准曲线。标准溶液置于玻璃试管中,所述玻璃试管具有硼酸盐/硫酸溶液(例如0.025M四硼酸钠十水合物,其溶解于具有1.84的比度的硫酸中)并进行混合。将咔唑的纯乙醇溶液加入混合物中,所述整个混合物进行涡旋震荡并浸没于沸水中。将试管冷却,并在分光光度计中读出所述溶液在530nm的吸收。将获得的标准的吸收值对标准的浓度进行作图。当DNA样品经历相同的反应时,质粒DNA样品的糖醛酸含量可以从其在530nm处的吸收值进行推断。质粒DNA样品的多糖含量可以随后通过将糖醛酸的量加倍进行推断,所述加倍的倍数从3.3到9.1(取决于样品中荚膜异多糖酸、ECA以及O-和K-抗原的普遍性)。示例性的用于测量糖醛酸水平的糖醛酸测试见于实施例16。
在另一个实施方案中,所述质粒组合物可以包括前述段落中所列举水平的荚膜异多糖酸和/或糖醛酸,并进一步包含每mg的革兰氏阴性质粒DNA的少于约0.1mg,优选地少于约0.05mg的岩藻糖(例如0.04、0.03、0.02或者0.01mg),以及更优选地没有可检测的岩藻糖,其按照岩藻糖测试进行测量。用于样品中的岩藻糖含量的测试的基本步骤可见于Morris,Anal.Biochem.121,129-134(1982)。溶液制备及溶液储存条件以及用于此测试的样品的详细描述也已经公开(Passonneau,J.V.和O.H.Lowry.1974.In:Methodsof Enzymatic Analysis,U.H.Bergmeyer(ed.),2nd edition,Academic Press:NewYork,volume4,pp.2059-2072)。使用这种方法,测定了所述质粒DNA样品的岩藻糖水平,并计算了荚膜异多糖酸水平的浓度。如本文别处描述的,发现荚膜异多糖酸是多种来源的质粒DNA中的首要污染物,所述质粒DNA甚至是GMP级别的质粒DNA。示例性的用于测量岩藻糖水平的岩藻糖测试见于实施例16。
在这些以及其他的实施方案中,所述革兰氏阴性质粒组合物当与多糖选择性标记试剂组合时,优选地不包含可视觉检测的多糖。通常地,多糖可视化测试涉及将多糖使用荧光试剂标记,然后检测其存在,例如,在电泳介质中。优选地,该试剂与本文描述的质粒组合物组合时没有可检测的多糖。在一个实施方案中,所述多糖选择性标记试剂为(4,6-二氯三嗪基)-氨基荧光素(DTAF)。其他的多糖选择性标记试剂是已知的,或者对于本领域技术人员是明显的。示例性的利用多糖选择性标记试剂的测试见于实施例16。
此外,本文描述的荚膜异多糖酸降解方法导致质粒DNA组合物的粘度降低。相应地,通过将与处理的质粒DNA组合物的粘度与未处理的质粒DNA样品的粘度相比,可以检测荚膜异多糖酸的存在。示例性的利用质粒DNA的粘度水平的测试见于实施例16。
通常地,随着存在于质粒组合物中的荚膜异多糖酸的水平(和/或糖醛酸、岩藻糖或者其他多糖或者其他污染物的水平)降低,该质粒组合物的LD50(对于50%的试验种群致死的剂量)上升。例如,通过减少荚膜异多糖酸的水平到每mg革兰氏阴性细菌质粒DNA的少于0.1mg,在一个实施方案中,质粒组合物的相应的LD50上升至少25%;更优选地,在本实施方案中,至少50%。通过进一步地降低荚膜异多糖酸(以及其他多糖)的水平,并且可选地类似地减少其他污染物的水平,所述污染物如染色体DNA或者基因组DNA、RNA、蛋白质和/或内毒素,所述质粒组合物的相应的LD50可能上升至少50%,至少75%或者至少100%。作为另一个实例,通过降低荚膜异多糖酸的水平到每mg的革兰氏阴性细菌质粒DNA的少于0.5mg,以及将染色体DNA或者基因组DNA、RNA、蛋白质和/或内毒素污染物的水平降低到每mg的革兰氏阴性细菌质粒DNA的少于0.01mg,所述质粒组合物的相应LD50上升至少50%,更优选地在本实施方案中为至少100%。
一般而言,本发明的质粒组合物可能用于广泛的应用中,举几个例子来说,包括以下的那些领域:生物恐怖(试剂检测和分析)、环境科学(如农业、园艺学以及林学),食品科学、法医学、分子生物学、健康及医学(例如基因疗法、诊断、重组蛋白表达)以及空间科学。本文描述的高纯质粒组合物可以用于体内或者离体,例如用于基因疗法和基于疫苗的应用(即所述质粒组合物可以给予哺乳动物,包括人类)。除此之外地,或者可选地,所述质粒组合物可以用于常规的诊断以及法医技术中,例如,用于改进此类方法学的稳定性、特异性、可再现性和/或灵敏性。这可以包括例如得自环境的样品的分析、检测或者检查,例如来自公共供水系统,来自食品的样品以及来自其他生物学或者临床的样品,所述样品如血、唾液、痰、精液、颊部涂片、尿或者粪便废物,细胞及组织的活组织检查以及微解剖,羊水或者植物、动物或者人类患者的组织匀浆,等等。本文描述的质粒组合物的应用的其他实例包括微生物基因分型,植物及动物的DNA指纹图谱,泥土、水、植物及动物中病原体及有益微生物的检测,被不同的生物实体污染的生物样品及环境样品的法医鉴定,以及分子学研究,如,例如建立染色体、转录信息的分析、X-射线晶体学以及DNA结构研究。所述的质粒组合物也可以用于与固体基质芯片连接或者组合使用的形式,除其他之外,其检测基因、突变或者mRNA表达水平,如核酸微阵列以及分子检测芯片,其采用如荧光、放射能力、光学干涉测量法、拉曼光谱、半导体或者其他的电子学(参见如美国专利No.7,098,286;美国专利No.6,924,094以及美国专利No.6,824,866(其各个在此结合作为参考))。
方法
如本文别处描述的,本发明的多肽可以在广泛范围的方法中应用,尤其是涉及、要求或者受益于荚膜异多糖酸的消化或者降解的那些方法,所述荚膜异多糖酸典型地为生物材料中的,如细菌样品或者包含细菌大分子的组合物(如含水的组合物)。一般来说,含有不期待的荚膜异多糖酸的生物材料可以使用本文描述的多肽处理,所述生物材料包括生物膜(即包裹在自行产生的聚合物基质中的微生物的构造的群体,其或者粘附于活的或者无生命的表面,或者其独自存在)、细菌裂解物、质粒DNA等等。
本文描述的方法通常涉及生物材料中或者在包含生物材料的组合物中的荚膜异多糖酸的降解。通常地,所述方法使用本文描述的多肽,用于消化或者降解可能存在于材料中的荚膜异多糖酸。本文描述的方法的一个实施方案涉及,例如来自生物材料的荚膜异多糖酸的消化。可选地,该方法可以涉及含水组合物中荚膜异多糖酸的消化,所述含水组合物含有细菌大分子。作为另外可选的,所述方法可以涉及使用多肽处理含水的组合物以消化荚膜异多糖酸,所述组合物包含质粒DNA。
使用多肽来消化存在于样品中的荚膜异多糖酸;因此,所述多核苷酸具有荚膜异多糖酸降解活性,或者为荚膜异多糖酸降解酶。在一个特定的实施方案中,该方法涉及在生物材料中消化,以及该方法包括使生物材料与多肽接触,所述多肽能够消化荚膜异多糖酸。所述生物材料可以为例如粗细菌裂解液,部分地纯化的细菌裂解液以及含有提取的细菌核酸(如革兰氏阴性质粒DNA)的含水溶液。可选地,所述生物材料可以为细菌粘液。作为另外可选的,所述生物材料可以为生物膜,所述生物膜包含革兰氏阴性细菌。在另一个可选的实施方案中,所述细菌材料可以存在于浆粕(例如木或者纤维浆粕)组合物、溶液或者混合物中。在另一个实施方案中,该方法涉及从含水组合物中去除内毒素,所述组合物含有细菌大分子,并且该方法包括消化该含水组合物中的荚膜异多糖酸,以及随后将该含水组合物与层析材料组合,以从细菌大分子中分离内毒素。在一个优选的实施方案中,所述方法涉及纯化质粒DNA,如革兰氏阴性细菌质粒DNA,并且所述方法包括使用多肽处理含有质粒DNA的含水组合物以消化荚膜异多糖酸,并将质粒DNA从处理的含水组合物中分离,例如使用常规的层析技术。在下文描述的一系列的工业方法中也可以采用所述多肽。
在特定的方面,已经开发了用于从质粒DNA样品中去除污染性多糖的方法,其使得多糖的去除成为可能,包括从质粒DNA样品中去除包括LPS之外的那些。除此之外,RNA及LPS也从所述质粒DNA样品中去除。因此,本发明的方法导致了纯化的质粒DNA,如下所述,其含有极低的以及在多个情况下不可检测水平的多糖。不像前述的方法无法确定污染性多糖的水平,可以进行特定步骤来对DNA样品中的多糖水平定量,从而使得研究者能够确信多糖从DNA样品的去除。
总的来说,可以采用本文描述的任意多肽。例如,所述多肽可以包含与SEQ ID NO:1具有至少90%同源性的氨基酸序列,或者所述多肽可以包含与SEQ ID NO:2具有至少90%同源性的氨基酸序列。在一个特定实施方案中,所述多肽具有SEQ ID NO:1的氨基酸序列。在另一个特定实施方案中,所述多肽具有SEQ ID NO:2的氨基酸序列。
对于本文描述的特定方法的起始物料为大量的细菌材料,或者含水组合物,其包含该生物材料,如细菌细胞或者其他细菌物质,其通过例如发酵或者细胞培养、从环境中分离或者得自组织或者其他生物体(如真菌、细菌等等)制备。在一个实施方案中,所述生物材料包括得自肠细菌的细菌细胞,所述肠细菌如E.Coli。在另一个实施方案中,所述生物材料为细菌粘液,根据此实施方案中,例如,荚膜异多糖酸存在于细菌的细胞膜中。在一个优选的实施方案中,所述生物材料为革兰氏阴性细菌质粒DNA材料。
多种细胞类型可以用作本文描述的方法的原料,如细菌(例如革兰氏(-)、革兰氏(+)以及古细菌)、酵母以及其他的原核及真核细胞,包括哺乳动物细胞和重组细胞。在这些以及其他的细胞类型中,细菌细胞,以及尤其优选革兰氏阳性(+)以及革兰氏阴性(-)细菌细胞,如E.coli、沙门氏菌或杆菌,而革兰氏阴性(-)细菌细胞为最优选的。在特定的实施方案中,所述细菌为革兰氏阴性(-)细菌,在本实施方案中更优选的细菌为E.Coli.根据本文描述的方法,E.Coli宿主株是有用的,所述宿主株具有广泛选择的并是广泛接受的,同时所述宿主株除了其他商业来源,可得自Stratagene(LaJolla,CA),Qiagen(Valencia,CA),New England BioLabs(Ipswich,MA)以及Promega(Madison,WI)。
典型地,所述生物材料为细菌裂解液,或者其衍生物。因此,细菌的起始物料(如细菌细胞等等)必须裂解或者瓦解以形成裂解物。总而言之,细菌裂解步骤涉及用于打开细菌细胞的任意常规方法,从而将核酸及其他细胞组分从中释放出来。所述裂解步骤可能涉及机械方法、裂解试剂或溶液,或其组合的使用。
对于得自发酵或者细胞培养的生物材料,所述细胞使用如下所述的化学的或者机械的技术瓦解,从而形成粗裂解液。例如,采用细菌培养时,将细菌细胞裂解,从而形成粗细菌裂解液。通过这些操作,细胞组分从细胞中释放,所述细胞组分包括DNA、RNA、蛋白质、荚膜异多糖酸以及其他多糖。在特定的实施方案中,所述裂解液可能经历预处理的步骤,如纯化步骤,以去除细胞污染物以及内毒素,从而形成部分纯化的(如细菌的)裂解液。
当使用裂解试剂时,裂解试剂用于破坏细胞膜,从而使DNA、RNA以及蛋白质从细胞中释放。一种优选的裂解试剂包括碱性溶液。在常规碱性裂解步骤中可以采用多种碱,包括,例如,氢氧化盐,如氢氧化钾(KOH)、氢氧化锂(LiOH)或者氢氧化钠(NaOH)。典型地,所述碱为氢氧化钠。通常,在裂解溶液中采用去污剂,其单独使用或者与碱性溶液组合使用。一般而言,以及取决于其应用,所述去污剂可以为阳离子的、阴离子的、非离子的或者两性离子的去污剂或者其组合。一种示例性的阴离子去污剂为十二烷基硫酸钠(SDS)。一种示例性的两性离子的或者非离子的去污剂为Tween20。
用于裂解细菌细胞的机械方法包括搅拌,超声,离心,冷冻/解冻,弗氏细胞压碎器等等,其单独使用或者与裂解溶液及试剂组合使用。
用于裂解细菌细胞并释放和提取蛋白质及核酸的碱性裂解以及机械技术通常是公知的,并且描述于如前文的Sambrook等人的。
在一些实施方案中,可能期待形成澄清的裂解液制备物,其中宿主细胞的染色体DNA、蛋白质以及膜部分已经至少部分地去除了,如通过裂解液的化学处理或者离心,从而留下含有质粒DNA的溶液。可选地可以在步骤中不同的点加入RNA酶,以产生澄清的、基本上不含RNA的裂解液。如本文另外地记载的,开始多种细胞的和核酸污染物的去除可以改进荚膜异多糖酸的消化和/或质粒DNA使用常规层析技术的进一步的纯化。产生澄清的裂解液的方法在本领域内公知。例如,可以通过使用氢氧化钠或者其等价物(0.2N)以及十二烷基硫酸钠(SDS)(1%)来处理宿主细胞,离心并丢弃上清液。产生澄清的裂解液的此方法通常描述于,例如Burnboim等人的Nucl.Acids Res.,7,1513(1979);以及Horowicz等人的Nucl.Acids Res.,9,2989(1981)。
对于许多用途,例如治疗用途如用于基因疗法或者疫苗的形成,可能期待在样品与荚膜异多糖酸降解多肽接触之前或之后,进一步纯化得自细菌或者其他裂解液的核酸。
在如前所述形成细菌裂解液之后,在使用所述多肽尝试消化荚膜异多糖酸之前,通常优选地使粗裂解液经过分离技术,以消除至少部分的存在的其他核酸、蛋白质以及细胞污染物。因此,在一个实施方案中,例如,在使用多肽处理之前,将含有生物物质的材料或者组合物与离子交换层析材料组合。典型地,所述层析材料为阴离子交换层析树脂。在优选的实施方案中,所述阴离子交换层析树脂包括二乙基氨基乙基纤维素(DEAE)。一般来说,常规的DNA,包括质粒DNA,可以采用清除技术。
生物材料也可以在使用多肽处理后与层析材料组合。这通常地涉及亲和层析和/或疏水相互作用层析。在特定的实施方案中,生物材料或者含水组合物与阴离子交换层析树脂组合,使用多肽处理,与亲和层析树脂组合,与疏水相互作用层析树脂组合,并经历过滤,以该顺序。
一旦所述生物材料经过裂解或者制备,该材料使用本文描述的多肽处理。典型地,处理涉及使多肽与生物材料接触或者混合,从而该多肽到达该材料或者组合物中存在的荚膜异多糖酸底物。优选地,将所述生物材料及所述多肽孵育,以使所述酶以及荚膜异多糖酸底物之间能够充分地相互作用。典型地,该孵育可以持续1到6个小时,6到12个小时,12到24个小时,或者更长,其取决于所消化的样品的尺寸,所使用的多肽的量,以及环境因素,所述环境因素如温度、气氛等等。该孵育通常在0°C至100°C的温度下进行,更优选地在25°C至75°C(例如30°C至50°C)。在一些实施方案中,可以期待在孵育过程中改变温度,例如在较冷的温度下开始该孵育,并随后在剩余的孵育循环中升高温度,或者反过来。
如前文所记载的,通常期待在使用本发明的多肽处理之前或者之后,纯化所述生物材料或者含有生物材料的含水组合物。一般来说,这可能涉及使所述材料或者组合物经历一个或者多个层析方法或者进行过滤。在一个实施方案中,采用层析分离的组合。因此例如,可以在该方法中的不同时间将所述生物材料或者组合物与层析材料组合。适用的层析材料包括,例如,除了一系列其他的之外,离子交换层析树脂(例如阴离子交换层析树脂以及阳离子交换层析树脂)、疏水相互作用层析树脂以及亲和层析树脂。在一个实施方案中,所述层析材料选自阴离子交换层析树脂,阳离子交换层析树脂,疏水相互作用层析树脂及亲和层析树脂。
如前文所记载的,所述生物材料或者组合物可以在使用多肽处理之前或之后,或者处理之前以及之后与层析材料(或者多种层析材料)组合,其采用单次的或者多次层析分离。例如,所述样品可以与层析材料组合,使用本文描述的多肽处理,然后经历第二次(或者第三次、第四次、第五次等等)层析步骤。除此之外,所述样品可以经历常规的过滤技术,从而进一步地纯化或者从所述样品中去除污染物。所述过滤步骤可以在所述方法中相对早地进行,例如在使用酶处理之前,或者在所述方法中更晚地进行,例如作为最终产品的储存或者使用之前的最终过滤步骤。
在另一个方面,因此,本发明的方法包括能够降解存在于细菌裂解样品中的荚膜异多糖酸的多肽的用途,所述用途为至少一个额外的层析技术之前或者之后。所述额外的层析步骤可以可选地存在,或者典型地作为一个或多个最终的纯化步骤存在,或者至少在样品或者质粒纯化方案的结尾或者接近结尾存在,或者在荚膜异多糖酸消化步骤之前。因此,优选一次或者多次离子交换层析、亲和层析(如硼酸盐亲和层析)、疏水相互作用层析以及过滤与所述荚膜异多糖酸降解步骤结合。其他的技术可以包括凝胶渗透或者尺寸排阻层析、羟磷灰石(I型和II型)层析以及反相层析。一般来说,任意可用的涉及核酸分离的层析步骤以能改变以应用。除此之外,任一个或者多个步骤或者技术中可以采用高效层析技术或者系统。因此,本发明的方法包括荚膜异多糖酸消化步骤,所述步骤具有一个或者多个离子交换层析步骤,并可以进一步包括亲和层析、疏水相互作用层析或者凝胶渗透层析和/或过滤(如切向流过滤(TFF)或者尺寸排阻过滤)。离子交换层析的步骤,例如可以用于流化床离子交换层析以及轴向和/或径向高分辨率阴离子交换层析中。在一个优选的实施方案中,在荚膜异多糖酸降解步骤之前进行离子交换层析,从而去除可能妨碍酶与底物相互作用的颗粒。
本发明在此描述的方法,例如用于纯化质粒DNA的方法,是可扩展的,并因此可以修改放大到大规模生产。
在本发明的一些实施方案中,荚膜异多糖酸降解步骤可以与额外的纯化步骤组合,以产生含质粒DNA的高纯度产品。其可以例如,与至少一种絮凝物去除(如裂解液过滤、沉降或者离心)、离子交换层析(如阳离子或者阴离子交换)以及疏水相互作用层析组合。在一个实施方案中,所述荚膜异多糖酸降解步骤在离子交换层析之后。在这些以及其他的实施方案中,所述荚膜异多糖酸降解步骤在疏水相互作用层析之前。在优选的实施方案中,细菌裂解之后为离子交换层析,离子交换层析之后为亲和层析(例如,使用硼酸盐或者其他的连二醇或者顺式二醇特异的化合物),其随后为疏水相互作用层析。在一个或者多个这些步骤之后或者之间,可以使样品经历过滤,例如切向流过滤。这些步骤使得可真实地扩展的质粒生产方法成为可能,该方法能够产生大量的具有高纯度水平的质粒DNA。宿主细胞DNA及RNA、蛋白质、内毒素及荚膜异多糖酸污染物优选地为不可检测的。
如前文所记载的,本发明的方法也可以使用进一步的步骤,所述步骤为尺寸排阻层析(SEC)、反相层析、羟磷灰石层析和/或其他可用的层析技术、方法或者系统,根据本申请,以上与本文描述的步骤相组合。
可以采取絮凝物去除步骤,从而为所得到的质粒DNA产物带来更高的纯度。该步骤可以用于去除一大部分的沉淀材料(絮凝物)。一种实施絮凝物去除的机理是通过裂解液过滤步骤,如通过1到5mm,优选地3.5mm的栅格过滤器,随后以深层过滤作为精制过滤步骤。实施絮凝物去除的其他方法为通过离心或者沉降。可选地,所述絮凝物可以通过离子交换层析去除。
因此,在内毒素去除和/或质粒DNA纯化过程中的不同时间,可以使样品经历一次或者多次离子交换层析(如阴离子或者阳离子交换层析)、亲和层析、疏水相互作用层析以及过滤(如通过0.2μm和/或0.45μm的滤器过滤)以及可选地,过滤或者经历层析方法第二次、第三次或者第四次或者更多次。
因此,例如,可以使所述样品经受第一次层析材料,使用多肽处理,经受第二次层析材料,然后经受第三次层析材料。该样品也可以在该顺序的不同时间进行过滤,例如在第一次层析分离之后,或者在第三次层析分离之后。应当认识到,使所述样品经受第一次层析材料也涉及将想要的样品的部分(例如含有纯化的质粒DNA的部分)从层析材料上洗脱,并丢弃样品不想要的部分。取决于所述层析材料的性质,想要的部分可能留在层析材料中并在不同的步骤中洗脱,而不想要的材料在该材料上流过,或者不想要的材料可能留在层析材料中而想要的部分在该层析材料上流过。
在上述过程的不同位置,有利地对核酸产量和纯度进行分析测定。典型地,该测试在各个纯化步骤之前和之后对例如来自制备型离子交换层析或者过滤的各个含有核酸的组分进行。进行这些分析测定的代表性方式包括纯度的HPLC分析、产量的分光光度法测定,用于蛋白质分析的银染以及SDS-PAGE以及用于DNA分析的琼脂糖凝胶电泳以及DNA印迹。在特定的实施方案中,本文描述的方法产生纯化的浓度,其中质粒DNA浓度(包括例如主要为超螺旋的或者其他的质粒DNA)为大约70%,75%,80%,85%,90%,95%以及优选地99%,或更大。
除此之外,通常也期待分析测定中间产物以及最终产物中多糖的存在,所述多糖如荚膜异多糖酸、糖醛酸和/或岩藻糖。对于荚膜异多糖酸及其他的多糖适用的测试本文另外描述(例如在实施例16中)。
下文中进一步地详细描述了特定的层析以及过滤技术。
离子交换层析。
如前文所记载的,离子交换层析可以用于在使用多肽处理之前或者之后纯化所述生物样品。该方法通常地在生物裂解液中或者裂解液衍生物中,将核酸例如质粒DNA从污染性内毒素、痕量蛋白质及残留的细胞污染物中分离。阳离子或者阴离子交换可以选用,其取决于污染物的性质以及溶液的pH。例如,阴离子交换层析通过将负电性的(或者酸性的)分子结合于正电性的支持物上起作用。离子交换层析的应用,随后,使得分子能够基于其电荷而被分离。分子的各种类(酸性、碱性以及中性)可以容易地通过该技术分离。可以采用分步的洗脱方案,其中多种污染物在早期组分中洗脱,而所述质粒DNA在随后的组分中洗脱。离子交换层析对于从质粒DNA制备物中去除蛋白质以及内毒素是相对地常见的方法。使用的所述离子交换层析或者任意一种或者更多种其他层析步骤或者技术可以采取固定相、置换层析法方法、模拟移动床技术和/或连续床柱或系统。
能够用于本发明的方法中的离子交换柱包括阳离子以及阴离子离子交换柱。在更优选的实施方式中,所述离子交换层析材料为阴离子交换层析树脂。例如,所述阴离子交换层析材料树脂可以包括二乙基氨基乙基纤维素(DEAE)、三甲基氨基乙基(TMAE)、季氨基乙基(QAE)或者聚乙基亚胺基(PEI)树脂。在一个实施方案中,所述阴离子交换层析树脂包括DEAE。在另一个实施方案中,所述阴离子交换层析树脂包括季铵树脂。例如,可以使用一种或者多种本文描述阴离子交换层析树脂填充层析柱。柱的最优容量按照经验,基于所使用的树脂以及纯化的核酸的大小决定。对于多种质粒DNA,优选的树脂为没有孔的或者具有大的孔尺寸的(例如大于
Figure BDA00002748883000241
优选地约
Figure BDA00002748883000242
Figure BDA00002748883000243
),具有中等的珠子尺寸的(例如,约20到500μm的直径),其不浸出基质组分的那些。理想地,该树脂是可洗涤的,如使用氢氧化钠洗涤,从而允许重复的使用。
也可以使用相对弱的阳离子及强的阳离子交换柱。相对强的阳离子交换柱典型地具有聚羟基化的聚合物涂布的、并通过丙磺酸基、由丙磺酸基功能化的葡聚糖基质功能化的表面,或者具有聚羟基化的聚合物涂布的表面,所述聚羟基化聚合物由乙磺酸基功能化。使用各个的这些材料的强阳离子交换柱的实例除了别的之外,分别包括POROS HSTM、POROS STM以及SP-SephadexTM柱。相对弱的阳离子交换柱典型地具有葡聚糖基质,该基质由羧甲基或者由羟基功能化的丙烯酸基质功能化。使用各个的这些材料的弱阳离子交换柱的实例除了别的之外,分别包括CM-SephadexTM以及Bio-Rex70TM
在本发明的方法中,也可以使用相对弱的阴离子及强的阴离子交换柱。弱的阴离子交换柱典型地具有聚乙烯亚胺(所述聚乙烯亚胺能够表面离子化到pH为约9)、含有磺酸基团的苯乙烯-二乙烯基苯共聚物或者葡聚糖基质(其由二乙基氨基功能化)涂布的表面。使用各个的这些材料的弱阴离子交换柱的实例除了别的之外,分别包括POROS PITM柱、Dowex50TM柱以及DEAE-SephadexTM。相对强的阴离子交换柱典型地具有季铵化的聚乙烯亚胺涂布的表面,其具有离子化的表面,pH为约1到约14。该强阴离子交换柱的实例为POROS HQTM柱或者SOURCETM柱。用于前文列出的柱的树脂可得自Amersham/Pharmacia(Piscataway,N.J.),PerSeptive Biosystems(FosterCity,Calif.),Toso Haas(Montgomeryville,Pa.),GE Healthcare(Piscataway,NJ),以及其他供应商。
典型地,所述样品与存在于柱中的离子交换层析树脂组合。所述柱可以为0.5ml的柱,1.5ml的柱,10ml的柱,20ml的柱,30ml的柱,50ml的柱,100ml的柱,200ml的柱,30ml的柱,400ml的柱,500ml的柱,600ml的柱,700ml的柱,800ml的柱,900ml的柱,1000ml(1L)的柱,2000ml(2L)的柱,20L的柱,30L的柱,40L的柱,50L的柱,60L的柱,70L的柱,80L的柱,90L的柱,100L的柱,或者具有大于100L的体积的柱,以及任意其他具有前面列出的体积之间的容量的柱。
典型地,所述离子交换层析材料在使用前平衡,所述平衡在pH从约6.0到约7.2,以及盐浓度为从约100mM到200mM进行。因此,所述柱可以在pH为约6.0,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2或者任意其他这些pH值之间的pH下,以及在100mM,125mM,150mM,175mM,200mM或其他位于前面列出的盐浓度数值之间的任意浓度下进行。能用于平衡所述层析材料的通常使用的盐包括NaCl,KCl或者其他任意的能够调节到与KCl的离子强度匹配的盐。
对于离子交换层析而言,填充材料以及用于制备该材料的方法,以及制备的过程,聚合及使阴离子及阳离子交换层析功能化,以及从中洗脱及分离质粒DNA在本领域中为公知的。
除此之外,可以使用二价金属离子的螯合剂,如,例如乙二胺四乙酸(EDTA),用于抑制质粒由于DNA降解酶的降解,所述降解酶在大肠杆菌的裂解液中。对于二价金属离子的螯合试剂的浓度优选地为0.1到100mM。
当将目标蛋白质施用到阴离子交换基质上,可以采用任意合适的基质,所述基质包括但不限于氨基乙基、二乙基氨基乙基、四级氨甲基、四级氨乙基、二乙基-(2-羟丙基)氨基乙基、三乙基氨基甲基、三乙基氨基丙基以及聚乙烯亚胺交换剂,从而达到目标蛋白质的过滤。商业上可得的阴离子交换剂的实例包括,纤维素离子交换剂如DE32及DE52(WHATMAN,Florham Park,N.J.),葡聚糖离子交换剂如DEAE-SEPHADEX C-25,QAE-SEPHADEX C-25,DEAE-SEPHADEX C-50以及QAE-SEPHADEX C-50(Pharmacia,Piscataway,N.J.),琼脂糖或者交联的琼脂糖如DEAE BIO-GEL A(BIO-RAD,Hercules,Calif.),DEAE-SEPHAROSE CL-6B以及Q-SEPHAROSE Fast Flow(Pharmacia),合成的有机聚合物如MONO Q(Pharmacia),DEAE-5-PW以及HRLC MA7P(BIO-RAD)以及涂布的二氧化硅基质如DEAE Si5500及TEAPSi100。期待地,所述阴离子交换基质在非常低的盐浓度下平衡,并在碱性pH(例如pH8.0到11.5)下使用,从而促进酸性和弱碱性的污染物的结合。
当将目标蛋白质施用于阳离子交换基质时,预期可以采用使用羧甲基、磺酸盐、磺乙基或者磺丙基基团功能化的任意基质。期待地,所述阳离子交换基质在酸性的pH(例如pH3.0到6.5)平衡和使用以促进碱性和弱酸性的污染物的结合。商业上可得的阳离子交换剂的实例为,基于纤维素的CM23,CM32以及CM52(WHATMAN);基于葡聚糖的CM-SEPHADEX C-25,SP-SEPHADEX C-25,CM-SEPHADEX C-50以及SP-SEPHADEX C-50(Pharmacia);基于琼脂糖或者交联琼脂糖的CM BIO-GEL A(BIO-RAD),CM-SEPHAROSE Fast Flow and S-SEPHAROSE Fast Flow(Pharmacia);基于合成的有机聚合物的MONO S(Pharmacia),SP-5-PW和HRLC MA7C(BIO-RAD),以及涂布的二氧化硅基质,如CM Si300及SP Si100。
所述样品(例如裂解液或者其衍生物,包括核酸)典型地在加载缓冲液中加载到柱上,所述缓冲液包含比核酸从柱上洗脱的浓度更低的盐浓度。一般地说,在特定的实施方案中,所述盐浓度为从约10到50mS,其取决于所使用的树脂。一般地说,对于较弱的阴离子交换树脂,使用较低电导率的溶液,然而对于较强的阴离子交换树脂,使用较高电导率的溶液。所述柱随后使用几个柱容量的缓冲液洗涤,以去除与树脂弱结合的物质。随后,使用根据常规方法,使用平缓连续的盐水梯度从柱上洗脱各组分,所述方法例如使用Tris-HCl缓冲溶液中高达1.5M NaCl。从柱上收集样品组分。对于中等规模的制备而言(例如从约100mg到约3克核酸),组分典型地为至少50ml到2升,其中预期有核酸峰,在预期的峰后的组分中体积增加。核酸产量及纯度的分析测定对一种或者多种组分施行。除此之外,鲎变形细胞溶解物(LAL)测试(例如检测内毒素的脂类A部分)可以对于各个组分施行,从而测定残留的内毒素和/或其他本文描述的测试可以对各个组分实施,从而测定剩余的多糖污染物水平,例如在各个组分中的荚膜异多糖酸或者相关的多糖(如下文所述)。含有高水平的核酸以及低的内毒素或者低的荚膜异多糖酸的组分可以积累或者保持为分开的组分。如下所述,所得到的核酸样品可以再次过滤(例如,通过0.2μm的滤器)或者经历进一步的层析技术,其取决于内毒素及多糖的水平及期待的纯度。
本文公开的离子交换层析材料的支持基质不是严格的,然而,基于葡聚糖、纤维素、交联葡聚糖、合成的有机聚合物、涂布的二氧化硅或者琼脂糖的支持物基质在本领域中是常规的并适于在此的用途。
亲和层析
如前文所记录的,亲和层析能够额外地或者可选地采用,以纯化所述的生物样品。本发明的一个特别的方面涉及使用本文描述的多肽的荚膜异多糖酸降解方法,以及使所消化的材料与亲和层析材料组合,以选择性地去除消化的多糖,如荚膜异多糖酸。尤其优选的亲和层析材料对连二醇或者顺式二醇具有亲和性。在一个特别的实施方案中,所述亲和层析材料为硼酸盐层析树脂,如基于硼酸或者基于硼酸盐的树脂。
在基本的方面,所述亲和层析涉及选择性的吸附剂的制备,所述制备通过使分子共价地固定化在适用的不溶的支持物上,所述分子含有可识别的区域,对于进行分离的靶样品,该区域是特异的。所述固定化的化合物通常指配体,以及公认地所述配体与支持物的偶联必须以不影响其被目标识别的能力的方式完成。在配体及要纯化的目标分子之间的亲和性可以通过使含有样品的样品通过含有选择性吸附剂的柱完成,后者样品包括目标分子。随后通过使用缓冲液洗涤柱完成纯化,所述缓冲液用于将不需要的材料从吸收性基质中释放,随后将吸收的目标分子洗脱。通过将一定体积的生理缓冲溶液,例如pH约7.2的磷酸盐缓冲液通过该柱完成洗涤。在洗涤步骤中所使用的缓冲液的体积不应该大到使目标分子损失的地步,然而从另一方面来说,也不应该有限到不去除杂质的地步。洗脱是将目标分子从柱上去除的步骤,其通过溶剂进行,所述溶剂减少目标分子与配体的亲和性或者配体-靶分子复合物的分子与固体支持物的亲和性。与抗原偶联的抗体的洗脱可以通过盐梯度以改变pH;缓冲的步骤梯度以改变离子强度;或者其他方法完成。
理想的固体支持物或者基质应该具有几个性质,包括大孔性、机械稳定性、容易活化、疏水性以及惰性,也即低的特异性吸收。在这些全部的方面中,没有基质是理想的;基质通常按照经验确定。本领域技术人员通常使用的亲和层析基质包括交联葡聚糖,琼脂糖,聚丙烯酰胺,纤维素,二氧化硅以及聚(甲基丙烯酸羟乙酯)。对于免疫吸附而言,珠状的琼脂糖由于其高的蛋白质吸收能力、高孔性、亲水性、化学稳定性、缺少电荷以及对于非特异性吸收的相对惰性,通常地为本领域技术人员优选的固体支持物。
配体可以物理地吸附到基质上,或者共价地与含有羟基或者氨基的聚合物基质通过双官能的试剂连接。连接通常需要两步:基质的活化和配体与活化的基质的偶联。活化的基质是商业上可得的。将配体偶联到基质上的选择性方法部分地由基质的选择决定,部分地由配体的选择决定。
在用于样品施用的制备中,用于平衡亲和柱的特异性的缓冲条件应该反应所使用的作用体系的特异性质。所使用的缓冲液的性质,包括其pH及离子强度,应该对于所述配体-靶分子体系是最优的。应用于柱的目标样品应该优选地包含于与用于平衡柱一样的缓冲液中。在样品施用以及吸附之后,柱可以使用开始的缓冲液洗涤以去除任何未结合的样品及任何杂质。随后将柱用与开始的缓冲液不同的缓冲液洗涤也是常见的,其用于去除非特异性吸附的物质。
靶分子的洗脱可以通过多种方法完成,其包括但不限于在此所列出的这些。典型地,缓冲液的条件可以变化,从而结合复合物的亲和充分地下降,从而破坏彼此或者与固体支持物的有效结合。这通过改变缓冲液的pH或者离子强度,或者两者,或者通过离液序列高的离子,例如氰酸盐来实现。可以通过梯度洗脱获得增强的分离。适用的洗脱方法包括使用:离液序列高的试剂如KSCN;有机溶剂如乙二醇、DMSO或者乙腈;变性剂,如8M尿素或者6M鸟嘌呤;电泳洗脱;压力引发的洗脱以及金属离子洗脱。不完全的洗脱导致产品的损失以及柱容量的损失。理想地,洗脱条件应该在一个或者两个柱体积通过柱之后,实现产品的完全洗脱。
亲和层析的详细讨论可以见于Handbook of Affinity Chromatography,David S.Hage(ed.)CRC Press(2006)和Affinity Chromatography:A PracticalApproach,编辑为Dean P.D.G.,Johnson,W.S.,Middle,F.A.,AffinityChromatography,Principles and Methods,由Pharmacia出版,(Pharmacia LKBBiotechnology,Uppsala,Sweden),以及Immunoaffinity Purification:BasicPrinciples and Operational Considerations,Yarmush,M.L,等人,(1992)BiotechAdv.,10:412-446。
用于亲和层析的配体在结构上及生物学上与所要纯化的靶分子紧密联系。出于本发明的目的,可以采用任何适用的亲和层析材料及其配体,从而将目标样品(如质粒DNA)结合并洗脱。一般地说,这进行对每个情况特异的配体的选择。
优选地,用于亲和层析材料的配体对于二醇复合物具有特异性,其优选地为连二醇或者顺式二醇。多糖,例如,如荚膜异多糖酸含有连二醇复合物。在特别地优选的实施方案中,所述亲和层析材料为硼酸盐亲和层析材料。硼酸盐亲和柱首先被Weith等人,Biochemistry9,4396-4401,1970用于糖和核酸组分的分离;此后,该技术用于广泛范围的顺式二醇化合物的分离,所述化合物包括核苷、核苷酸、碳水化合物、糖蛋白以及酶。
一般来说,硼酸与顺式二醇之间的作用机理涉及硼酸盐在碱性条件下的羟基化;所述硼酸盐从三角形共面形式变为四面体硼酸盐阴离子,其随后能够与顺式二醇形成酯。所得到的酯可以在酸性条件下水解,从而将此反应逆转。其他的用于制备连二醇的方法描述于Barry等人的,Australian J.Chem.37,(1984);Gable,Organometallics13(6),248688(1994);Liu,J.Microbial Methods29,85-95(1997)Kinrade等人,DaltonTrans.3713-3716(2003);以及Zhao等人的,Analytical Sciences,22(5),747(2006)中。
用于本方法中的亲和层析材料的适用的硼酸盐配体包括,例如3-氨基苯基硼酸(3aPBA),2-(((4-二羟硼基苯基)-甲基)乙基氨基)乙基,2-(((4-二羟硼基苯基)-甲基)二乙基氨基)乙基,p-(ω-氨基乙基)苯基-硼酸盐,聚(对乙烯基苄基硼酸),N-(4-硝基-3-二羟基硼基苯基)琥珀酸,4-(N-甲基)羧酰胺-苄基硼酸),3-硝基-4-羧酰基苄基硼酸,2-硝基-3-琥珀酰胺基-苄基硼酸以及3-琥珀酰胺基-4-硝基苄基硼酸等等。一种优选的硼酸盐配体为3-氨基苯基硼酸(3aPBA).
本文公开的用于亲和层析材料的一类支持物基质包括硼酸盐亲和层析材料,这不是严格的,然而基于葡聚糖、纤维素、琼脂糖、聚丙烯酰胺、二氧化硅、聚苯乙烯以及聚甲基丙烯酸酯的支持基质在本领域中是常规的,并适用于本文应用。硼酸盐亲和基质在多个商家处可以商业上得到,包括例如Sigma-Aldrich Inc.(硼酸凝胶;聚甲基丙烯酸酯支持物)(间氨基苯基硼酸-丙烯酸酯;丙烯酸珠支持物);Bio-Rad(Affi-Gel601;聚丙烯酰胺支持物);Pierce(免疫的硼酸凝胶;聚丙烯酰胺支持物);以及Tosoh(间氨基苯基硼酸-琼脂糖;琼脂糖支持物)(TSKgel硼酸盐-5PW柱;聚甲基丙烯酸酯支持物)。其他提供硼酸及其衍生物的公司包括Denisco(Hyderabad,India)以及SynthonixCorporation(Wake Forest,NC)。
描述于美国专利No.5,969,129(在此以其全文结合作为参考)中的含有硼酸盐基团的聚合物凝胶也可以使用。
用于硼酸盐亲和层析的原理、理论及设备也描述于Boronate AffinityChromatography,Chapter8,pages215-230,Handbook of AffinityChromatography,David S.Hage(ed.)CRC Press(2006)。
疏水相互作用层析法
在采用了疏水相互作用层析(HIC)材料和方法的实施方案中,这些层析方法通常地采用基质上的疏水部分吸引用于纯化的样品中分子的疏水区域。一般来说,HIC支持物要通过聚集效果起效,典型地,当这些分子结合的时候,,没有共价键或者离子键形成或者共享。疏水相互所用层析是有利的,这是由于其至少部分地去除开环的质粒形式以及其他污染物,如基因组DNA、RNA以及内毒素。
出于本发明的目的,可以采用任何适用的疏水相互作用基质,用于目标样品(如质粒DNA)结合并洗脱。该疏水相互作用基质包括,但不限于天然的或者人工的表面,所述表面含有无电荷的基团,如甲基、乙基或者其他烷基基团。这些基团与蛋白质形成疏水键,所述蛋白质通过基质,并导致多核苷酸和/或多肽的分离,该分离基于所述多核苷酸和/或多肽与基质基团之间的相互作用的强度。树脂材料的疏水性程度可以根据培养基中的盐浓度或者洗脱液中的盐浓度而变化。疏水相互作用柱通常地包括基础基质(例如交联的琼脂糖或者合成的共聚物材料),疏水性的配体(如烷基或者芳基)偶联于其上。优选的疏水相互作用层析树脂通常地包括2到20个碳原子长的烷基部分(如4到18个碳原子或者6到15个碳原子),其典型地是未取代的。
用于疏水相互作用层析的基体材料的孔直径通常在500到
Figure BDA00002748883000304
然而其可以在所述的范围内,根据要分离的样品及其组分的分子尺寸进行适当的选择。一般来说,由于核酸在填充材料上的保留以及吸附能力可能根据孔直径变化,优选地对于具有相对地大的分子尺寸的核酸使用具有相对地大的孔直径的基体材料,而对于具有相对地小的分子尺寸的核酸使用具有相对地小的孔直径的基体材料。
疏水相互作用层析可以在低压或者高压下进行,其中所述柱在含水缓冲液的存在下使用相对高的盐浓度(如1.2到1.7M硫酸铵)平衡,并在含水缓冲液的存在下使用相对低的盐浓度(如从1.2M到0.5M降低的硫酸铵梯度)洗脱。因此,多核苷酸以及多肽根据与基质上的疏水基团之间疏水相互作用的不同强度洗脱,也即按照蛋白质疏水性提高的顺序。用于相对低压的应用的商业上可得的疏水相互作用基质的例子包括phenyl SEPHAROSE(Pharmacia)以及丁基、苯基以及醚TOYOPEARL650系列树脂(TosoHaas)。其他的商业上可得的疏水相互作用层析树脂包括Phenyl SEPHAROSE6FAST FLOWTM柱,其具有低度或者高度的修饰(Pharmacia LKBBiotechnology,AB,Sweden);Phenyl SEPHAROSETM High Performancecolumn(Pharmacia LKB Biotechnology,AB,Sweden);Octyl SEPHAROSETMHigh Performance column(Pharmacia LKB Biotechnology,AB,Sweden);FRACTOGELTM EMD Propyl或FRACTOGELTM EMD Phenyl columns(E.Merck,Germany);MACRO-PREPTM Methyl或MACRO-PREPTM t-ButylSupports(Bio-Rad,California);以及WP HI-Propyl(C3)TM column(J.T.Baker,New Jersey).再其他的商业上可得的疏水相互作用层析树脂为可得自Sigma-Aldrich,Inc(St.Louis,MO)的(例如,Butyl-NPR;
Figure BDA00002748883000302
Ether-5PW;
Figure BDA00002748883000303
Phenyl-5PW;其各个及其他可能具有多种颗粒尺寸),GE Healthcare(Piscataway,NJ)(例如,HiScreen Phenyl FF(high or low sub);HiScreen Butyl FF;HiScreen Butyl-S FF;HiScreen OctylFF)。
从疏水相互作用基质的洗脱可以按照分步的或者线性梯度来进行。适用的洗脱缓冲液在现有技术中是公知的。适用的柱的尺寸与离子交换层析材料一起描述于前文。类似地,本文公开的疏水相互作用层析材料的支持物基质不是严格的,然而,基于葡聚糖、纤维素、交联琼脂糖、合成的有机聚合物、涂布的二氧化硅或者琼脂糖的支持物基质在本领域中是常规的并适于在此的用途。
用于疏水相互作用层析的基体材料的合成以及用于制备、聚合及功能化疏水相互作用层析及洗脱和分离如质粒DNA样品的方法在现有技术中是公知的,并尤其描述于美国专利No.6,441,160以及美国专利No.7,169,917中(其各自在此以其全文结合作为参考)。
过滤
根据特定的优选实施方案,也可以进行一次或者多次过滤、超过滤或者渗滤步骤,包括切向流过滤。通过尺寸排阻滤器的过滤可以用于至少部分地去除内毒素及其他污染物,而导致最小程度上的核酸损失。对于多种应用,例如可能期待进一步地纯化样品(如质粒DNA),降低所得的样品的盐浓度,将所述样品浓缩,和/或将缓冲液换为更适宜的缓冲液用于随后应用。对于治疗上的应用,如在基因疗法中的应用,可以期待将得自切向流过滤或者其他步骤的核酸进一步地纯化。
可以进行一次或者多次(开始或最后)的过滤、超过滤或者渗滤,从而通常地获得该结果(或者多种结果)。如果期待,可以将更小的MWCO超过滤膜用于随后的或者最终的渗滤步骤,而不是此前用于开始的纯化,由于核酸典型地在稍后的阶段是高度纯化的,以及主要地小的溶解质分子通过膜进入滤液中。对于多种质粒DNA中,例如,可以使用10,000到100,000MWCO或者更大的膜。具有约100,000MWCO的膜的空纤维设备是常用的,尤其当处理浓缩的核酸溶液时,这是由于更小的滞留容量,增加的流量,更高的产量以及更短的处理时间。根据本领域已知的标准技术,标准的,商业上可得的过滤及渗滤材料适用于此方法中。
细微颗粒尺寸的污染物从流体中的过滤已经通过使用不同的多孔滤器介质完成,污染的组合物通过所述介质,从而滤器留下污染物。污染物的滞留可以通过机械过滤或者电动的颗粒捕获及吸附发生。在机械过滤中,颗粒当其试图通过小于其的孔时,被物理捕获而截留。在电动的捕获机制中,所述颗粒与多孔滤器中的表面碰撞,并通过短程吸引力留在表面上。为了实现电动捕获,可以使用电荷修饰的系统以改变滤器的表面电荷特征(参见例如WO 90/11814)。例如,要去除的污染物为阴离子的时,可以使用阳离子的电荷改性剂来改变滤器的电荷特征,从而使得污染物被滤器截留。
在特定的实施方案中,在过滤之前或者之后,样品使用含有两性离子去污剂的含水溶液进行处理。适用的两性离子剂包括例如EMPIGEN(正十二烷基-N,N-二甲基甘氨酸),
Figure BDA00002748883000312
3-08,
Figure BDA00002748883000313
3-10,
Figure BDA00002748883000314
3-12,
Figure BDA00002748883000315
3-14,
Figure BDA00002748883000316
3-16,CHAPS,CHAPSO以及其他。
在一个优选的实施方案中,所述样品使用切向流过滤进行过滤。用于切向流过滤的原理、理论以及设备描述于Michaels,S.L.等人的,"TangentialFlow Filtration"in Separations Technology,Pharmaceutical and BiotechnologyApplications,W.P.Olson,ed.,Interpharm Press,Inc.,Buffalo Grove,Ill.(1995).为了将样品通过切向流过滤进行过滤及浓缩,例如,通常选择膜,所述膜具有的分子量截留值(MWCO)基本上低于要保留的分子的分子量。一般的规律是选择的膜具有比要保留的分子的分子量低3到6倍的分子量截留值。装载所述膜,将切向流过滤系统初始化(通常地使用水冲洗并测试水过滤的流速及完整性),将样品加入,建立切向流,设置进料及保留压强,并收集滤液。当达到期待的浓度或者体积时,停止该过程并回收样品。
一个优选的过滤方法为使用超过滤膜的渗滤,所述膜具有30,000到500,000MWCO的分子量截留值,这取决于质粒的尺寸。该渗滤步骤使得在浓缩之前可以进行缓冲液交换。如前所述地,典型地使用切向流过滤将洗脱液浓缩3到4倍至目标浓度,其中使用例如30kD的膜截留值,该浓度通过渗滤在恒定的体积下进行缓冲液交换,并调节到到目标质粒浓度。所得的质粒DNA溶液可以随后进一步过滤,例如,通过0.2μm滤器,并典型地分为几个等份,其储存于相对冷的温度(如~0°C)下的容器中,直至进行进一步的处理。
附加地或者可选地,所述滤器可以为结合核酸的,同时允许内毒素及其他的污染物通过所述滤器。一旦不想要的材料通过所述滤器,可以将核酸从滤器上洗脱并收集。
适用的尺寸排阻滤器可得自多个商业来源,其包括例如Ambion(Austin,TX),GE Healthcare(Piscataway,NJ),Gelman(Ann Arbor,Mich.),Pall-Filtron(East Hills,N.Y.),Roche(Basel,Switzerland),Sartorius(Edgewood,N.Y.),以及Thermo Scientific Pierce(Rockford,IL)。所使用的滤器是这样的一种:其结合内毒素及其他污染物而允许核酸通过。已经发现了Pall
Figure BDA00002748883000321
滤器去除几乎全部内毒素而核酸产率高。在一次或者更多次本文描述的层析或者过滤步骤之前,含有核酸的裂解液溶液或者裂解液衍生物也可以预先过滤(如使用0.45μm滤器)。
根据前述的规程纯化的DNA要与脂质载体复合以用于基因疗法时,例如,将DNA交换进入低电导率的缓冲液中可能是期待的,其优选地通过渗滤进行。低电导率的缓冲液意味着包括低于10mS的任意缓冲液,其优选地低于约1mS。
除了前文所述的过滤技术外,也可以采用常规的过滤方法(也即尺寸排阻层析材料)。参见,例如Gel Filtration Principles and Methods,Edition AI,Amersham Biosciences,2002。
本文描述的多肽可以额外地或者可选地用于多种工业上的过程中,所述过程要求或者受益于荚膜异多糖酸或者其他多糖的消化。一般而言,这可能涉及处理机器、产品和/或洗脱管线及产品、中间产物或者带有本文描述的多肽的流出物,从而例如去除或者防止这些工业过程中导致的腐蚀,污垢或者其他的累积。一个特别的实例是生物膜的去除或者预防(例如,那些含有细菌如革兰氏阴性细菌的),所述生物膜可能在过程中或者随着时间形成;生物膜及类似的材料可以使通道及导管变窄或者堵塞,或者增加机器部件或者系统的磨损。可以从本文描述的多肽使用中受益的代表性工业上的过程包括,例如,纸及纤维素制造过程,膜重建以及清洁,循环,水-水处理(如需氧固体及泥渣的消化),石油化学精制及废物修复,高纯度的水过滤及系统,水冷却系统/热交换器,以及食物处理。对于纸或者纤维素处理操作,例如,生物膜可能在中间产物处理液流中形成,其可能不利地影响下游处理和/或影响最终产品的质量。本文描述的多肽可以通过去除、最小化或者预防此类生物膜使该过程受益。
多肽
如前文所记载地,本发明涉及能够降解荚膜异多糖酸的多肽,所述荚膜异多糖酸可在如生物材料中发现。这可以包括如得自细菌的生物膜或者细菌核酸制备物,所述细菌如大肠杆菌,沙门氏菌或者其他的肠细菌,所述制备物如得自大肠杆菌的质粒DNA。本文描述的多肽也有益地使得高纯革兰氏阴性细菌质粒DNA制备物的制备成为可能。
在特定的实施方案中,所述多肽包括大致地对应于SEQ ID NO:1及其保守的氨基酸替换的氨基酸序列。该多肽通常地对应于全长的荚膜异多糖酸降解多肽,所述多肽具有约84,354道尔顿的分子量。一般而言,所述多肽为分离的多肽。在特定的实施方案中,所述多肽分离自细菌来源的生物体,并经过纯化。典型地,多肽具有至少70%的纯度,该纯度更优选地为至少80%,更优选地为至少90%,更优选地为至少95%,更优选地为至少98%,更优选地为至少99%。
本文提供多肽片段。该片段例如当与全长蛋白比较时,可以是在N-端或者C-端截断的,或者可以缺少内部残基。例如,特定片段缺少对于多肽所期待的活性(例如生物的或其他)并非必需的氨基酸残基。在一个特定的实施方案中,所述多肽包含大致地对应于SEQ ID NO:2及其保守氨基酸替换的氨基酸序列。该多肽大致地对应于全长多肽的截短的形式,其中缺少全长多肽(SEQ ID NO:1)的开头的106个氨基酸。
除了本文描述的全长的及截短的多肽,还考虑了可以制备多肽变体,例如通过向多肽DNA中引入合适的核苷酸变化,和/或通过期待的多肽的合成,或者通过分离和纯化具有荚膜异多糖酸降解活性的变体多肽。本领域技术人员应意识到氨基酸的变化可能改变该多肽特定的翻译后加工,如改变糖基化位点的数量或位置或者改变膜锚定的性质。
本文描述的多肽全长和/或截短序列中的或者在各种结构域中的变化可以使用例如任意的技术和准则制造,所述技术及准则用于保守的和非保守的突变,其于文献中列出(例如美国专利No.5,364,934(以其全文在此结合作为参考))。变化可以为替换,删除或者插入一个或多个用于编码多肽的密码子,与天然序列多肽相比,其导致多肽氨基酸序列的变化。可选地,所述变化通过将一个或者多个功能域中至少一个氨基酸替换为任意其他的氨基酸。确定哪个氨基酸残基可以插入、替换或者删除而不会不利地影响期待的活性的指导能通过比较同源蛋白分子的序列与所述多肽的序列,并最小化高同源性的区域内氨基酸序列变化的数量来建立。氨基酸替换可以通过将一个氨基酸用另一个具有类似结构和/或化学性质的氨基酸替换来实现,例如将亮氨酸替换成丝氨酸,即保守的氨基酸替代。插入或者删除可以可选地在约1到5个氨基酸的范围,5到10个氨基酸的范围,10到25个氨基酸的范围,25到50个氨基酸的范围,或者更多,如100个氨基酸或者更多。所允许的变化可以通过以下确定:系统地在序列中产生氨基酸的插入、删除或者替换,然后通过全长的或者成熟的天然序列测试所得到的变体所体现的活性。
如前文所记载的,多肽可以为本文描述的全长的或者截短的多肽的变体。通常,多肽变体与本文公开的全长多肽序列(如SEQ ID NO:1)具有至少约80%的氨基酸序列同一性,可选地至少约81%的氨基酸序列同一性,可选地至少约82%的氨基酸序列同一性,可选地至少约83%的氨基酸序列同一性,可选地至少约84%的氨基酸序列同一性,可选地至少约85%的氨基酸序列同一性,可选地至少约86%的氨基酸序列同一性,可选地至少约87%的氨基酸序列同一性,可选地至少约88%的氨基酸序列同一性,可选地至少约89%的氨基酸序列同一性,可选地至少约90%的氨基酸序列同一性,可选地至少约91%的氨基酸序列同一性,可选地至少约92%的氨基酸序列同一性,可选地至少约93%的氨基酸序列同一性,可选地至少约94%的氨基酸序列同一性,可选地至少约95%的氨基酸序列同一性,可选地至少约96%的氨基酸序列同一性,可选地至少约97%的氨基酸序列同一性,可选地至少约98%的氨基酸序列同一性,以及可选地至少约99%的氨基酸序列同一性。
对于截短的多肽变体而言,所述多肽变体与本文公开的截短的多肽序列(如SEQ ID NO:2)具有至少约80%的氨基酸序列同一性,可选地至少约81%的氨基酸序列同一性,可选地至少约82%的氨基酸序列同一性,可选地至少约83%的氨基酸序列同一性,可选地至少约84%的氨基酸序列同一性,可选地至少约85%的氨基酸序列同一性,可选地至少约86%的氨基酸序列同一性,可选地至少约87%的氨基酸序列同一性,可选地至少约88%的氨基酸序列同一性,可选地至少约89%的氨基酸序列同一性,可选地至少约90%的氨基酸序列同一性,可选地至少约91%的氨基酸序列同一性,可选地至少约92%的氨基酸序列同一性,可选地至少约93%的氨基酸序列同一性,可选地至少约94%的氨基酸序列同一性,可选地至少约95%的氨基酸序列同一性,可选地至少约96%的氨基酸序列同一性,可选地至少约97%的氨基酸序列同一性,可选地至少约98%的氨基酸序列同一性,以及可选地至少约99%的氨基酸序列同一性。
在一个实施方案中,所述多肽包含与SEQ ID NO:1及其保守的氨基酸替换具有至少约90%的氨基酸序列同一性的氨基酸序列。在另一个实施方案中,所述多肽包含与SEQ ID NO:1及其保守的氨基酸替换具有至少约95%的氨基酸序列同一性的氨基酸序列。在另一个实施方案中,所述多肽包含与SEQ ID NO:1及其保守的氨基酸替换具有至少约98%的氨基酸序列同一性的氨基酸序列。在另一个实施方案中,所述多肽包含与SEQ ID NO:1及其保守的氨基酸替换具有至少99%的氨基酸序列同一性的氨基酸序列。
在一个实施方案中,所述多肽包含与SEQ ID NO:2及其保守的氨基酸替换具有至少约90%的氨基酸序列同一性的氨基酸序列。在另一个实施方案中,所述多肽包含与SEQ ID NO:2及其保守的氨基酸替换具有至少约95%的氨基酸序列同一性的氨基酸序列。在另一个实施方案中,所述多肽包含与SEQ ID NO:2及其保守的氨基酸替换具有至少约98%的氨基酸序列同一性的氨基酸序列。在另一个实施方案中,所述多肽包含与SEQ ID NO:2及其保守的氨基酸替换具有至少约99%的氨基酸序列同一性的氨基酸序列。
在特定的实施方案中,示例性的目标保守替换列于表1中。如果该替换导致了生物活性的变化,或者期待的活性的变化,可以引入更多其它的变化,如描述于下文作为氨基酸类别参考的,并对产品进行筛选。不言而喻的,能够编码该保守替换的密码子在本领域内已知的。
表1
原始的残基 保守替换
Ala(A) Ser;Val;Leu;Ile
Arg(R) Lys;Gln;Asn
Asn(N) Gln;His;Lys;Arg
Asp(D) Glu
Cys(C) Ser;Ala
Gln(Q) Asn
Glu(E) Asp
Gly(G) Pro;Ala
His(H) Asn;Gln;Lys;Arg
Ile(I) Leu;Val;Met;Ala;Phe;正亮氨酸
Leu(L) Ile;Val;Met;Ala;Phe;正亮氨酸
Lys(K) Arg;Gln;Glu;Asn
Met(M) Leu;Ile;Phe
Phe(F) Leu;Val;Ile;Ala;Met;Tyr
Pro(P) Ala
Ser(S) Thr
Thr(T) Ser
Trp(W) Tyr;Phe
Tyr(Y) Trp;Phe;Thr;Ser
Val(V) Ile;Leu;Met;Phe;Ala;正亮氨酸
在本发明的范围之内,通过氨基酸替换达到本发明的多肽类似物,所述替换基于氨基酸侧链取代基的相对类似性,如其疏水性,亲水性,电荷,尺寸等等。在进行氨基酸替换中,可以考虑的一个因素是氨基酸的亲水指数。Kyte和Doolittle讨论了氨基酸亲水指数在赋予蛋白质相互作用的生物功能中的重要性(J.Mol.Biol.,157:105-132,1982)。公认的是,氨基酸的相对亲水性质对所产生的蛋白质的二级结构有贡献。这因此影响了蛋白质与分子的相互作用,所述分子如酶,底物,受体,DNA,抗体,抗原等等。
基于其亲水性及电荷特征,为各个氨基酸指定了如下的亲水指数:异亮氨酸(+4.5);缬氨酸(+4.2);亮氨酸(+3.8);苯丙氨酸(+2.8);半胱氨酸/胱氨酸(+2.5);甲硫氨酸(+1.9);丙氨酸(+1.8);甘氨酸(-0.4);苏氨酸(-0.7);丝氨酸(-0.8);色氨酸(-0.9);酪氨酸(-1.3);脯氨酸(-1.6);组氨酸(-3.2);谷氨酸/谷氨酰胺/天冬氨酸/天冬酰胺(-3.5);赖氨酸(-3.9);以及精氨酸(-4.5)。
在现有技术中已知在肽或者蛋白质中,特定的氨基酸可以替换具有类似的亲水指数或者分数的其他氨基酸,并因而产生具有类似的生物活性的肽或者蛋白质,也即其仍保持生物功能。在进行这种变化时,优选地具有±2以内的亲水指数的氨基酸互相替换。更优选的替换为其中氨基酸具有±1以内的亲水指数的那些替换。最优选的替换为其中氨基酸具有±0.5内的亲水指数的那些替换。
相似的氨基酸也可以按照亲水性进行替换。美国专利No.4,554,101公开了蛋白质的最大局部平均亲水性与蛋白质的生物性质有关,所述亲水性由其相邻的氨基酸的亲水性支配。为氨基酸分配了随后的亲水性数值:精氨酸/赖氨酸(+3.0);天冬氨酸/谷氨酸(+3.0±1);丝氨酸(+0.3);天冬酰胺/谷氨酰胺(+0.2);甘氨酸(0);苏氨酸(-0.4);脯氨酸(-0.5±1);丙氨酸/组氨酸(-0.5);半胱氨酸(-1.0);甲硫氨酸(-1.3);缬氨酸(-1.5);亮氨酸/异亮氨酸(-1.8);酪氨酸(-2.3);苯丙氨酸(-2.5);以及色氨酸(-3.4)。因此在肽、多肽或者蛋白质中的一个氨基酸可以由另一个具有类似的亲水性分数的氨基酸替换,而仍然产生具有类似的生物活性的得到的蛋白质,也即仍然保持正确的生物功能。在进行该变化中,具有±2以内的亲水指数的氨基酸优选地互相替换,具有±1以内的更为优选,以及具有±0.5以内的最为优选。
本发明的多肽在功能中或者生物学或其他特征中的实质上或者小的改变也通过选择在其效果上显著区别的替换完成,所述效果为在保持下列的效果(除了别的之外):(a)多肽骨架在替换区域内的结构,例如,折叠或者螺旋构型;(b)在目标位点上的分子的电荷或者亲水性;或者(c)侧链的大小。天然产生的残基按照其一般的侧链性质划分成组:(1)疏水的:正亮氨酸,met,ala,val,leu,ile;(2)中性亲水的:cys,ser,thr;(3)酸性的:asp,glu;(4)碱性的:asn,gln,his,lys,arg;(5)影响链的定向的残基:gly,pro;以及(6)芳香性的:trp,tyr,phe。
非保守的替换通常地需要将这些种类之一的一个成员换为另一种类。该替换的残基也可以被引入保守的替换位点中,或者更优选地,引入到剩余的(非保守)位点中。
在一个实施方案中,例如在描述于SEQ ID NO:1,2,3,4,5和/或6的氨基酸序列中,氨基酸亮氨酸(L)可以可选地为亮氨酸(L)或者异亮氨酸(I),氨基酸天冬氨酸(D)可以可选地为天冬氨酸(D)或者天冬酰胺(N),氨基酸谷氨酰胺(Q)可以可选地为谷氨酰胺(Q)或者赖氨酸(K),以及氨基酸苯丙氨酸(F)可以可选地为苯丙氨酸(F)或者氧化的甲硫氨酸。
可以使用现有技术中已知的方法进行改变,除了其他的已知技术,如丙氨酸扫描,寡核苷酸介导的(定点的)诱变以及PCR诱变。定点诱变,例如(参见例如Carter等人,Nucl.Acids Res.,13:4331(1986);Zoller等人,Nucl.Acids Res.,10:6487(1987)),盒诱变(参见例如Wells等人,Gene,34:315(1985)),限制性选择诱变(参见例如Wells等人,Philos.Trans.R.Soc.LondonSerA,317:415(1986))或者其他能在克隆的DNA上进行以产生CAE变体DNA的已知技术。也可以采用扫描氨基酸分析鉴定连续序列上的一个或者多个氨基酸。优选的扫描氨基酸为相对小的、中性的氨基酸。该氨基酸包括丙氨酸,甘氨酸,丝氨酸以及半胱氨酸。在该组中,丙氨酸是典型地优选的扫描氨基酸,这是由于其消除了β-碳上的侧链并较不可能改变变体的主链构型(参见例如Cunningham和Wells,Science,244:1081 1085(1989))。丙氨酸也由于其是最常见的氨基酸,所以是典型地优选的。进一步地,经常发现其在包埋以及暴露的位置中(参见Creighton,The Proteins,(W.H.Freeman&Co.,N.Y.);Chothia,J.Mol.Biol.,150:1(1976))。如果丙氨酸替换得不到足够量的变体,或者所得的多肽的荚膜异多糖酸降解能力减少或者不存在,可以使用另一个氨基酸。
本文描述的多肽的共价修饰也包括于本发明的范围内。一种类型的共价修饰,例如包括将多肽的目标的氨基酸残基与有机衍生化试剂反应,所述试剂能够与多肽的选择的侧链或者N-或者C-末端残基反应。使用双功能试剂的衍生化是有用的,例如用于将多肽(或者多个多肽)交联至水不溶性支持物基质,用于纯化抗CAE的抗体的方法中,反之亦可。常用的交联试剂包括,例如1,1-双(重氮乙酰基)-2-苯乙烷,戊二醛,N-羟基琥珀酰亚胺酯,例如,和4-叠氮水杨酸的酯、双同官能团的亚氨酸酯,包括二琥珀酰亚胺酯如3,3'-二巯基双(琥珀酰亚胺丙酯),双官能团的马来酰亚胺如双-N-马来酰亚胺-1,8-辛烷以及如甲基-3[(对叠氮苯基)二硫代]propioimidate等试剂。在一个特定的实施方案中,本文描述的特定多肽的C-末端异亮氨酸可以去除或者删除,从而将末端的酪氨酸暴露,所述酪氨酸可以用于例如将多肽与不可溶的基质交联,该交联为直接的或者通过间隔区,从而形成亲和树脂或者固定化的树脂。
其他的修饰包括,例如谷氨酰胺酰基残基及天冬酰胺酰基残基分别地脱酰胺成为相应的谷氨酰基和天冬氨酰基残基,脯氨酸和赖氨酸的羟基化,丝氨酰或者苏氨酰残基的羟基的磷酸化,赖氨酸、精氨酸和/或组氨酸侧链的α-氨基的甲基化(参见例如T.E.Creighton,Proteins:Structure and MolecularProperties,W.H.Freeman&Co.,San Francisco,pp.7986(1983)),N-末端氨基的乙酰化,以及任何C-末端羧基的酰胺化。
本文描述的并在本发明的范围内的多肽的另一种共价修饰包括改变多肽天然的糖基化形式。通常,改变天然的糖基化形式涉及将多肽(例如全长的)序列中发现的一个或者多个糖类部分删除(通过去除下面的糖基化位点或者通过化学的和/或酶的手段删除糖基化);和/或加入一个或者多个糖基化位点,所述位点在多肽序列中是不存在的。除此之外,其可以包括天然的蛋白质中糖基化的定量变化,所述变化涉及各种可能存在的糖类部分的性质和组成的相应变化。
将糖基化位点加到本发明的多肽上可以通过改变氨基酸序列完成。所述变化可以,例如通过一个或者多个丝氨酸或者苏氨酸残基加入或者替换到多肽序列中(用于O-连接的糖基化位点)形成。本文描述的氨基酸序列(例如SEQ ID NO.1,SEQ ID NO.2,等等)可以可选地通过在DNA水平上的改变而变化,尤其通过将编码该多肽的DNA在预先选择的碱基上突变,从而产生能够翻译为期待的氨基酸的密码子。
另一种在多肽上增加糖类部分的方式是通过将配糖物通过化学的或者酶的偶联到多肽上。该方法一般描述于现有技术中,例如在PCT国际公开No.WO 87/05330中,以及Aplin和Wriston,CRC Crit.Rev.Biochem.,pp.259306(1981)中。
存在于本文描述的多肽上的糖类部分的去除可以化学地或者酶促地完成,或者通过密码子的突变替换完成,所述密码子编码作为糖基化靶点的氨基酸残基。化学去糖基化技术在本领域中已知,并由例如Hakimuddin等人,Arch.Biochem.Biophys.,259:52(1987)以及Edge等人,Anal.Biochem.,118:131(1981)描述。多肽上的糖类部分的酶促切割可以通过使用多种内切及外切糖苷酶实现,如Thotakura等人,Meth.Enzymol.,138:350(1987)中所描述的。
另一种共价修饰包括将本文描述的多肽与多种非蛋白质的聚合物连接,所述聚合物如聚乙二醇(PEG),聚丙二醇或者聚氧化烯,其以美国专利No.4,640,835;4,496,689;4,301,144;4,670,417;4,791,192或者4,179,337中指出的方式(其各个在此结合作为参考)。
额外地或者可选地,本发明的多肽也可以以形成嵌合分子的形式修饰,所述嵌合分子包含与另一个异种多肽或者氨基酸序列融合的多肽。多肽也可以使用方便其检测的试剂标记。例如,所述试剂可以与荧光标签结合(例如,Prober等人,Science238:336-340(1987);Albarella等人,EP0144914);化学标记(例如,Sheldon等人,美国专利No.4,582,789;Albarella等人,美国专利No.4,563,417);和/或修饰的碱基(例如Miyoshi等人,EP 0 119 448)(其各个在此以其全文结合作为参考)。
在一个实施方案中,该嵌合分子包括多肽与标签多肽的融合,所述标签多肽提供抗-标签的抗体能够选择性地结合的表位。所述表位标签通常位于所述多肽氨基酸序列的氨基末端或者羧基末端。该表位标签形式的多肽能够使用针对该标签多肽的抗体检测。该表位标签的提供也使得多肽能容易地通过亲和纯化进行纯化,所述纯化使用抗标签的抗体或者其他类型的与该表位标签结合的亲和基质。在本领域中,不同的标签多肽及其相应的抗体是公知的。实例包括c-myc标签及其抗体8F9,3C7,6E10,G4,B7和9E10(参见例如Evan等人,Molecular and Cellular Biology,5:36103616(1985)),流感HA标签多肽及其抗体12CA5(参见例如Field等人,Mol.Cell.Biol.,8:21592165(1988));单纯疱疹病毒糖蛋白D(gD)标签及其抗体(参见例如Paborsky等人,Protein Engineering,3(6):547553(1990));和聚-组氨酸(poly-his)或者聚-组氨酸-甘氨酸(poly-his-gly)标签。其他的标签多肽包括α-微管蛋白表位肽(参见例如Skinner等人,J.Biol.Chem.,266:1516315166(1991));
Figure BDA00002748883000403
-肽(Sigma-Aldrich,Inc.(St.Louis,MO);也参见Hopp等人,BioTechnology,6:12041210(1988));KT3表位多肽(参见例如Martin等人,Science,255:192194(1992));以及T7基因10蛋白质肽标签(Lutz-Freyermuth等人,Proc.Natl.Acad.Sci.USA,87:63936397(1990))。
为了便于分离和/或纯化,例如,可以使用本领域技术人员熟知的基因工程技术,将氨基酸标签加到本文描述的多肽上。在特定的实施方案中,例如,多肽(或多个多肽)可以在蛋白质氨基或者羧基末端包括一个或多个,以及更优选地6个连续的组氨酸残基。该连续的组氨酸残基通常称作组氨酸标签。末端的连续组氨酸残基可以便于表达的重组蛋白的检测和/或纯化,并通常不妨碍蛋白质的功能/活性/结构。所述连续的组氨酸残基可以通过带有三个的5'-CAT-3'的引物而加入到编码蛋白质的基因中。在任一末端的连续组氨酸残基对于使用固定化的金属亲和层析纯化蛋白质而言,是方便的辅助方式,所述层析利用氨基酸组氨酸结合螯合的过渡金属离子的能力,所述金属离子例如镍(Ni2+),锌(Zn2+)以及铜(Cu2+)。如前文所记载的,其他的技术包括,但不限于用于多克隆或者单克隆抗体的标位,所述表位包括但不限于T7表位,myc表位以及V5a表位;以及将本文描述的多肽与适用的蛋白质配偶体融合,所述配偶体包括但不限于谷胱甘肽-S-转移酶或者麦芽糖结合蛋白。在特定的实施方案中,所述氨基酸序列包括亲和标签,使得可以分离及纯化该蛋白质,所述标签例如为GST标签,His标签,
Figure BDA00002748883000401
标签或者XPRESSTM签;在特定的优选实施方案中,所述亲和标签包括His标签(也即一个或者多个,优选地六个组氨酸残基)(参见例如SEQ ID NO:3或者SEQID NO:4),一个或多个拷贝的
Figure BDA00002748883000402
八肽(DYKDDDDK)(参见例如SEQ IDNO:5),或者XPRESSTM八肽(DLYDDDK)。这些额外的氨基酸序列可以加到所述多肽的C-末端,以及N-末端,或者在多肽中干预位置。
在一个可选的实施方案中,所述嵌合分子可以包括多肽与免疫球蛋白或者免疫球蛋白特定区域的融合体。对于所述嵌合分子的二价形式(也称作“免疫吸附”),该融合可能发生在IgG分子的Gc区域。所述Ig融合体优选地包括可溶(跨膜域删除的或者失活的)形式的多肽替换Ig分子中至少一个可变的区域。在一个特别的实施方案中,所述免疫球蛋白融合体包括IgG1分子的铰合部(hinge),CH2及CH3,或者铰合部,CH1、CH2以及CH3区域。免疫球蛋白融合体的产生,也见于美国专利No.5,428,130;美国专利No.6,165,476;美国专利No.6,444,792;美国专利No.7,442,778;以及美国专利No.7,465,447(其各个在此以其全文结合作为参考)。
多肽的制备
全长的多肽(包括,例如包含对应于SEQ ID NO:1的氨基酸序列的多肽)以及多肽片段(包括例如包括对应于SEQ ID NO:2的氨基酸序列的截短的多肽)可以通过多种传统技术的任一种制备。本发明的多肽通常可以通过培养宿主细胞制备,所述宿主细胞转化了或者转染了含有编码所期待的多肽的多核苷酸的载体。在特定的实施方案中,所述载体选自质粒,病毒以及噬菌体;在本实施方案中更优选地,所述载体为噬菌体(参见例如实施例2)。用于多肽制备的制备载体的制备方法,以及尤其噬菌体的制备方法在本领域中是公知的。
一般,宿主细胞如细菌被本文描述用于多肽产生的表达载体或者克隆载体转染或者转化,并在常规的营养培养基中培养,所述培养基经改变而对于引入增强子、选择转化体或者扩增编码期待的序列的基因是适合的。培养条件,如培养基,温度,pH等等,可以由有经验的技术人员在无过度的实验下选择。通常,用于使细胞培养物产量最大化的原理、规程及实用技术可见于Mammalian Cell Biotechnology:a Practical Approach,M.Butler,ed.(IRLPress,1991)以及上述Sambrook等人。
真核细胞转染或原核细胞转化的方法对于普通技术人员是已知的,如CaCl2、CaPO4、脂质体介导的以及电穿孔。取决于所使用的宿主细胞,转化使用相对于该细胞合适的标准的技术进行。钙处理采用氯化钙,如前述Sambrook等人所描述的,或者例如电穿孔,其通常用于原核细胞。将使用根癌农杆菌(Agrobacterium tumefacien)的感染用于特定植物细胞的转化,其为按照Shaw等人,Gene,23:315(1983)以及PCT国际公开No.WO89/05859所述的。对于不具备该细胞壁的哺乳动物细胞,可以采用Graham和van der Eb,Virology,52:456457(1978)中的磷酸钙沉淀方法。哺乳动物细胞宿主系统转染的一般方面类似地描述于美国专利No.4,399,216中(在此以其全文结合作为参考)。进入酵母的转化通常地根据Van Solingen等人,J.Bact.,130:946(1977)以及Hsiao等人,Proc.Natl.Acad.Sci.(USA),76:3829(1979)中的方法进行。然而,其他用于将DNA引入细胞中的方法也可以使用,如通过核微注射,电穿孔,细菌原生质体与完整细胞的融合,或者多聚阳离子,例如聚凝胺、多鸟氨酸。对于转化哺乳动物细胞的多种技术,参见Keown等人,Methods in Enzymology,185:527 537(1990)以及Mansour等人,Nature,336:348 352(1988)。
对于克隆或者表达载体中的DNA适用的宿主细胞包括原核细胞,酵母或者更高等的真核细胞。适用的原核细胞包括但不限于肠细菌,如埃希氏菌属(如大肠杆菌),肠杆菌,欧文氏菌,克雷白杆菌,变形杆菌,沙门氏菌(例如伤寒沙门氏菌),沙雷氏菌属(例如灵杆菌),和志贺氏菌属,以及杆菌(如枯草芽孢杆菌和地衣芽孢杆菌(例如公开于DD 266710中的地衣芽孢杆菌41P)),假单胞菌(如绿脓杆菌)以及链霉菌。优选地,所述宿主细胞分泌少量的蛋白水解酶。例如,可能修改该株以在编码宿主内源蛋白的基因中产生基因变异(参见例如美国专利No.4,946,783)。可选地,体外的克隆方法,例如PCR或者其他的核酸聚合酶反应,是适用的。
用于产生本发明的多肽的优选的宿主细胞为原核细胞,以及更优选地为细菌,其包括真细菌以及古细菌。这些优选为真细菌,其包括革兰氏阳性的以及革兰氏阴性的细菌,更优选的为革兰氏阴性的细菌。细菌的一种优选种类为肠细菌。属于肠细菌的细菌的实例包括埃希氏菌属,肠杆菌属,欧文氏菌,克雷白杆菌,变形杆菌,沙门氏菌,沙雷氏菌属和志贺氏菌。其他类型的适用的细菌包括固氮菌,假单胞菌属,根瘤菌,明颤细菌(Vitreoscilla)和副球菌。大肠杆菌在此是特别优选的。
用于产生本发明的多肽的原核细胞在本领域中已知的并适合用于培养所选宿主细胞的培养基中培育,其包括一般由前文中Sambrook等人所描述的培养基。适用于细菌的培养基包括,但不限于AP5培养基,营养肉汤,Luria-Bertani(LB)肉汤,Neidhardt最低限度培养基以及C.R.A.P最低限度的或者完全培养基(参见例如美国专利No.6,828,121)并添加必要的营养物添加剂。所述培养基也可以含有选择试剂,其根据表达载体的构建进行选择,以选择性地允许含有表达载体的原核细胞生长。例如,氨苄青霉素添加到培养基中用于培养表达氨苄青霉素耐受基因的细胞。除了碳、氮及无机磷酸盐源,任何必要的添加剂也可以包括,其以合适的浓度,单独地或者作为与另一种添加剂或者培养基的混合物加入,如复合物氮源。培养基也可以可选地含有一种或者多种还原剂,所述还原剂选自谷胱甘肽、半胱氨酸、胱胺、巯基乙酸、二硫赤藓糖醇以及二硫苏糖醇。所述原核宿主细胞在适宜的温度下培养。对于大肠杆菌的培养,例如,优选的温度范围为从约20°C到约39°C,更优选地从约25°C到约37°C,再更优选地在约30°C。可以以合适的浓度包括任何必要的添加剂,所述添加剂对于本领域技术人员是已知的,其单独地加入或者作为与另一种添加剂或者培养基的混合物加入,如复合物氮源。培养基的pH可能为从约5.9的任意pH,其主要地取决于宿主生物体。对于大肠杆菌,pH优选地从约6.8到约7.4,以及更优选地约7.0。
除了原核生物,真核微生物如丝状真菌或者酵母对于编码多肽的载体而言是适用的克隆或者表达载体。酿酒酵母是常用的低等真核宿主微生物。其他的常规宿主微生物包括丝状真菌,如链孢菌、青霉、弯颈霉(WO 91/00357)以及曲霉属宿主,如构巢曲霉(Ballance等人,Biochem.Biophys.Res.Commun.,112:284 289(1983);Tilburn等人,Gene,26:205 221(1983);Yelton等人,Proc.Natl.Acad.Sci.USA,81:1470 1474(1984))以及黑曲霉(Kelly和Hynes,EMBO J.,4:475 479(1985));克鲁维酵母宿主(美国专利No.4,943,529;Fleer等人,Bio/Technology,9:968 975(1991)),如,例如乳酸克鲁维酵母(MW98-8C,CBS683,CBS4574;Louvencourt等人,J.Bacteriol.,154(2):737 742(1983)),脆壁克鲁维酵母(ATCC 12,424),K.bulgaricus(ATCC16,045),K.wickeramii(ATCC 24,178),K.waltii(ATCC 56,500),K.drosophilarum(ATCC 36,906;Van den Berg等人,Bio/Technology,8:135(1990)),K.thermotolerans以及马克斯克鲁维酵母;耶氏酵母(EP 0 402 226);巴斯德毕赤酵母(EP 0 183 070;Sreekrishna等人,J.Basic Microbiol.,28:265278(1988));Candida;Trichoderma reesia(EP 0 244 234);Neurospora crassa(Case等人,Proc.Natl.Acad.Sci.USA,76:5259 5263(1979));粟酒裂殖酵母(Beach及Nurse,Nature,290:140(1981);EP 0 139 383);以及Schwanniomyces如许旺酵母(EP 0 394 538)。
甲醇酵母(Methylotropic yeast)也是适用的,其包括但不限于能够依靠甲醇生长的酵母,其选自汉森酵母,假丝酵母,克勒克酵母,毕赤酵母,酿酒酵母,球拟酵母及红酵母。该类酵母中典型的代表性种类可见于C.Anthony,The Biochemistry of Methylotrophs,269(1982)。
对于糖基化多肽表达适用的宿主细胞通常得自多细胞生物体。无脊椎动物的细胞的实例包括昆虫细胞,如果蝇S2以及菜夜蛾Sf9,以及植物细胞。有用的哺乳动物宿主细胞系的实例包括中国仓鼠卵巢细胞(CHO)以及COS细胞。更特定的实例包括中国仓鼠卵巢细胞/-DHFR(CHO,Urlaub和Chasin,Proc.Natl.Acad.Sci.USA,77:4216(1980));人类胚胎肾细胞系(亚克隆的293或者293细胞,用于在悬浮培养基中培养,Graham等人,J.Gen Virol.,36:59(1977));人类肝脏细胞(Hep G2,HB 8065);人类肺细胞(W138,ATCC CCL75);SV40转化的猴肾CV1系(COS-7,ATCC CRL 1651);小鼠塞尔托利细胞(TM4,Mather,Biol.Reprod.,23:243 251(1980));以及小鼠乳腺瘤(MMT060562,ATCC CCL51)以及其他。认为合适的宿主细胞的选择在本领域的技能范围内。
一旦确定,可以将编码目标多肽的核酸(如cDNA或者基因组DNA)插入可复制的用于克隆(DNA的扩增)或者用于表达的可复制载体中,并且多种载体是公众可得的。所述载体可以,例如为粘粒、质粒、噬菌体或者病毒颗粒的形式。多种载体对于此目的是可用的,并且合适的载体的选择主要地取决于要插入到载体中的核酸的尺寸,以及将使用该载体转化的特定宿主细胞。适当的核酸序列(如描述于下文的)可以通过多种步骤插入到载体中。一般而言使用本领域已知的技术,将DNA插入适当的限制性内切酶位点(或者多个位点)中。载体组分通常包括,但不限于一个或者多个信号序列、复制的起点、一个或者多个标记基因、增强子元件、启动子以及转录终止序列。含有一个或者多个这些组分的适用载体的构建采用标准的连接技术,所述连接技术对于技术人员是已知的。
多肽不仅可以直接重组地产生,也可以作为融合多肽产生,所述融合多肽带有异源多肽,该多肽可以为信号序列或者在成熟蛋白或多肽的N端具有特异性切割位点的其他多肽。一般而言,信号序列可以为载体的组分,或者其可以为插入载体中的编码多肽的DNA的部分。该信号序列可以为原核的信号序列,其选自例如碱性磷酸酶、青霉素酶、lpp或者热稳定的肠毒素II先导序列。对于酵母分泌,例如,所述信号序列可以为例如酵母转化酶先导序列,alpha因子先导序列(包括酵母属和克鲁维酵母属的α因子先导序列,后者描述于美国专利No.5,010,182中)或者酸性磷酸酶先导序列,白色念珠菌葡糖淀粉酶先导序列(EP0362179)或者描述于PCT国际公开No.WO90/13646中的信号。在哺乳动物细胞表达中,哺乳动物信号序列可以用于导向蛋白的分泌,如相同或者相关的物种中来自分泌多肽的信号序列,以及病毒分泌先导序列。
表达载体和克隆载体均含有核酸序列,该序列使得所述载体能在一个或者多个选定的宿主细胞中复制。该序列在多种细菌、酵母及病毒中公知。来自质粒pBR322的复制起点对于绝大多数革兰氏阴性细菌是适用的,2μ质粒起点对于酵母是适用的,以及不同的病毒起点(SV40,多瘤病毒,腺病毒,VSV或者BPV)对于哺乳动物细胞中的克隆载体是有用的。
表达载体及克隆载体也可以含有选择基因,其在本领域也称作选择性标记物。典型的选择基因编码的蛋白质(a)补充营养缺陷型的不足;(b)赋予针对抗体或者其他药物或者毒素的抗性,如对氨苄青霉素、G418、潮霉素、新霉素、甲胺蝶呤或者四环素的抗性;或者(c)提供不可得自复合培养基的关键营养物质,例如为细菌提供编码D-丙氨酸消旋酶的基因。
对于哺乳动物细胞适用的可选择标记物的一个实例为使细胞鉴定成为可能的,所述细胞能够接受编码降解荚膜异多糖酸的多肽的核酸,该标记物如DHFR或者胸苷激酶。当采用野生型DHFR时,适当的宿主细胞为缺乏DHFR活性的CHO细胞系,其按照Urlaub等人,Proc.Natl.Acad.Sci.USA,77:4216(1980)中描述的进行制备和繁殖。用于酵母中的适用的选择基因为存在于酵母质粒YRp7中的trp1基因(参见例如Stinchcomb等人,Nature,282:39(1979);Kingsman等人,Gene,7:141(1979);Tschemper等人,Gene,10:157(1980)。该trp1基因为缺乏在色氨酸中生长的能力的酵母突变株提供选择性标记物,例如ATCC No.44076或PEP4-1(参见例如Jones,Genetics,85:12(1977))。
表达载体及克隆载体通常含有启动子,所述启动子可操作地连接于编码多肽的核酸序列,从而引导mRNA的合成。由多个潜在的宿主细胞识别的启动子是公知的。适用于原核生物宿主的启动子包括碱性磷酸酯酶,色氨酸(trp)启动子系统(例如Goeddel,Nucleic Acids Res.,8:4057(1980);EP 0 036776);β内酰胺酶及乳糖启动子系统(例如Chang等人,Nature,275:615(1978);Goeddel等人,Nature,281:544(1979));以及杂合启动子如tac启动子(参见例如deBoer等人,Proc.Natl.Acad.Sci.USA,80:21 25(1983))。用于细菌系统中的启动子也可以含有Shine-Dalgarno(S.D.)序列,该序列可操作地连接于编码目标多肽的DNA上。
对于酵母宿主中的应用而言适用的启动序列的实例包括用于3-磷酸甘油激酶的启动子(Hitzeman等人,J.Biol.Chem.,255:2073(1980))或者其他的糖分解的酶的启动子(Hess等人,J.Adv.Enzyme Reg.,7:149(1968);Holland,Biochemistry,17:4900(1978)),如烯醇酶,己糖激酶,葡萄糖激酶,葡萄糖-6-磷酸酯异构酶,甘油醛-3-磷酸酯脱氢酶,磷酸果糖激酶,磷酸葡萄糖异构酶,3-磷酸甘油酯变位酶,丙酮酸脱羧酶,丙酮酸激酶和磷酸丙糖异构酶。其他的酵母启动子为酸性磷酸酶、醇脱氢酶2、与氮代谢相关的降解酶、负责利用麦芽糖及半乳糖的酶、甘油醛-3-磷酸酯脱氢酶、异细胞色素c以及金属硫蛋白的启动子区域,所述启动子为可诱导的启动子,其具有转录由生长条件控制的额外的优点。对于酵母表达的应用而言适用的载体及启动子进一步地描述于EP 0 073 657中。
从哺乳动物宿主细胞中的载体的目标多肽转录通过下述启动子控制:例如得自病毒基因组的启动子,所述病毒如腺病毒(如腺病毒2)、鸟肉瘤病毒、牛乳头瘤病毒、巨细胞病毒、禽痘病毒(参见例如UK 2,211,504)、乙型肝炎病毒、多瘤病毒、逆转录病毒以及猿猴病毒40(SV40),或者得自异源哺乳动物启动子(例如肌动蛋白启动子或者免疫球蛋白启动子)和/或来自热激启动子的启动子,前提是该启动子与宿主细胞系统是相容的。
通过将增强子序列插入到载体中,在多个情况下可以增加DNA的转录,所述DNA由高等真核生物编码目标多肽。增强子是DNA的顺式作用元件,其典型地约10到300bp,其作用于启动子以增加其转录。在哺乳动物基因(白蛋白,α甲胎蛋白,弹性蛋白酶,球蛋白以及胰岛素)中,已知多种增强子序列。典型地使用来自真核细胞病毒的增强子。非限制性的实例包括SV40增强子(其位于复制起点的后部(bp 100 270)),巨细胞病毒早期启动子增强子,多瘤病毒增强子(其位于复制起点的后部)以及腺病毒增强子。所述增强子可以在多肽编码序列的5’或者3’位置连接到载体中,典型地位于启动子的5’位点上。
用于原核生物(例如细菌)和/或真核宿主细胞(酵母,真菌,昆虫,植物,动物或者来自其他的多细胞生物体的有核细胞)的表达载体也含有对于转录的终止以及使mRNA稳定而必须的序列。该序列一般可得自原核生物的、真核生物的或者病毒的DNA或者cDNA的5’以及偶尔地3’的不翻译区域。这些区域含有转录为聚腺苷酰化片段的核苷酸区段,所述聚腺苷酰化的片段位于编码目标多肽的mRNA的不翻译部分中。适合在重组脊椎动物细胞培养中的多肽合成的再其他的方法、载体以及宿主细胞描述于Gething等人,Nature,293:620 625(1981);Mantei等人,Nature,281:40 46(1979);EP 0117 060;以及EP 0 117 058。
基因扩增和/或表达可以在一个样品中直接测量,例如通过常规的DNA印迹法,RNA印迹法,来测定mRNA的转录(参见例如Thomas,Proc.Natl.Acad.Sci.USA,77:5201 5205(1980)),斑点印迹法(DNA分析),或者原位杂交,其使用恰当地标记的探针,所述探针基于在此提供的序列。可选地,可以采用能够识别特定双螺旋的抗体,所述双螺旋包括DNA双螺旋、RNA双螺旋以及DNA-RNA杂交双螺旋或者DNA-蛋白质双螺旋。该抗体相应地也能够被标记,从而能够在所述双螺旋连接于表面上的情况下进行检测,从而当表面上的双螺旋形成时,能够检测到连接于双螺旋的抗体的存在。
基因表达,可选地可以通过免疫学方法测量,所述方法例如细胞或者组织切片的免疫组化染色,以及细胞培养物的或者体液的测试,以直接测定基因产物的表达。对于免疫组化染色和/或样品流体的测试有用的抗体可以为单克隆的或者多克隆的,并可以在任意的哺乳动物中制备。基于本文提供的DNA序列,可以制备抗全长序列多肽的抗体,或者抗截短或片段肽的抗体,或者能制备抗外源序列的抗体,该外源序列融合于CAE DNA并编码特异的抗体表位。
能从培养基或者从宿主细胞裂解液中回收形成的多肽。如果是膜结合的,可以使用适合的去污剂溶液(例如Triton-X100),或者通过酶促切割使其从膜上释放。可以由不同的物理的或者化学的方式将多肽表达中采用的细胞破坏,所述方式如冻融循环,超声,机械破坏或者细胞裂解试剂。可以期待从重组细胞蛋白或者多肽中纯化所述多肽(或者多种多肽)。典型的适用的纯化步骤为硫酸铵沉淀;层析聚焦;二氧化硅或者阳离子交换树脂上的层析,所述阳离子交换树脂如DEAE;乙醇沉淀;离子交换柱上的分离;凝胶过滤,其使用例如Sephadex G-75;金属螯合柱,以结合多肽的表位标签的形式;蛋白质A琼脂糖柱,以去除如IgG的污染物;反相HPLC;以及SDS-PAGE。可以采用不同方法的蛋白质纯化,所述方法在现有技术中是已知的,并描述于例如Deutscher,Methods in Enzymology,182(1990);Scopes,Protein Purification:Principles and Practice,Springer-Verlag,New York(1982)。一般来说,所进行的纯化步骤(或者多个步骤)依赖于,例如制备方法的性质,所产生的具体多肽以及所述多肽的下游应用(或多种应用)。
可选地,例如,期待的肽及其片段可以是化学合成的,或者可能提取自天然来源的生物体(或多种生物体)。另一种可选的方式涉及通过酶促消化产生多肽及其片段,例如通过将蛋白质用酶处理,所述酶已知在特定的氨基酸残基所限定的位点处切割蛋白质,或者通过使用适合的限制性酶消化DNA并分离想要的组分。再另一种适用的技术涉及通过聚合酶链式反应(PCR)分离和扩增DNA序列或者片段,所述序列或者片段编码想要的多肽或者多肽片段。在PCR中,在5’及3’引物中采用限定DNA期待的末端的寡核苷酸。当多肽为多肽片段时,该多肽片段优选地与本文公开的天然(也即全长)多肽共享至少一个生物的和/或免疫的活性。在特定的情况下,多肽片段可以具有比全长的多肽更高的活性,或者其可以相对于全长的多肽是优化的或者改进的。
也可以采用其他可选的方法制备本文描述的多肽,所述方法在本领域中是公知的。例如,多肽序列或者其部分可以通过直接的肽合成产生,所述合成使用固相技术(参见例如Stewart等人,Solid-Phase Peptide Synthesis,W.H.Freeman Co.,San Francisco,Calif.(1969);Merrifield,J.Am.Chem.Soc.,85:21492154(1963))。体外的蛋白质合成可以使用自动化或者通过人工技术进行。自动合成可以,例如利用Applied Biosystems肽合成仪(Foster City,Calif.),根据生产商的说明完成。本文描述的多肽的不同部分可以分别地化学合成并使用化学的或者酶的方法组合,以产生全长的、截短的或者其他的变体多肽。
多核苷酸
本发明的另一个方面提供了多核苷酸及其片段,以及其部分或者完整的互补序列,mRNA和/或编码序列,优选地以分离的形式,包括编码具有荚膜异多糖酸降解(CAE)活性的多肽或酶和/或CAE相关蛋白及其片段(如前所述)的多核苷酸、DNA、RNA、DNA/RNA杂交体及相关的分子,与本文描述的多核苷酸或者mRNA序列或者其部分互补的多核苷酸或者寡核苷酸,以及与编码CAE的多核苷酸或者其mRNA杂交的多核苷酸或者寡核苷酸。
在特定的实施方案中,所述多核苷酸包含一般来说对应于SEQ ID NO:7的核酸序列以及其互补序列。在特定的其他实施方案中,所述多核苷酸包含一般来说对应于SEQ ID NO:8的核酸序列。优选地,所述多核苷酸为分离的多核苷酸。在其他的实施方案中,所述多核苷酸为重组的多核苷酸。
本文也提供了多核苷酸变体。如前所述,多核苷酸变体可以含有一个或者多个取代、添加、删除和/或插入,从而所述多核苷酸的活性基本上不减少。其对多核苷酸的活性的效果一般地可以如本文描述地评估,或者使用常规的方法进行。一般来说,多核苷酸变体与编码全长的或者截短的具有荚膜异多糖酸降解活性的多肽的核苷酸序列具有至少约80%的核酸序列同一性,所述多肽是本文公开的,或者是本文公开的全长的或者截短的多肽序列的任意其他片段。优选地,变体与编码具有内毒素降解能力的多肽的多核苷酸序列的一部分显示出至少约85%,87%,88%或者89%的同一性,以及更优选地至少约90%,92%,95%,96%或者97%的同一性。该同一性百分比能够容易地通过比较多核苷酸与目标多核苷酸的相应部分确定,其使用任意的方法,包括使用本领域普通技术人员已知的计算机算法,如Align或者BLAST算法(参见例如Altschul,J.Mol.Biol.219:555-565,1991;Henikoff和Henikoff,Proc.Natl.Acad.Sci.USA89:10915-10919,1992),其可得自NCBI网站,而且其在本文别处描述。可以使用默认的参数。
典型地,变体多核苷酸与编码本文公开的全长多肽序列(如SEQ ID NO:7)的核酸序列具有至少约80%的核酸序列同一性,可选地至少约81%的核酸序列同一性,可选地至少约82%的核酸序列同一性,可选地至少约83%的核酸序列同一性,可选地至少约84%的核酸序列同一性,可选地至少约85%的核酸序列同一性,可选地至少约86%的核酸序列同一性,可选地至少约87%的核酸序列同一性,可选地至少约88%的核酸序列同一性,可选地至少约89%的核酸序列同一性,可选地至少约90%的核酸序列同一性,可选地至少约91%的核酸序列同一性,可选地至少约92%的核酸序列同一性,可选地至少约93%的核酸序列同一性,可选地至少约94%的核酸序列同一性,可选地至少约95%的核酸序列同一性,可选地至少约96%的核酸序列同一性,可选地至少约97%的核酸序列同一性,可选地至少约98%的核酸序列同一性,可选地至少约99%的核酸序列同一性。
对于编码截短的多肽的多核苷酸,该多核苷酸变体典型地与编码本文公开的截短的多肽序列(如SEQ ID NO:7)的核酸序列具有至少约80%的核酸序列同一性,可选地具有至少约81%的核酸序列同一性,可选地至少约82%的核酸序列同一性,可选地至少约83%的核酸序列同一性,可选地至少约84%的核酸序列同一性,可选地至少约85%的核酸序列同一性,可选地至少约86%的核酸序列同一性,可选地至少约87%的核酸序列同一性,可选地至少约88%的核酸序列同一性,可选地至少约89%的核酸序列同一性,可选地至少约90%的核酸序列同一性,可选地至少约91%的核酸序列同一性,可选地至少约92%的核酸序列同一性,可选地至少约93%的核酸序列同一性,可选地至少约94%的核酸序列同一性,可选地至少约95%的核酸序列同一性,可选地至少约96%的核酸序列同一性,可选地至少约97%的核酸序列同一性,可选地至少约98%的核酸序列同一性,可选地至少约99%的核酸序列同一性。
在一个实施方案中,核酸分子与在SEQ ID NO:7中列出的核酸序列具有至少90%的序列同一性。例如,核酸分子可以与在SEQ ID NO:7中列出的核酸序列具有至少95%的序列同一性,或者可以与在SEQ ID NO:7中列出的核酸序列具有至少98%的序列同一性。在一个具体实施方案中,核酸分子具有在SEQ ID NO:7中列出的序列,也即该核酸分子与在SEQ ID NO:7中列出的核酸序列表现100%的序列同一性。
在另一个实施方案中,核酸分子与在SEQ ID NO:8中列出的核酸序列具有至少90%的序列同一性。例如,核酸分子与在SEQ ID NO:8中列出的核酸序列可以具有至少95%的序列同一性;或者与在SEQ ID NO:8中列出的核酸序列具有至少98%的序列同一性。在一个具体实施方案中,核酸分子具有在SEQ ID NO:8中指出的核酸序列,也即该核酸分子与在SEQ ID NO:8中列出的核酸序列表现100%的序列同一性。
特定的多核苷酸及其变体对于一部分天然基因基本上是同源的,所述基因编码期待的目标多肽。得自(例如通过热变性)该多核苷酸以及变体的单链核酸能够在适度严格的条件下与天然产生的DNA或者RNA序列杂交,所述DNA或者RNA序列编码天然的目标多肽。在适度严格的条件下可检测地杂交的多核苷酸可以具有包括至少10个保守核苷酸的核苷酸序列,例如,至少50个,至少100个,至少150个,至少200个,至少250个,至少300个,至少350个,至少400个,至少450个,至少500个或者更多个保守核苷酸,所述保守核苷酸与特定的目标多核苷酸互补。在特定优选地实施方案中,该序列(或者其互补序列)对于期待其表达干扰的单个特定的多肽是独特的,以及在特定的其他实施方案中,所述序列(或者其互补序列)可以由两个或者更多个期待多肽表达干扰的相关的目标多肽共享。
本发明的序列上特异的多核苷酸可以使用一种或多种的几个准则进行设计。例如,为了设计具有10,20,30,40,50,60,70,80,90,100,200,300,400,500,600或者更多个保守的与编码目标多肽(例如具有荚膜异多糖酸降解活性的多肽,如在此描述的那些)序列相同核苷酸的多核苷酸,可以从多核苷酸序列的可读框中扫描具有一种或多种以下性质的序列:(1)约1:1然而不大于2:1或1:2的A+T/G+C比例;(2)在5'末端的AA二核苷酸或者CA二核苷酸;(3)内部的发夹环,其解链温度少于55°C.;(4)解链温度少于37°C(解链温度按照如(3)和(4)中描述地,可以使用本领域技术人员已知的计算机软件确定)的同型二聚体;(5)至少10-20个保守核苷酸的序列,所述序列为未鉴定存在于任意其他已知多核苷酸序列中(该评估可以容易地使用对技术人员可得的计算机程序,如BLAST搜索公众可得的数据库确定)。可选地,多核苷酸序列可以使用计算机软件设计及选择,所述软件商业地可得自多个卖方(例如OligoEngineTM(Seattle,Wash.);Dharmacon,Inc.(Lafayette,Colo.);Ambion Inc.(Austin,Tex.);以及QIAGEN,Inc.(Valencia,Calif.))。还可参见Elbashir等人,Genes&Development15:188-200(2000);Elbashir等人,Nature411:494-98(2001)。根据现有技术中已知的方法,可以随后测试目标多核苷酸编码目标多肽的能力,与其他的目标多核苷酸杂交的能力,或者影响目标多核苷酸的表达的能力,以及基于这些试验,特定的多核苷酸的效力的确定对于本领域技术人员是显而易见的。
具有本领域常规技术的人员也能够容易地认识到由于遗传密码的简并,多种核苷酸序列可以编码在此描述的多肽。也即一个氨基酸可能由几种不同的密码子之一编码,以及本领域技术人员能够容易地确定:尽管一种特定的核苷酸序列可能彼此不同(其可以通过在此公开的,以及本领域已知的比对方法进行确定),所述序列可能编码具有相同的氨基酸序列的多肽。作为实例,多肽中的氨基酸亮氨酸可以由六中不同的密码子(TTA,TTG,CTT,CTC,CTA以及CTG)之一编码,丝氨酸也能如此(TCT,TCC,TCA,TCG,AGT以及AGC)。其他的氨基酸,如脯氨酸、丙氨酸以及缬氨酸,可以由四种不同密码子(对于脯氨酸为CCT,CCC,CCA,CCG;对于丙氨酸为GCT,GCC,GCA,GCG;以及对于丙氨酸为GTT,GTC,GTA,GTG)的任一编码。这些多核苷酸中的一些与任意天然基因的核苷酸序列具有最少的同源性。然而,由于密码子使用的不同而变化的多核苷酸在本发明中特别地被涵盖。
所述多核苷酸还可以包括密码子最优化的序列,也即,已经为了特定的宿主种类进行了优化,通过将使用频率少于约20%的任意密码子替换进行。为了在给定的宿主种类中表达而优化的核苷酸序列(通过消除假的聚腺苷酸化序列,消除外显子/内含子剪接信号,消除转座子样重复和/或除了密码子优化之外的GC含量的优化)可以通常地称作现有技术中的表达增强序列。
多核苷酸也可以用使其检测容易的试剂标记。例如,该试剂可以与下述组合:荧光标记(例如Prober等人,Science238:336-340(1987);Albarella等人,EP 144914);化学标记(例如,Sheldon等人,美国专利No.4,582,789;Albarella等人,美国专利No.4,563,417);和/或修饰的碱基(例如,Miyoshi等人,EP 0 119 448)(其各自以其全文在此结合作为参考)。
本发明的多核苷酸或者其片段也通常能够特异性地与其他的核酸分子在一定的环境下杂交。例如,如果两个分子能够形成反平行、双链的核酸分子结构,将这两种核酸分子称为能够特异性地与彼此杂交。核酸分子或者多核苷酸如果与另一个核酸分子或者多核苷酸显示完全的互补性,则称它们为是互补的。当分子之一的各个核苷酸与另一个分子的核苷酸互补,则称这些分子显示完全的互补性。如果两个分子能够彼此杂交,所述杂交具有允许它们在至少常规的低严格条件下保持彼此退火的充分的稳定性,则称这两个分子是最小互补的。类似地,如果该分子能够彼此杂交,所述杂交具有允许它们其在常规的高严格条件下保持彼此退火的充分的稳定性,则称该分子是互补的。常规的严格条件在本文别处描述,并由Sambrook等人,MolecularCloning,A Laboratory Manual,2nd Ed.,Cold Spring Harbor Press,Cold SpringHarbor,N.Y.(1989)以及由Haymes等人,Nucleic Acid Hybridization,APractical Approach,IRL Press,Washington,D.C.(1985)中描述,其各个在此结合作为参考。从完全互补的偏离是因此可以允许的,只要该偏离不完全地阻止所述分子形成双链结构的能力。因此,为了使核酸分子作为引物或者探针,其仅需要在序列中的充分的互补性,从而在所采用的特定的溶剂和盐浓度下能够形成稳定的双链结构。
在特定的实施方案中,本发明的多核苷酸特异地与SEQ ID NO:7和SEQ ID NO:8或者其互补序列的一个或多个在适度严格的条件下杂交
多核苷酸的制备
多核苷酸,包括编码具有荚膜异多糖酸降解活性的多肽的多核苷酸,可以使用多种技术制备,所述技术对于特定期待的多核苷酸的制备以及期待的用于多核苷酸的序列的鉴定和选择是有用的。例如,多核苷酸可以从cDNA扩增而来,所述cDNA由适用的细菌、细胞或者组织类型制备。该多核苷酸可以通过聚合酶链式反应(PCR)扩增。对于此方法,序列特异的引物可以是基于本文提供的序列设计,也可以购买或者合成。扩增的部分可以用于从适用的文库中使用公知的技术分离全长的基因或者其期待的部分。在该技术中,使用适合扩增的一种或多种多核苷酸探针或者引物筛选文库(cDNA或者基因组的)。优选地,选择文库的尺寸,以包括更大的分子。为了鉴定基因的5’及上游区域,随机引物文库也可以是优选的。对于获得内含子以及延伸5’序列,基因组文库是优选的。对于本发明所预期的多核苷酸,适用的序列也可以选自多核苷酸序列的文库。
对于杂交技术,可以使用公知的技术标记部分序列(例如通过缺口易位或者末端标记32P)。可以随后通过使含有变性细菌菌落的过滤物(或者含有病毒斑的菌苔)与标记的探针杂交来筛选细菌或者噬菌体的文库(参见例如Sambrook等人,Molecular Cloning:A Laboratory Manual,Cold Spring HarborLaboratories,Cold Spring Harbor,N.Y.,2001)。选择并扩增杂交的菌落或者斑,将DNA分离用于进一步的分析。可以分析克隆以确定额外的序列的量,例如通过PCR,所述PCR使用来自部分序列的引物及来自载体的引物。可以产生限制性图谱及部分序列,以确定一个或者多个的重叠克隆。可以使用公知的技术,通过连接适宜的片段产生全长的cDNA分子。
可选地,用于从部分的cDNA序列获得全长的编码序列的多种扩增技术在本领域中是已知的。在该技术内,扩增一般地通过PCR进行。一种该技术被称作cDNA末端的快速扩增,或者RACE。该技术涉及内部引物及外部引物的使用,其杂交到多聚A区域或者载体序列上,从而确定为已知序列的5’和3’的序列。多种商业上可得的试剂盒的任一种都能用于进行该扩增步骤。可以使用例如在本领域中公知的软件来设计引物。引物(或者用于本文预期的其他的用途的寡核苷酸,其包括例如,探针及反义的寡核苷酸)优选地长度为15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31或者32个核苷酸,其具有至少40%的GC含量,并与目标序列在约54°C到72°C的温度下退火。扩增的区域可以为前文所述的序列,以及连接于邻近序列的重叠序列。本发明所预期的特定寡核苷酸对于一些优选的实施方案具有10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33-35,35-40,41-45,46-50,56-60,61-70,71-80,81-90或者更多的核苷酸的长度。
本文描述的核苷酸序列可以与多种其他的核苷酸序列连接,所述连接使用成熟的重组DNA技术。例如,可以将多核苷酸克隆到多种克隆载体的任一中,所述载体包括质粒,噬菌粒,λ噬菌体衍生物和黏粒。特定目标载体包括表达载体,复制载体,探针发生载体以及测序载体。一般来说,适用的载体包含在至少一种生物体中的复制功能的起点,常规限制性内切酶位点以及一个或者多个可选择的标记。(参见,例如PCT国际公开No.WO 01/96584;PCT国际公开No.WO 01/29058;美国专利No.6,326,193;美国公开申请No.2002/0007051,其各个在此以其全文结合作为参考)。其他的因素取决于期待的用途,并对于在本领域普通技术人员而言是显而易见的。例如,本发明涵盖多核苷酸序列在重组核酸构建体的制备中的应用,所述重组核酸构建体包括表达期待的目标多肽如CAE多肽的载体;本发明还涵盖转基因动物及细胞的产生(例如细胞,细胞克隆,细胞系或者细胞世系,或者使得一种或多种期待的多肽(例如目标多肽)的表达便利的生物体)。在特定的实施方案中,可以将多核苷酸制剂,从而允许进入哺乳动物的细胞并在那里表达。如下文所述的,该制剂尤其对于治疗用途有用。本领域普通技术人员知道,有多种实现多核苷酸和/或多肽在目标细胞中的表达的途径,并且可以采用任意适用的方法。例如,可以使用公知的技术将多核苷酸包括于病毒载体中(也见于例如美国申请公开No.2003/0068821(在此以其全文结合作为参考))。病毒载体可以额外地将基因转移或者合并为选择性的标记物(以辅助识别或者选择经转导的细胞)和/或靶向部分,如编码在特定目标细胞上的受体的配体从而使载体成为靶向特异性的基因。靶向可以使用抗体完成,其通过本领域普通技术人员所知道的方法。
在其他的实施方案中,可以使用标准的技术将一种或者多种启动子鉴定、分离和/或包括于本发明的重组核酸构建体中。本发明提供了核酸分子,所述核酸分子包含这种启动子序列,或者一种或多种其顺式或反式作用元件。这样的调节元件可以增强本文描述的多核苷酸或者多肽的表达。5’侧翼区域可以基于本文提供的基因组序列使用标准技术产生。如果必要,可以使用基于PCR的或者其他标准方法产生额外的5’序列。可以将5’区域使用标准方法亚克隆并测序。可以将引物延伸和/或RNA酶保护分析用于证实从cDNA推断的转录起始位点。
为了界定启动子区域的分界线,可以将不同大小的推定的启动子插入物亚克隆进入异源的表达系统中,所述系统含有适宜的报告基因,而没有启动子或者增强子。适用的报告基因可以包括编码β-半乳糖苷酶、氯霉素乙酰基转移酶、荧光素酶,分泌的碱性磷酸酶或者绿色荧光蛋白(GFP)基因(参见例如Ui-Tei等人,FEBS Lett.479:79-82(2000))。适用的表达系统是公知的,并可以适用公知的技术制备或者商业上获得。内部缺失构建体可以使用特有的内部限制性位点或者通过非特有的限制性位点的部分消化产生。构建体可以随后转染到细胞中,所述细胞显示高水平的多核苷酸和/或多肽的表达。一般而言,将显示最高水平的报告基因表达的且具有最小的5’侧翼区域的构建体鉴别为启动子。该启动子区域可以连接于报告基因,并用于评估试剂调控启动子驱动的转录的能力。
一旦鉴别了功能启动子,就能够定位顺式及反式作用元件。顺式作用序列可以基于与此前表征的转录基序的同源性进行鉴别。随后在鉴别的序列中产生点突变,以评估该序列的调节功能。该突变可以使用位点特异的诱变技术或者基于PCR的策略产生。如前所述,将所改变的启动子随后克隆到报告基因表达载体中,并评估突变对报告基因表达的影响。
抗体
本发明的一个方面涉及抗体、单链的抗原结合分子或者特异性地与本发明的一种或者多种多肽及其同源物、融合物或者片段结合的其他蛋白质。该抗体可以用于定量地或者定性地检测本发明的多肽。一般来讲,如果和本发明的蛋白质或者多肽分子的结合不被非相关分子的存在竞争性地抑制,则称抗体或多肽特异地结合于本发明的蛋白质或者多肽分子。
编码本发明的多肽的全部或者部分的多核苷酸,可以通过重组的方式表达,以产生能相应用于引发抗体的蛋白质或者多肽,所述抗体能够结合所表达的蛋白质或者多肽。该抗体可以用于例如蛋白质的免疫分析中。该蛋白质编码分子,或者其片段可以为融合分子(也即更大的核酸分子的部分),从而经表达产生融合蛋白·。一言而喻,本发明的任意核酸分子能够通过重组方式表达,以产生由这些核酸分子编码的蛋白质或者肽。
特异地结合多肽及其片段的抗体可以为多克隆或者单克隆的,并可以包括完整的免疫球蛋白,或者免疫球蛋白片段(如(F(ab'),F(ab')亚基2)的抗原结合区,或者单链的免疫球蛋白,其可以通过例如重组的方式产生。一言而喻,从业者熟悉标准来源的材料,所述材料描述了用于构建、操纵以及分离抗体的具体条件及步骤(参见例如,Harlow和Lane,In:Antibodies:A LaboratoryManual,Cold Spring Harbor Press,Cold Spring Harbor,N.Y.(1988),其全文在此结合作为参考)。
如本文中别处所讨论的,该抗体分子或者其片段可以用于诊断用途。当抗体打算用于诊断用途时,将其衍生化可以是期待的,例如使用配体基团(如生物素)或者可检测的标记基团(如荧光基团,放射性同位素或者酶)。产生结合本发明的蛋白质或者肽分子的抗体的能力使得这些分子的模拟化合物的鉴定是可能的。一般来讲,模拟化合物是并非特定目标化合物或者该化合物的片段的化合物,然而其表现特异地结合于针对该化合物的抗体的能力。在一个实施方案中,所述抗体为兔的多克隆抗体。
试剂盒
本发明的其他方面涉及在实施本文描述的方法中有用的试剂盒。一般来说,用于本发明方法的实践的试剂盒根据其期待的用途,优选地具有一定程度上不同的形式。
所述试剂盒典型地是被包装的,并包括含有试剂的容器,其溶液的体积基于本试剂盒额定的制备物的量而变化。该容器一般包括一种或者多种在实施本文描述的方法中有用的试剂。在特定的实施方案中,所述试剂盒是划分成不同隔室的试剂盒;也即所述试剂盒包括包含于相同的或者分开的容器中的试剂。容器的实例包括,但不限于小玻璃容器、塑料容器或者塑料或纸的条。这些和其他类似的容器使试剂从一个隔室有效转移到另一个,或者到一些其他的容器,从而各种样品及试剂不交叉污染,并且各个容器的试剂或者溶液能够以定量的方式从一个隔室添加到另一个。该容器可以包括接受试样的容器、含有本发明的多肽或者多核苷酸的容器、含有宿主细胞或者用于产生本文描述的多肽的其他材料(例如载体,病毒或者噬菌体)的容器,含有层析材料(如前述的一种或者多种离子交换、亲和以及疏水相互作用层析树脂)的容器、含有洗涤试剂(例如磷酸盐缓冲溶液、Tris缓冲溶液等等)的容器和/或含有在多糖检测中有用的试剂的容器,所述的多糖如荚膜异多糖酸(如在下文实施例16中详细描述的检测中的那些)。所述试剂盒可以包括本文描述的CAE多肽的来源和浓聚物。对于更大规模的应用,所述试剂盒通常地包括类似的试剂和溶液,然而以更大的量。
例如,所述试剂盒可以包括适用于克隆本文描述的CAE多核苷酸的细菌表达载体。可选地,所述试剂盒可以包括多核苷酸和/或多肽本身。所述试剂盒还可以包括细胞,如能胜任将重组克隆转化到表达载体中的细胞。所述试剂盒还可以包括培养基(例如肉汤),所述培养基用于本发明的多肽的细菌表达。所述试剂盒也可以包括一套三个的普通的碱性裂解缓冲液,其描述于Qiagen产品目录中,并被Sambrook等人称作溶液I、II及III(也即分别为pH为8.0的25mM Tris HCl和10mM EDTA,1%SDS和0.2N NaOH,及pH为5.5的3M乙酸钾)和/或再悬浮溶液(例如10mM Tris HCl,其pH为8.0)
在一些实施方案中,包括例如基于离心的旋转滤器或者盘状滤器。一种用于此应用的模型旋转滤器为Millipore Durapore离心滤器(MilliporeCorporation,Billerica,MA)。除此之外,或者通过可选的方式,也可以包括在离心或其他滤器机制(例如盘)中具有填压的钢丝绒、纤维素和/或聚合物/塑料材料的滤器。还可以包括陶的滤器。也可以包括滤器辅助物,其如硅藻土或者类似的化合物。对于更大规模的应用,可以提供切向流滤器。
在一个具体实施方案中,所述试剂盒包括本文描述的一种或者多种多肽。例如,包括于试剂盒中的多肽可以为纯化的多肽,其与SEQ ID NO:1以及其保守的氨基酸取代具有至少90%,98%,99%或者100%的同源性。在一个具体实施方案中,所述多肽可以具有SEQ ID NO:1的氨基酸序列。除此之外或者可选地,包括于试剂盒中的多肽可以为纯化的多肽,该多肽包含与SEQ ID NO:12及其保守的氨基酸取代具有至少90%,98%,99%或者100%的同源性的氨基酸序列。在一个实施方案中,所述多肽具有SEQ ID NO:2的氨基酸序列。包括于试剂盒中的多肽也可以包括用于分离或者纯化的标签(例如组氨酸标签或者
Figure BDA00002748883000551
);因此,包括于试剂盒中的多肽对应于SEQ ID NO:3,SEQ ID NO:4,SEQ ID NO:5或SEQ ID NO:6。可选地,与SEQ ID NO:1或者SEQ ID NO:2或者其变体的多肽一起,所述试剂盒可以包括可以用于形成所述带标签的多肽的试剂和组合物。
该试剂盒也典型地包括使用说明。所述说明通常对于使得最终用户能够进行想要的制备或者分析是合适的。该说明通常为确定性的表达,例如,描述用于至少一种制备或者分析的试剂浓度,参数,如要混合的试剂和样品的相对量、试剂/样品混合物的保持或者孵育时间长度,温度的需求或者偏好,等等。该说明可以印刷在试剂盒的外或者内包装上,在小册子、卡片或者试剂盒中的其他的纸上,和/或在试剂盒中包括的容器或者器皿的外表面上。
通过将本说明详细描述,很清楚在不悖离所附权利要求中所限定的本发明的范围的前提下,修改和变化是可能的。进一步地,应该认识到本发明中的全部实施例以非限制性实施例提供。
实施例
荚膜异多糖酸在所有质粒DNA制备物中以显著的量存在,包括临床级别(cGMP)制备物中。荚膜异多糖酸构成革兰氏阴性细菌的约25%的细菌细胞壁。为了提供最大的安全性,必须去除荚膜异多糖酸,尤其在将其与阳离子的载剂混合以在动物或人中递送时。荚膜异多糖酸的去除也增加来自各个质粒的基因表达,这是由于荚膜异多糖酸是RNA聚合酶活性的抑制剂。在Balb/c小鼠的器官中,在静脉(iv)注射BIV DNA-脂质体复合物后,观察到了2.2到4.4倍的报告基因表达(CAT,氯霉素乙酰基转移酶)的增加。由于荚膜异多糖酸通常特别大并且为分支的链,其典型地必须降解,从而有效地去除。
将荚膜异多糖酸鉴别为质粒DNA多糖的主要污染性组分之下,进行了实验以开发用于将荚膜异多糖酸从质粒DNA中去除的方法。据报道特异的酶,此后称作荚膜异多糖酸降解酶(CAE)通过特异的裂解性噬菌体产生(Hughes,K.A.等人1998.J.Appl.Microbiol.85:583-590)。所述荚膜异多糖酸降解酶(CAE)仅被研究人员部分地纯化。因此,为了开发使用CAE去除荚膜异多糖酸的方法,酶必须纯化、测序并表达。
经确定噬菌体(NST1)具有裂解大肠杆菌株SC12078的能力,所述株过量产生荚膜异多糖酸。将所述NST1噬菌体分离并用作分离出经纯化的CAE的来源。已知多糖粘度在与特异性的多糖降解酶孵育后下降(Sutherland,I.W.1967.Biochem.J.104:278-285)。因此,含有CAE的蛋白质样品通过其影响含有荚膜异多糖酸的样品粘度的能力进行鉴定。如减少荚膜异多糖酸粘度的能力所证明了,发现分离自NST1的纯化的CAE具有高水平的CAE活性。
一旦将纯化的CAE分离,通过减少样品粘度的生物分析鉴定,将其进行质谱及艾德曼(Edman)降解。使用艾德曼降解,鉴定了15个氨基酸。通过质谱,对8个额外的蛋白质片段进行了测序,其各个片段含有6个到16个氨基酸。筛选公开可得的蛋白质数据库,包括噬菌体数据库,未发现与这些肽片段任一个的单独匹配。
基于这些肽序列,制备了一套简并寡核苷酸。这些寡核苷酸用于测序荚膜异多糖酸降解酶,该酶来自从NST1噬菌体纯化的基因组DNA。确定了CAE的可读框(ORF)。将所述核苷酸CAE ORF测序,并且CAE的氨基酸顺序使用通用遗传密码确定。这些序列示于图1。PCR引物用于将ORF序列通过PCR从NST1噬菌体基因组DNA扩增,从而随后将其克隆进入酵母表达载体,所述PCR引物根据CAE ORF的开始及末端制备。
从噬菌体中制备了天然产生的荚膜异多糖酸降解酶(CAE),其为新鉴定的蛋白;一般来说仅产生了小的量,大约从4.5L噬菌体+细菌培养物中的110ug。也制备了此蛋白质的兔的多克隆抗体,其为肽产生的抗体。该抗体是高度活性的,并能够用于包括蛋白质印迹,ELISA分析等等任意目的。
为了产生大规模的量的CAE,创建了用于进一步纯化质粒DNA制备物的重组形式的CAE。此前的在酵母、杆状病毒以及细菌中产生全长的重组CAE的尝试通常是不成功的,据信是由于不恰当的蛋白折叠。在研究CAE的预测结构以及天然蛋白的胰凝乳蛋白酶消化之后,我们确定了可以从CAE蛋白的氨基端(N-端)去除107个氨基酸,而不损失活性。胰凝乳蛋白酶是在这一个位置即氨基酸106-107切割天然全长蛋白的唯一蛋白酶。重组的CAE蛋白不被任意的蛋白酶切割所以是尤其地稳定的(>2年)。我们在细菌中使用表达载体pET28a(Invitrogen;参见实施例9)制备了CAE的具有功能的截短的形式。所述截短的蛋白质在大肠杆菌BL21(DE3)中制备,其在16℃下培养过夜,并随后纯化。从1L培养物中能够制备约10mg的CAE重组蛋白。
然后任意的质粒DNA制备物可以使用重组CAE消化并进一步纯化。简单地说,质粒DNA在使用CAE在37℃下消化3小时后,随后在50℃下消化21小时。去除蛋白质,并将DNA首先通过硼酸层析纯化。所述质粒DNA沿着柱流过并不结合于柱。除了极其小的片段,绝大多数多糖结合于柱。为了去除最小的、经消化的多糖,将所述DNA悬浮液最终通过Marosep100离心浓缩器单元在两性洗涤剂存在下纯化。所述两性洗涤剂通常是优选的,这是由于荚膜异多糖酸看起来紧密地与质粒DNA结合。
为了用于临床级别的质粒DNA的制备物并为了节约成本,还可以将重组的CAE放置于固体支持物上,并可以再生以及重复使用多次。
通过本文描述的分析,我们没有发现可检测水平的多糖,包括荚膜异多糖酸。
实施例1:荚膜异多糖酸的制备
使用SC12078细菌制备荚膜异多糖酸,其为已知过量产生荚膜异多糖酸的细菌株。将几个菌落的SC12078细菌从平板中挑出并接种于2升LB肉汤中,所述肉汤具有0.4%的含甘油的氯霉素(10ug/ml)。使所述细菌在37°C下,在摇床孵化箱中,230rpm下培养过夜。当所述培养物达到光密度(OD)600在约4.5到约4.7时,将培养停止。
在将细菌通过离心去除之前,细菌的烧瓶首先大致地震荡,以增加释放到培养基中的荚膜异多糖酸的量。所述细菌以6000xg4°C下离心15分钟成团。将所述细菌团丢弃,并将上清储存并使用Amicon过滤设备,用YM30膜浓缩。
通过将3个体积的冰冷的乙醇加入1个体积的上清中,并使混合物在冰上保持15分钟,从而使荚膜异多糖酸从浓缩的上清中沉淀。将沉淀物通过将所述混合物以10,000xg,0°C下离心至少15分钟或者直到上层液体为澄清的而进行收集。将所述沉淀溶解于最少量的无菌水中,并在换水至少三次的情况下透析过夜。
将经透析的溶液冻干至干燥,在将溶液加入到试管(溶液要在其中干燥的)试管之前,确保称量试管,从而确定样品冻干之后的重量。一旦样品完全干燥,向样品中加入水,从而产生冻干的样品的2%的溶液。
将固态的硫酸铵加入冻干的样品的2%的溶液中,得到90%硫酸铵饱和溶液。所述90%硫酸铵饱和溶液沉淀出O抗原及荚膜异多糖酸。沉淀的多糖通过离心收集,所述离心为10,000xg在0°C下至少15分钟,或者直到上清澄清。该成团的沉淀溶于最少量的水,在至少三次换水的情况下透析过夜,然后冻干。
将冻干物溶于150mL的pH为7.2的0.1M磷酸铵中。通过加入37.5ml的溴化六癸基三甲基铵(其也称作塞太弗伦或者溴棕三甲铵),荚膜异多糖酸从冻干物溶液中沉淀。荚膜异多糖酸沉淀通过离心收集,所述离心为10,000xg在0°C下至少15分钟,或者直到上清澄清。
成团的沉淀溶于100ml的1M NaCl中。通过将3个体积的冰冷的乙醇加入1个体积的1M NaCl溶液中,并使混合物在冰上保持15分钟,使荚膜异多糖酸沉淀。将所述荚膜异多糖酸沉淀通过将所述混合物以10,000xg,0°C下离心至少15分钟进行收集,或者直到上清澄清。将荚膜异多糖酸沉淀溶解于最少量的无菌水中,并在换水至少三次的情况下在冷藏间中透析过夜。
将经透析的溶液冻干至干燥,在将溶液加入试管(溶液要在其中干燥的试管)之前,确保称量试管,从而确定样品冻干之后的重量。一旦样品完全干燥,将所述荚膜异多糖酸溶于最少量的水中,等分于无菌的管中,并于-25°C下储存。
实施例2:NST1噬菌体制备
NST1噬菌体由于其裂解大肠杆菌株SC12078的能力,鉴定是CAE的好的来源,所述大肠杆菌株是过量地产生荚膜异多糖酸的株。将所述NST1噬菌体分离并用作分离出纯化的CAE的来源。
将几个SC12078细菌的菌落从琼脂平板中挑出并接种于2个含有5mLLB-甘油培养基的管中,所述培养基含有0.4%的氯霉素(10ug/ml)。使所述细菌在37°C下过夜培养,以制备噬菌体的储备液。制备噬菌体储备液的顺序稀释液(1:102,1:101,1:100,1:10-1以及1:10-2),所述储备液含有五种不同的NST1噬菌体颗粒数量。所述稀释液基于1ul的噬菌体储备液,其储存于4°C下并含有107个噬菌体颗粒)。将所述过夜培养物(200ul)与1ul病毒储存液混合产生107浓度的噬菌体。制备其它稀释液,其含有与20ul的下一个更高浓度的噬菌体混合的180ul的细菌过夜培养物。将含有107到103的颗粒的最高浓度弃去。
较低的五种稀释液通过将其各个迅速混合到3ml的LB+甘油顶层琼脂(0.7%的琼脂糖,保存于55°C)中进行涂板。所述混合物迅速地倾倒于LB+氯霉素(10ug/ml)的平板上。所述混合及倾倒优选地快速进行,以避免顶层琼脂的凝固。所述平板在37°C下,顶部朝下地孵育5小时。在孵育后,将平板使用封口膜包裹并于4°C下储存。将不含噬菌体的平板弃去。
实施例3:NST1噬菌体上清的大规模制备
将细菌株SC12078(过度产生荚膜异多糖酸的株)在LB-含氯霉素(10ug/ml)的琼脂平板上培养,并于4℃下储存。如实施例2所述,将几个NST1噬菌体平板在LB-甘油的顶层琼脂(琼脂糖0.7%)上培养,其叠加于LB-氯霉素琼脂平板的顶端,并于4℃下储存。所述平板不储存一个月以上,这是由于在更长的储存时间下,NST1失去生存力及其感染细菌的能力。
将几个SC12078细菌的菌落接种于4个50ml的无菌管中,各个管含有15ml的LB-甘油-氯霉素(10ug/ml)培养基。使所述菌落在37℃下,摇床恒温箱中培养过夜。
然后使用15ml的所述过夜培养物接种三个4升的烧瓶,各个烧瓶含有1.5升的LB-甘油-氯霉素(10ug/ml)培养基。使所述细菌菌落在37℃下,摇床孵化箱(230rpm)中培养约2-4小时,直到该溶液具有0.12至0.67的OD600。
将各个烧瓶接种30个NST1噬菌体幼株(phage plug),并将烧瓶在震荡下(230rpm)于37℃下孵育过夜。测量了转染了NST1噬菌体并过夜孵育的SC12078培养物的OD600,其典型地为4.5到4.7。将这些培养物在4℃,4200rpm下使用大型的,高压灭菌器离心瓶离心5分钟。将所述含有NST1噬菌体的上清倒入消毒的容器中,并于-80℃下储存,或者立即地纯化。将含有细菌细胞及碎屑的沉淀弃去。
实施例4:荚膜异多糖酸降解酶的分离
按照实施例3中所述制备噬菌体上清。将苯甲基磺酰氟(PMSF)加入噬菌体上清中,达到PMSF的最终浓度为0.1mM,以制备起始溶液,并将其于4°C下储存。
用于CAE纯化的起始溶液在桌面型离心机中,以约4200rpm及4℃下离心20分钟。将所得的上清去除并保存,并弃去沉淀。使用Amicon滤器设备及YM30膜将上清体积从4升减少到4mL的样品。将该4ml样品进一步在聚碳酸酯离心管中,4°C下,40,000xg在SS34旋转器中离心60分钟。所述样品在冷藏室中透析过夜,其至少三次更换10mM Tris HCl,其为pH7.5,含有0.1mM PMSF。
将Q琼脂糖高流速柱(10cm高,1.5cm直径)使用10mM Tris HCl,pH7.5,0.1mM PMSF平衡,直到从该柱中流出的流体的pH为7.5。经透析的上清加载到经平衡的柱上,所述柱使用两个柱容量的(大约30ml)10mM Tris HCl,pH7.5,0.1mM PMSF进行洗脱。
该柱使用从10mM Tris HCl,pH7.5,0.1mM PMSF(150ml)到200mMTris HCl,pH6.5,0.1mM PMSF(150ml)的线性梯度洗脱,以每小时7ml的流速收集4ml的组份(共计有75个组份)。使用粘度计测试所收集的组份的荚膜异多糖酸降解活性,其于下文实施例5中描述,并将有CAE活性的等份合并。
将合并的CAE活性的组份在一次性的Amicon滤器上通过离心进行浓缩。测定所得的浓缩物的蛋白质浓度,以及该浓缩物的样品在梯度聚丙烯酰胺凝胶(4-12%)上进行电泳。电泳样品包括五个蛋白质条带。
在含有Toyopearl HW-50F树脂的120厘米柱上,根据尺寸分离蛋白质浓缩物,所述柱使用pH7.3-7.4的磷酸盐缓冲溶液(PBS)平衡,所述缓冲溶液含有0.1mM PMSF。柱洗脱液按照1ml组份收集。试验各个组份的CAE活性,并将活性的组份合并。
将合并组份在一次性的Amicon滤器上通过离心进行浓缩。测定浓缩物的蛋白质浓度,以及该浓缩物的样品在梯度聚丙烯酰胺凝胶(4-12%)上进行电泳。获得了单个的蛋白质条带,其具有约84,000道尔顿的分子量。
所述蛋白条带通过标准步骤制备,并进行质谱分析及艾德曼降解。
实施例5.从噬菌体NST1中分离的CAE的部分氨基酸序列的鉴定
所述CAE蛋白质按照前述进行纯化。将纯化的CAE蛋白进行质谱,其在17个循环中,使用Applied Biosystems Procise Sequencer PROCISE-cLC和艾德曼降解进行。使用艾德曼降解,鉴定了N端的15个氨基酸,其如下所示
ANSYNAYVANGSQTA(SEQ ID NO:9)
通过质谱,对8个额外的蛋白质片段进行了测序,其各个片段包括6个到16个氨基酸,如下所示:
LLEQGTGEALTDGVLR(SEQ ID NO:10)
VPNSEVSLNALPNVQR(SEQ ID NO:11)
LADYEFTSAPSNSK(SEQ ID NO:12)
YSDLSTLN(SEQ ID NO:13)
QLLFDTAPLA(SEQ ID:14)
APYQVDDNL(SEQ ID NO:15)
FGAYLPDD(SEQ ID NO:16)
LGTLGG(SEQ ID NO:17)
在各个这些肽片段序列中,氨基酸亮氨酸(L)实际上可能为亮氨酸(L)或者异亮氨酸(I),氨基酸天冬氨酸(D)实际上可能为天冬氨酸(D)或者天冬酰胺(N),氨基酸谷氨酰胺(Q)实际上可能为谷氨酰胺(Q)或者赖氨酸(K),以及氨基酸苯丙氨酸(F)可能实际上为苯丙氨酸(F)或者氧化的甲硫氨酸。
实施例6.荚膜异多糖酸降解酶的克隆
A.简并寡核苷酸引物的制备
使用来自前述的CAE蛋白的蛋白片段的氨基酸序列的简并密码子制备简并寡核苷酸引物。
B.噬菌体基因组DNA的制备
噬菌体NST1的基因组DNA使用标准DNA纯化方法进行纯化。使用简并寡核苷酸与噬菌体基因组DNA杂交,以鉴定下文所述的CAE基因。
C.得自基因组DNA的CAE基因的测序和扩增
CAE ORF的测序直接地在NST1噬菌体基因组DNA上进行,其以简并引物开始,并在随后的测序循环中使用基于已知序列的引物。在NST1噬菌体基因组DNA的两条链上,完整地测序CAE ORF。
制造了按照CAE ORF序列的开始和末端制造的引物,并将其用于从NST1噬菌体基因组DNA扩增CAE基因的序列,其使用聚合酶链式反应(PCR),使用Deep VentDNA聚合酶(New England BioLabs)以避免扩增中的错误。将扩增的DNA随后电泳,并将合适的条带切下,从凝胶中将其纯化。
实施例7.荚膜异多糖酸降解酶的序列
测定了CAE的核苷酸序列,并将其列于图9中:
ATGGCGAACA GCTATAATGC TTACGTGGCG AACGGTTCACAGACCGCATT CCTCGTCACG 60
TTCGAGCAGC GCGTGTTCAC TGAGATTCAG GTGTACCTCAACTCCGAACT CCAGACGGAA 120
GGGTACACCT ACAACTCTGT GACCAAACAG ATTATCTTCGACACCGCCCC GCTCGCCGGG 180
GTGATTGTCC GACTCCAACG CTACACCTCT GAGGTTCTGCTGAACAAGTT TGGCCAAGAC 240
GCTGCCTTCA CCGGGCAGAA CCTTGACGAG AACTTTGAGCAGATTCTGTT CAAGGCTGAG 300
GAAACTCAGG AAGCATGGCT CGCGCCACTT GACCGCGCCGTCCGTGTTCC GAACTCCGAA 360
GTCTCCATCA ACGCATTACC GAACGTCGCT GGCCGCCGCAACAAGGCACT GGGCTTTGAC 420
AGCAATGGTC AGCCGTTCAT GATTCCTCTG GTCGATATCCCGGACTCCGC GCTGGCGATT 480
GCTCTGGCAA TGGCTGACGG CGGTAAGTGG ATTGGTACTCTCGGCGGGGG CACGTTCCTC 540
GACCGTCAGG ATACCGTCTG CCTGTCCGAG TTCACCAACAACACTGGGTA CGCCTCTGTC 600
GCCGCTGCGG TGCAGGCTTG CTTCGACTAT GCGAAAGCCAACGGCAAGGT CGTTGACGCT 660
CGCGGCTGGG AAGGTACGGT GGATTCCACT GTGCTGATGGACGGTATTGA GGTCGTCGGC 720
GGTACGTGGC ACGGCAAGGC TGACATTCGC CTGCTGAACTCCACCTTCCG CAACTTCGTG 780
GCCTCTACTG TCCGTGTCGC CTACTGGGGC GGCGAGGTGCGTATTGCTGA CTATGAGTTC 840
ACCAGCGCAC CGAGCAACTC CAAGGTTACG TCTATCCTGTTCCAAGGCAA CATCGCCGGG 900
GGCAGCTACG TCATTGAGAA CGGTATCCAC CGCAATGGTAAGTTCGGTAT TCTCCAACAG 960
GGTACTGGCG AGGCTATCAC CAACGGCGTT ATCCGTGGCATCACCATGAT GGATATGCAG 1020
GGTGACGGTA TCGAGATGAA CGTAATCAAC AAGCACTATGATGGTGGCCT GCTGATTGAG 1080
AACATCTTCC TTGAGAACAT CGACGGCACC AACGCGCCTATCCCACTGTC CAACTGGGGC 1140
ATTGGTATCG GTATCGCTGG TCAAGGCCCG TTCGGTTGGGATGCTGCTGA GACGCAGTAT 1200
GCGAAGAACG TCACTGTCCG TAACGTCCAT GCTCCGCGTGGTGTGCGTCA GGTCGTCCAC 1260
TTCGAGGTTA CGCGTGACAG CACCTGCGAG AACGTAGTGGCCAACCCTGA CCTGTCCGTC 1320
TCCATTGGTA CTGGCCTGAC TGCCGCTGGT GTAATCACGTACGGCTGCAA GCGCATGACC 1380
ATTGACGGTG TAGTCGGTGA GCCTATGAAC ACCGGAGCAACCTCTCCGAA CGATATTCGT 1440
ATCGTGATGT TGGAGTGGGG TGCGAACCAA GCAGGTGCTGGCGGTACGCC GGGTGCAGCT 1500
TGCCCATCGT TCGACATGAC CGTGCGTAAC GTGCAGACCCGTACCGGGCG CTTCTATGCT 1560
GGTGTCGGCT CCGACGATGA CAACACCAAC ACATATCACCTTGAAAACAT TCACTGTTAC 1620
AAGATGACGC TGTTTGGTGT GGCAACTCTG CTGAACATGACCAACGTGAC TGGTGTGGTG 1680
TTCGACGCTG TAGGCGATGA CTCCAGCGGC GGTACGTCCTCCAACGGTCT GTACCCGCGT 1740
AAGAAGACTG TTCTCAACAT GGTGAACGTG AACTTCTACGGGCCGGGCAT GACCGAGGGT 1800
GCGCTGTACA GTAAGGCTCG CTACTCGGAT ATCAGCACGCTGAACTCCAA CGTGCGTGCT 1860
ATCCCGTACA CCAACATCCA AGGTAACGTG GGTGTCATCCTGTCTCCGGT CAACCGCATG 1920
TACACGCTGC CGAACGCCCT CGCTACCCTT GACGGTAATGAGTTCCCCAC CGGGAAAGAG 1980
TTCTGCGAAG GTACTGTGCT GTTCAAGACC GATGGCTCCGGTGGCAACTT CATCGTGACC 2040
CGGTTCGGTG CGTACATCCC GGATGACGGT AACAACTTCAAGGTGCGTGC TGCTGCCGCT 2100
GGCCAGACGT ATCTGGAGCA GAACCTGACT CCGGCTGGTACTCAGGCTTC CACCTCGTGG 2160
CTGTACCATA AGCCAATCTC TGCTGGTACT CGACTCAATGTTCCGGGTGC CGGGCCGAGC 2220
GGCGGTACGC TCACTGTGAC GGTGGTGCGT GCTCCGTATCAGGTGGACAA CAACATCGGA 2280
AACCCGGTAC GCATCGACAT TACCCCGGCC ATTGTGACGGCAATCCCTGC GGGAACGCAG 2340
CTCGCCGCTA CCTACCCGGT GGCTTACATC TAA
(SEQ ID NO:7)
氨基酸的序列使用通用遗传密码确定,并在图1中与核苷酸序列比对显示。CAE的氨基末端与艾德曼降解的结果匹配,除了艾德曼降解未检测到末端的甲硫氨酸。除此之外,CAE的分子质量测定为84,354,并与通过所测序的蛋白质条带的分子量相对应,所述条带是通过聚丙烯酰胺凝胶上的位置确定的。
实施例8:在质粒DNA的纯化中使用荚膜异多糖酸降解酶
测试了质粒DNA中荚膜异多糖酸的存在。如果荚膜异多糖酸存在于质粒DNA样品中,则将质粒DNA样品与本发明的重组的荚膜异多糖酸降解酶一起孵育。CAE将荚膜异多糖酸消化为多个更小的多糖,所述多糖能够通过多种本领域已知的方法从质粒DNA中分离。随后将质粒DNA样品从CAE中分离,并进一步地如本文描述地纯化。
实施例9:重组CAE(氨基酸107-790(下划线的),在N-末端包括六个组氨酸)在载体pET-28A-C(+)中的构建
构建体中包含的氨基酸:[(Nco1)MGHHHHHH……终止(Xho1)]
MGHHHHHHLAPLDRAVRVPNSEVSINALPNVAGRRNKALGFDSNGQ PFMIPLVDIPDSALAIALAMADGGKWIGTLGGGTFLDRQDTVCLSEFTNN TGYASVAAAVQACFDYAKANGKVVDARGWEGTVDSTVLMDGIEVVGGT WHGKADIRLLNSTFRNFVASTVRVAYWGGEVRIADYEFTSAPSNSKVTSIL FQGNIAGGSYVIENGIHRNGKFGILQQGTGEAITNGVIRGITMMDMQGDG IEMNVINKHYDGGLLIENIFLENIDGTNAPIPLSNWGIGIGIAGQGPFGWDA AETQYAKNVTVRNVHAPRGVRQVVHFEVTRDSTCENVVANPDLSVSIGT GLTAAGVITYGCKRMTIDGVVGEPMNTGATSPNDIRIVMLEWGANQAGA GGTPGAACPSFDMTVRNVQTRTGRFYAGVGSDDDNTNTYHLENIHCYK MTLFGVATLLNMTNVTGVVFDAVGDDSSGGTSSNGLYPRKKTVLNMVN VNFYGPGMTEGALYSKARYSDISTLNSNVRAIPYTNIQGNVGVILSPVNR MYTLPNALATLDGNEFPTGKEFCEGTVLFKTDGSGGNFIVTRFGAYIPDD GNNFKVRAAAAGQTYLEQNLTPAGTQASTSWLYHKPISAGTRLNVPGAG PSGGTLTVTVVRAPYQVDNNIGNPVRIDITPAIVTAIPAGTQLAATYPVAYI终止(SEQ ID NO:4)。
将PCR扩增的从氨基酸107到790的CAE区域(在N-末端包括8个额外的氨基酸)使用限制性酶Nco1和Xho1进行消化,并连接到载体pET-28a-c(+)的多克隆位点中,所述载体也使用Nco1和Xho1进行消化。将该构建体在宿主BL21(DE3)中转化及生长,所述宿主在包含50mg/升的卡那霉素的Hyper肉汤培养基中。大规模的培育在37°C下培养,其在225rpm下震荡直到OD600达到0.5(约2到4小时)。将温度调节到16°C,并将培养持续30分钟。随后加入IPTG直到其最终浓度为0.015mM,并继续额外培养20小时。随后在Ni-NTA柱上纯化所述的重组CAE,所述柱选择性地结合N-末端的6个组氨酸。随后将结合的蛋白洗脱,浓缩,在储备缓冲液中再次复原,并在4°C下储存于冰箱中。
实施例10:将重组CAE克隆转化到表达宿主BL21(DE3)中
将OneBL21(DE3)细胞的一个小瓶在冰上融化。向细胞加入10ng的质粒DNA,体积为1到5μl,并且轻轻地叩击混合。不使用移液器混合细胞。将该小瓶在冰上孵育30分钟。准确在42°C的水浴中孵育30秒。不混合或者震荡。将小瓶从42°C水浴中取出并迅速地放置在冰上。向小瓶中加入250μl预先温暖的SOC培养基。将小瓶放置于微离心架上,并使用胶带将架上的小瓶密封。将架沿着其边放置于振动孵育箱中,并在37°C下以225rpm振动该管准确地1小时,将20到200μl的各个转化反应物涂板到两个LB平板上,所述LB平板含有80μg/ml卡那霉素。进行两个不同体积的涂板,以确保在至少一块平板上有良好地分布的菌落。剩下的转化反应物可以储存于+4°C下,并如有需要于次日涂板。将平板反转并在37°C下过夜孵育。
实施例11:培养表达重组CAE的细菌
向30ml LB培养基中接种单独的菌落或者来自甘油储存液的30μl,所述培养基含有50mg/升的卡那霉素。将其在37°C,225rpm震荡下孵育过夜。将24ml的过夜培养物加到2升的Hyper肉汤培养基中,所述培养基含有50μg/升的卡那霉素。在37°C下,225rpm震荡下培育所述培养物,直到OD600达到0.5(2~4小时)。将温度变化到16°C,继续振动30分钟。加入IPTG直到其最终浓度为0.015mM,并继续培养20小时。通过以4800×g离心15分钟,收集细胞并将沉淀储存于-80°C下。
实施例12:重组CAE的纯化
制备溶液。刚好在使用之前加入PMSF。
A.20mM Tris-HCl pH8.0,0.25M NaCl,10%甘油,10mM咪唑,0.1ml/升β-巯基乙醇,1mM PMSF。
B.20mM Tris-HCl pH8.0,0.25M NaCl,10%甘油,125mM咪唑,0.1ml/升β-巯基乙醇,0.1mM PMSF。
C.20mM Tris-HCl pH8.0,0.25M NaCl,10%甘油,500mM咪唑,0.1ml/升β-巯基乙醇,0.1mM PMSF。
D.20mM Tris-HCl pH8.0,0.25M NaCl,10%甘油,1mM PMSF。
将Ni-NTA柱(20ml床容量,用于2L的培养物)使用200ml的缓冲液A平衡。将细胞沉淀(来自2升培养物)解冻并悬浮于150ml缓冲液A中。使用MICROFLUIDIZER PROCESSOR(Model M-110Y)(根据生产商的说明)将细胞糊打碎,并以40,000×g离心以获得澄清的上清。将上清加载于Ni-NTA柱上,并使用600ml的缓冲液A洗涤,随后使用80ml的缓冲液B洗涤。将结合的重组CAE使用80ml缓冲液C洗脱。将洗脱液加入Amicon Ultra-4离心过滤单元中,截留值为30K。在4°C下以2800×g旋转,以浓缩洗脱液。将保留物使用缓冲液D复原到原始的样品体积。重复此过程三次。测试所得的全部蛋白。
实施例13:使用重组CAE消化质粒DNA
使用EndoFree Plasmid Giga试剂盒(根据生产商的说明)从2.5升LB培养物中纯化质粒DNA。将质粒DNA溶解于4ml0.05M pH6.5的磷酸钾缓冲液中。加入适宜的量的重组CAE(质粒DNA:CAE=10:1),于37°C下孵育3小时。将温度变化到50°C并孵育21小时。
实施例14:硼酸盐亲和层析
已经将硼酸盐层析用于纯化样品,所述样品含有RNA、单核苷酸,寡核苷酸、含有胸腺嘧啶二醇的DNA以及苯并芘:DNA加合物(Schott,H.等人1973.Biochemistry 12:932-938;Singh,N.and R.C.Wilson.1999.J.Chromatography 840:205-213;Jerkovic,B.等人1998.Anal.Biochem.255:90-94;Pruess-Schwartz,D.等人1984.Cancer Res.44:4104-4110)。然而硼酸盐层析过去未用于质粒DNA的成功纯化中,这是由于没有人曾确定质粒DNA中存在的可观的量的多糖以及在基因疗法过程中这些多糖的毒性作用。
商业上可得的硼酸亲和树脂结合含有顺式二醇基团的化合物。优选的硼酸亲和柱可得自Pierce,Rockford,Il。该硼酸柱具有以每ml凝胶的100毫摩尔硼酸盐偶联到聚丙烯酰胺球形珠上的m-氨基苯基硼酸。
将硼酸柱在0.2M,pH8.8的乙酸铵中平衡。将质粒DNA样品在乙醇中沉淀,并将所述沉淀使用70%的乙醇洗涤。经洗涤的DNA沉淀溶解于0.2M,pH8.8的乙酸铵中。将该DNA溶液随后以每2ml硼酸盐柱材料的约10mgDNA加载到硼酸柱上。随后将柱使用0.2M,pH8.8的乙酸铵洗涤。该柱的洗涤液按照组份收集,并测量其各个组份在260nm下的光学吸收(O.D.).具有最高的O.D.260nm的组份合并并加载到第二个硼酸柱上。第二个硼酸柱使用0.2M,pH8.8的乙酸铵洗涤。收集柱洗涤液的组份,并测量其各个的O.D.260nm。将具有最高的O.D.260nm的组份合并,并将DNA使用乙醇沉淀。将沉淀使用70%的乙醇洗涤并在10mM pH8.0的Tris缓冲液中再悬浮。将DNA样品过滤除菌并储存于20°C下,直到使用。
质粒DNA不与硼酸盐柱结合,并随着洗涤缓冲液通过硼酸盐柱流出。从另一方面来说,多糖污染物、RNA以及LPS结合或者吸收于硼酸盐柱上。使用0.1M的甲酸洗脱多糖组份从而再生硼酸柱。随后洗涤硼酸柱并储存于0.1M氯化钠及0.02%的叠氮化钠中。
将经纯化的DNA样品随后进行本发明的多糖的检测及定量方法。将各个纯化的样品进行一种或多种多糖检测方法(也即糖醛酸检测方法,岩藻糖检测方法和/或荧光标记方法)。多糖检测方法的结果一致地显示硼酸盐层析的使用产生了具有降低到不可检测水平的多糖的DNA样品。这些数据提供于下文表2中。
实施例15:MACROSEP净化
在硼酸层析之后,将具有最高OD260的各份合并。使用2体积的100%冷乙醇以及1/10体积pH为5.2的3M的乙酸钠沉淀质粒DNA。在-20°C下孵育(1小时到O/N)。在4°C下,于13000rpm旋转15分钟。将沉淀使用1ml70%的乙醇洗涤两次,于13000rpm下旋转5分钟。风干并将沉淀在14ml10mM pH8.0的Tris-HCl再悬浮,所述Tris-HCl含有0.1%两性洗涤剂。在37°C下孵育15分钟。向Macrosep100离心浓缩器单元中加入溶液,设为300K截留值(根据生产商的说明)。在30°C,3500rpm下旋转1小时,以浓缩质粒DNA。将保留物使用10mM pH8.0的Tris-HCl复原到原始样品的体积,所述Tris-HCl含有0.1%两性洗涤剂。在30°C,3500rpm下旋转1小时。重复此步骤三遍。将保留物使用10mM pH8.0的Tris-HCl复原到原始样品的体积。在30°C,3500rpm下旋转1小时。重复此步骤两遍。使用2体积的冷乙醇,以及1/10体积的pH为5.2的3M乙酸钠沉淀质粒DNA。在-20°C下孵育(1小时到O/N)。在4°C下,于13000rpm旋转15分钟。将沉淀使用1ml70%的乙醇洗涤两次,于13000rpm下旋转5分钟。风干并将质粒DNA沉淀在无菌水中再悬浮,并将最终浓度调至5mg/ml。
实施例16:质粒DNA样品中多糖的定量
为了确保质粒DNA样品的任意纯化方法实际上成功地去除所有的污染性多糖,开发了用于在该纯化过程之前及之后,评定DNA的多糖污染的方式。
开发了三种测试,一种基于糖醛酸水平的检测(已知多糖包括高水平的糖醛酸的情况下),一种基于岩藻糖水平(已知岩藻糖占荚膜异多糖酸的22%的情况下)以及一种基于在凝胶电泳的样品中荧光标记多糖的视觉检测。
1.糖醛酸测试
E.coli表达几种主要类型的多糖,其包括O-及K-抗原相关的多糖、荚膜异多糖酸以及肠细菌共同抗原(ECA)。荚膜异多糖酸以高分子量以及低分子量的形式存在,而ECA典型地为低分子量的形式。与O-及K-抗原相关的多糖具有与脂类A相关的变体和不与脂类A相关的其他变体。脂类A相关的多糖可以为共价连接的,或者非共价连接的。在特征上,脂类A相关的多糖为低分子量的变体。O-及K-抗原相关的不与脂类A相关的多糖以高分子量以及低分子量的变体存在。
各个的这些E.coli荚膜多糖,尤其地长链的和支化的多糖包括糖醛酸,可见于质粒DNA制备物中。例如,荚膜异多糖酸约有11重量%的糖醛酸。肠细菌共同抗原(ECA)包括约33重量%的糖醛酸,而O-及K-抗原相关的多糖具有约25重量%的糖醛酸
质粒DNA样品的糖醛酸含量使用标准曲线测量,所述标准曲线使用硫酸肝素及葡糖醛酸作为标准物得到。硫酸肝素类似于来自E.coli的多糖污染物,这是由于糖醛酸占硫酸肝素的约25%的总重量。硫酸肝素按重量50%由糖组成。这些糖的半数为葡萄糖胺,糖的另外一半为艾杜糖醛酸及葡萄糖醛酸。硫酸肝素的剩余部分来自糖的修饰物,所述修饰包括硫酸酯及乙酰胺。可选地,葡萄糖醛酸可以用于产生用于直接测量糖醛酸的标准曲线。
使用0.1ml的肝素或者葡萄糖醛酸标准物产生标准曲线,所述标准物每毫升溶液中含有0.0,0.05,0.1,0.2或者0.5mg的标准物。将标准物溶液(0.1ml)置于具有3ml的硼酸/硫酸溶液的玻璃试管中(也即0.025M四硼酸钠10水合物溶于具有1.84的比重的硫酸中),并混合均匀。将0.1ml的0.125%咔唑纯乙醇溶液加入到该混合物中,并将整个混合物涡轮震荡。盖上各个试管的顶部,并将管在沸水中浸泡10分钟。将管冷却并在分光光度计上读取溶液在530nm处的吸收。将获得的标准物的吸收数值对标准物的浓度进行作图。当DNA样品经历相同的反应时,质粒DNA样品的糖醛酸含量可以从其在530nm处的吸收值进行推断。
质粒DNA样品的多糖含量可以随后通过将糖醛酸的量加倍进行推断,所述加倍范围为3.3到9.1(取决于样品中荚膜异多糖酸、ECA以及O-和K-抗原的普遍性)。质粒DNA样品的糖醛酸含量从标准曲线进行计算,所述标准曲线由肝素或者葡萄糖醛酸标准物产生。得自两个标准曲线的结果是基本上等价的。
该方法用于评价多种质粒DNA制备物的糖醛酸水平,该DNA制备物包括特定公司制备的用于人类药物试验的GMP级别的DNA,以及临床级别的DNA。“GMP”是美国食品和药品管理局所使用的术语,其用于指明化合物根据良好作业规范(GMP)条例生产。认为由GMP生产的化合物在人类中的使用是安全的。不同质粒DNA制备物的试验结果示于下表2中。
表2
Figure BDA00002748883000701
2.岩藻糖测试
由于已知革兰氏阴性细菌包括约25%的荚膜异多糖酸,也将质粒DNA制备物进行荚膜异多糖酸的测试。荚膜异多糖酸测试基于每mg的DNA中存在的岩藻糖的量。荚膜异多糖酸包括22%的岩藻糖,其比例为2:2:1:1:3(岩藻糖:半乳糖:葡萄糖:糖醛酸:其他的修饰物),然而其他的多糖污染物不含有岩藻糖,或者只有少量的岩藻糖。因此,岩藻糖测试使得在纯化的质粒DNA制备物中,荚膜异多糖酸污染的量的测试能够进行。
例如,按照糖醛酸测试,含有每mg DNA的约0.7mg多糖的质粒DNA制备物具有每mg DNA的0.14mg的岩藻糖或者0.64mg的荚膜异多糖酸。通常发现在质粒DNA制备物中,主要的多糖污染物为荚膜异多糖酸。
由于荚膜异多糖酸即使在临床级别的质粒DNA中也以高水平存在,有必要确保任意的纯化质粒DNA样品的方法实际上成功地去除所有的污染性荚膜异多糖酸。因此,开发了用于评估在该纯化步骤之前及之后DNA的荚膜异多糖酸污染的方法。
用于样品中的岩藻糖含量的测试的基本步骤可见于Morris的文章中(Morris,J.B.1982.Anal.Biochem.121:129-134)。溶液制备及溶液储存条件以及用于此测试的样品的详细描述也已经公开(Passonneau,J.V.和O.H.Lowry.1974.In:Methods of Enzymatic Analysis,U.H.Bergmeyer(ed.),2ndedition,Academic Press:New York,volume4,pp.2059-2072)。
将要测试的DNA样品(450ug)转移到3ml的管中并冻干。向各个样品中加入200ul的5.5M三氟乙酸,反应管使用聚四氟乙烯衬里的盖密封。水解通过将样品在100°C下加热4小时完成。在冷却到室温后,在通风柜中,将三氟乙酸使用氩气流除去。将剩余的残留物随后溶解于212ul无菌水中。仅将200ul所得的样品用于岩藻糖测试,所述样品对应于425ug的初始DNA样品。
使用Morris描述的方法(1982.Anal.Biochem.121:129-134),将200ul的样品及标准物移液到1.5ml的微型离心管中。所使用的标准物是浓度范围为从0ug岩藻糖到200ug岩藻糖的岩藻糖溶液(0,1,12.5,25,50,100及200ug岩藻糖)。
将管放于冰上,并加入50ul的1mg/ml岩藻糖脱氢酶溶液,随后加入50ul的200uM的NAD+。将所述管混合,并于4°C下孵育3小时。为停止酶反应,将50ul的1N NaOH加入到各个管中,混合,并于60°C下孵育10分钟。将管随后在冰上冷却,并将样品与50ul的1M盐酸混合,以中和样品。
从各个样品中取出50ul的等份,并转移到新的1.5ml微型离心管中。向各个样品中加入250ul的循环试剂(200mM Tris pH8.4;50mM乙酸铵;0.5mM ADP;100mM乳酸盐;5mMα-酮戊二酸盐;20单位/ml乳酸盐脱氢酶;20单元/ml谷氨酸盐脱氢酶),将溶液混合并于室温下孵育1小时。将各个管在沸水中加热2分钟,停止循环试剂的酶促反应。
将管在冰上冷却,并随后加入250ul of丙酮酸盐试剂(800mM咪唑缓冲剂,其pH为6.2;0.45mM NADH;0.06单位/ml乳酸盐脱氢酶),并将管进行混合。将所述管随后在室温下水浴中温暖1到2分钟,随后将其放于30°C的孵化箱中20分钟。丙酮酸盐反应通过向各个样品中加入200ul的1.5M HCl并将溶液混合而中止。
各个管中的内含物随后转移到15ml加盖的管中,并加入2.5ml的6NNaOH并进行混合。随后将管在60°C下孵育10分钟。在将样品冷却到室温后,向各个管中加入4ml的无菌水,将管倒转,并进行荧光测定。
各个样品的部分(300ul)等分地置于96孔的微量滴定板的孔中。将三到五个孔用无菌水充满,并用作空白。荧光光度计设置为使用360nm的激发过滤器及465nm的发射过滤器。读取标准物和样品的荧光,并扣除空白的荧光。标准物的荧光读数作图作为标准曲线,并通过从标准曲线插值,确定质粒DNA样品中的岩藻糖的量。
使用这种方法,测定了质粒DNA样品的岩藻糖水平,并计算了荚膜异多糖酸水平的浓度。一致地,发现荚膜异多糖酸是多种来源的质粒DNA中的首要污染物,所述质粒DNA甚至是GMP级别的质粒DNA。
3.经凝胶电泳的DNA样品的荧光检测
开发了涉及样品的标记的视觉方法,该方法用于质粒DNA样品中多糖的检测,该方法涉及将样品使用能将质粒DNA样品中的多糖选择性地标记的物质进行标记。一种该物质是DTAF,即(4,6-二氯三嗪基)氨基荧光素(Molecular Probes,Eugene,OR)。DTAF特异性地标记所有多糖,无论其是否含有糖醛酸。该荧光探针与多糖或者碳水化合物中的羟基反应,因此其为用途不仅为采用糖醛酸检测的测试方法的探针。
DTAF不标记DNA,这是由于DNA没有可用的游离羟基。DNA中所有可用的羟基是磷酸化的。该特异性使得DTAF成为用于将DNA从其多糖污染物中区分出来的优选探针。尽管DTAF用于本发明的方法中,本领域技术人员能够理解,任意的在多糖和DNA之间提供特异性标记的荧光探针在本发明的方法中都可以是有用的。
DNA及多糖可以在一块凝胶上跑的平行的样品中观察。在将样品加入凝胶之前,使用溴化乙锭(EtBr)预处理DNA。多糖使用DTAF标记。质粒DNA样品可以在一块凝胶的两个道中跑,在一个道中的样品用EtBr染色,在另一个道中的样品用DTAF染色;从而允许观察质粒DNA样品中的多糖及DNA含量。
DNA及多糖标准物(40ul的2mg/ml溶液)通过加入10ul的pH5.2的3M乙酸钠,随后加入200ul的冷乙醇进行沉淀。将样品于-20°C下孵育30分钟,随后在Eppendorf微型离心机中以10,000rpm离心4分钟。沉淀随后悬浮于10ul乙酸钠与200ul乙醇中,并再次离心。随后将所述沉淀再悬浮于200ul乙醇中,重复离心并溶于50ul0.1M pH10.5的碳酸钠中。
通过将60mg/ml DTAF悬浮于碳酸盐缓冲液中,制备新制的DTAF悬浮液。由于不是所有的DTAF都进入溶液,所得的悬浮液在其加入各个样品之前进行涡旋震荡。新制的DTAF悬浮液的5ul样品(其在黑暗和冷处保存)在定时的时间间隔下加入溶解的样品中,所述时间间隔为0分钟,45分钟以及90分钟。每次经加入DTAF悬浮液,将反应混合物涡旋震荡并置于暗处室温下。该反应在2.5小时后,通过将各个样品加入10ul乙酸钠及325ul乙醇而沉淀终止反应。将这些样品在-20°C下孵育45分钟,促进沉淀。样品随后离心,并将沉淀使用25ul乙酸钠及500ul乙醇洗涤三次。所述样品最后用500ul乙醇洗涤并随后在室温下暗处干燥20分钟。
经洗涤的样品溶于40ul Tris醋酸盐EDTA(TAE)缓冲液中,并将2.5ul到20ul的样品加到凝胶中。在EtBr存在下,将未与DTAF反应的DNA样品加入凝胶的其他的道中。λDNA-Hind III消化物及PhiX174DNA-HaeIII消化物作为凝胶标准物跑胶。
所述凝胶为1%琼脂糖Tris醋酸盐EDTA凝胶,pH8.3。所述凝胶或者电泳缓冲液中均不含有溴乙锭。该凝胶在90伏下电泳45分钟。重要的是,要注意除了在λDNA-Hind III标准物道中,样品缓冲液必须没有溴酚蓝,该溴酚蓝会淬灭DTAF荧光。
图2显示了凝胶,其中几种不同的DNA质粒样品以该用于多糖可视化及定量的凝胶电泳方法进行了试验。LPS(Sigma Chemical Company,St.Louis,Mo.)及“脱毒的”LPS(其中脂类A的脂肪酸部分已经去除,(Sigma ChemicalCompany,St.Louis,Mo.)),被分别加入凝胶的道10及8中作为对照。道1-4及12说明了质粒DNA样品的DTAF染色,其中糖醛酸含量在表1中给出。道5,7,9,11及13无样品加载。道6说明了Qiagen无内毒素的DNA样品的DTAF染色(目前认为是纯化的质粒DNA的黄金标准)。
在图2中显示的凝胶上的道14到20显示了不同DNA样品的EtBr染色结果。道14-17为EtBr染色的、与道1-4中用DTAF染色的相同的DNA样品。道18是道12中显示的DNA样品,其以EtBr染色。道19是Qiagen无内毒素的DNA样品的EtBr染色,在道6中显示由DTAF染色。道20为高及低DNA分子量标准物的混合物,其以EtBr标记。
结果显示多糖及DNA在凝胶上迁移到不同的位置,DTAF仅标记DNA样品中所含有的多糖,以及溴乙锭仅标记DNA。所有的DNA样品,包括Qiagen无内毒素的DNA,具有可检测水平的多糖。LPS及脱毒的LPS也含有可检测水平的多糖。因此,尽管“脱毒的”LPS(Sigma Chemical Company,St.Louis,Mo.)假定去除了全部的脂类A,在含有脱毒的LPS样品的第8道中,仍然检测到了显著水平的多糖。
这些数据在下表3中提供。
表3
Figure BDA00002748883000731
4.在质粒DNA样品中发现的多糖的毒性
为了确定在质粒DNA样品中所检测到的多糖水平在临床上是否是显著的,在动物中对样品进行了急性毒性研究。Balb/c小鼠,六周大,其静脉注射DNA-脂质体复合物,其中所述脂质体按照公开的步骤(Nancy SmythTempleton,等人July1997.Nature Biotechnology15:647-652)制备。在各个组中注射20只小鼠,注射后跟踪一周。结果示于表4中。
结果显示100ul的DNA静脉注射导致所有的小鼠在注射后18小时之内死亡,所述DNA含有每mg DNA的0.4mg多糖。作为比较,相同的DNA50ul的注射未导致任何的动物在注射后一周之内死亡。使用不同来源的DNA样品得到了类似的结果。
发现,对于含有每mg DNA的约0.26mg多糖的质粒DNA,当将50ugDNA注射到免疫抑制的转基因小鼠中每周一次持续三个月,其降低基因表达。当质粒DNA制备物含有每mg DNA的不可检测水平的多糖(<0.03mg)时,在动物中无不利效果。
表4
Figure BDA00002748883000741
.*洁净的DNA不含有可检测的多糖,其按照醛糖酸测试或者DTAF染色测量。
**注射的脂质体的数量与和注射的100μl DNA的数量等价。
我们也在小鼠中进行了额外的体内研究,使用截短的CAE重组蛋白以验证我们的DNA纯化步骤。这些研究在正常小鼠(Balb/c)中,以及在具有或者没有胰脏肿瘤的SCID小鼠中进行。SCID小鼠对于荚膜异多糖酸更为敏感,并在iv注射含有40ug商业上可得的与脂质体及其他的阳离子载体复合的质粒DNA时死亡,而Balb/c小鼠在刚高于50ug质粒DNA的水平死亡。在图12-14所示的表格中,我们显示了总共120只小鼠在高剂量的DNA-BIV脂质体复合物的静脉注射后生存,所述DNA根据本发明的方法纯化。
5.使用BCA试剂检测CAE的测试
原理:荚膜异多糖酸酶(6x His-CAE)及其他糖酶当降解其底物的时候,增加还原性末端。在本规程中提供小型化的高敏感的二喹啉甲酸(BCA)数值减少测试,检测糖类的还原性末端。该测试能用于检测所有降解任何多糖的糖酶;具有外型或者内型机理的酶。然而,应该注意减少由培养基、蛋白质及底物产生的背景吸收。
材料及仪器:
荚膜异多糖酸(CA):2μg/μl,在pH6.5的0.05M磷酸钾缓冲液中
6x His-CAE:0.5μg/μl,在pH6.5的0.05M磷酸钾缓冲溶液中
胎牛血清白蛋白(BSA):0.5μg/μl,在pH6.5的0.05M磷酸钾缓冲液中
缓冲液:0.05M磷酸钾缓冲液,pH6.5
Micro BCA蛋白质分析试剂盒(Pierce Lot#23235)
光学96-孔反应板(Applied Biosystems,Part#4306737)
96孔,平底未进行组织培养测试,非无菌的PVC柔性板(Falcon#353912)或者Fisherbrand平底96孔板,透明,PS,非无菌的(Cat#12565501)
多道移液器
96孔板读板器
37°C及50°C孵育器。
带有用于旋转96孔板的旋转器的离心机。
简要过程:总地来说,本测试使用96孔板,其各个孔含有2μg的CAE(TEST)或者BSA(空白),100μg CA,在总体积为110μl的缓冲液中的混合物,其在37°C下孵育3小时,并随后在50°C下孵育21小时。随后地将100μl的各个反应混合物转移到新的96孔板中,向其中加入100μl的新制备的BCA试剂,并使其在37°C下孵育2小时,冷却到室温15分钟,并在550nm下,使用多孔板读板器在550nm下读取。
详细步骤:在光学的96孔反应板上(Applied Biosystems),等分的空白总体积为110μl(也即缓冲液+CA+BSA),一式三份,也即以相同的顺序加入下列:56μl缓冲液+50μl的2μg/μl CA+4μl的0.5μg/μl BSA。
等分的测试总体积为110μl(也即缓冲液+CA+6x His CAE),一式三份,也即以相同的顺序加入下列:56μl缓冲液+50μl的2μg/μl CA+4μl的0.5μg/μl6x His-CAE。
将所有的孔使用所提供的带状盖子密封。将板在室温下1500rpm旋转1分钟。从孔上除去盖子,并使用多道移液器轻轻地抽吸三次进行混合。将孔使用盖子再次密封并在37°C的恒温箱中孵育3小时。
将板移动到50°C的孵育器中,并孵育过夜总计21小时。
将板在室温下,1500rpm旋转1分钟。
使用多道移液器等分量取100μl各个孔的样品到新的96孔板中(Falcon或者Fisherbrand)。
通过将Micro BCA试剂盒中提供的三种试剂混合,制备BCA试剂,也即MA+MB+MC,其比例为0.5:0.48:0.02,使用对于所有孔的足够的量。使用多道移液器将100μl该新制备的BCA试剂等分加入各个孔中,轻轻地抽吸三次进行混合。将盖子置于96孔板上,并在37°C孵育器中将板孵育2小时。使板在室温下冷却15分钟,并使用多孔板读板器在550nm下读数。
从该试验中得到扣除空白数值的CAE活性数值。注意:如果多孔板读板器不允许在550nm下读数,可以在其他的波长下读数,例如在544nm,570nm,595nm。然而距离550nm近是最好的。
参考文献:P.J.A.Meeuwsen,J.-P.Vincken,G.Beldman和A.G.J.Voragen,J..A Universal Assay for screening expression libraries forcarbohydrases.Biosci.Bioeng.89(2000),pp.107–109;Verhoef R,Beldman G,Schols HA,Siika-aho M,
Figure BDA00002748883000761
M,Buchert J,Voragen AG.Characterisation of a1,4-beta-fucoside hydrolase degrading Colanic Acid.Carbohydr Res.2005 Aug15;340(11):1780-1788。
6A粘度测试用于质粒DNA制备物中的CAE的检测
原理:荚膜异多糖酸(CA)是粘性的,并且当其催化地由荚膜异多糖酸酶(6x His-CAE)降解时其粘度降低。该粘度降低可以使用粘度计准确地测量,并且通过将其与对照反应中所获得的数值相比较,计算CAE的活性,所述对照反应即含有CA然而不存在酶的。
材料及设备:
荚膜异多糖酸(CA)1.2mg/ml在pH6.5的0.05M磷酸钾缓冲液中
荚膜异多糖酸酶(6 x His-CAE)1.0μg/μl在pH6.5的0.05M磷酸钾缓冲液中
缓冲液:0.05M磷酸钾缓冲液pH6.5
水浴37°C
Brookfield DV-I+粘度计
Brookfield CPE40号转子
简要过程:
在0.05M的pH6.5的磷酸钾缓冲液存在下,将600μg CA与1μg CAE混合,总体积为500μl。使用水浴在37°C下混合并孵化。使其冷却到室温10分钟,并使用粘度计获得读数。其与对照反应相比较,所述对照反应没有CAE。
详细过程:
作为对照,在1.5ml eppendorf管中,等分的0.5ml的1.2mg/ml CA+50μl0.05M磷酸钾缓冲液pH6.5.。
作为试验,在1.5ml eppendorf管中,等分的0.5ml的1.2mg/ml CA+1μl of 6 x His-CAE(1.0μg/μl)+49μl0.05M磷酸钾缓冲液pH6.5。
通过轻轻地抽吸混合,并使用水浴在37°C下孵育1小时。将管从水中取出并使其冷却到室温10分钟。
使用Brookfield DV+粘度计测量测试及对照的粘度,其设置于100rpm,持续30秒,使用0.5ml的相应的反应混合液等分试样进入CPE40号转子中。
以厘泊(cP)记录测试及对照的粘度数值,并使用cP值按照如下地计算CAE活性:该计算基于该事实,即,没有粘度的水具有1.00的cP值。如果CAE具有100%的活性,其应该将CA的粘度减少到1.00的cP值。因此,例如,如果对照具有1.57的cP值,我们可以从其减去1.00,得到1.57–1.00=0.57的值,其代表着100%的活性(也即如果在该试验中cP值下降0.57,则其具有100%的CAE活性)。如果该试验具有1.05的cP值,我们能类似地将此cP值从对照中减去,也即1.57–1.05=0.52,该式将用于如下地计算实际的CAE活性:0.57为100%的活性,因此0.52为多少%活性?将0.52乘以100并除以0.57=91.22%CAE活性。
6B.粘度试验用于鉴定CAE活性
将测量荚膜异多糖酸样品的粘度变化的生物测试用于检测CAE。荚膜异多糖酸样品的粘度对于CAE活性是标志性的。在与酶组份孵育之前及之后,使用具有CPE-40cone的Wells-Brookfield Cone Plate粘度计测量荚膜异多糖酸样品的粘度。该粘度计提供在约500ul的小体积中,最灵敏的粘度变化的测量。粘度计准确性通过测量矿物油标准物,并将读数与已知的矿物油粘度比较来进行监测。
该CAE测试使用了1.5%荚膜异多糖酸溶液的500ul样品。将50到100ul稀释的酶样品或者对照样品加入所述的1.5%荚膜异多糖酸溶液中。用于酶测试的对照通过将稀释的酶样品加入到缓冲溶液,并且向1.5%荚膜异多糖酸溶液中加入非蛋白质的样品来制备。各个测试样品(酶样品或者对照样品)在37°C下孵育1小时。在1小时孵育之后,使测试样品调节至室温10分钟。
在室温下30秒100rpm获得所有测试样品的粘度。所有具有CAE活性的测试样品,其按照前文所述地分离及纯化,与在粘度上无变化的对照样品相比,其显示了粘度的显著的降低。CAE测试样品将所述1.5%荚膜异多糖酸溶液的粘度从1.51降低到0.99,其中0.99为使用Wells-Brookfield ConePlate粘度计可获得的最低粘度计读数,并与缓冲液对照的粘度读数相等。
因此,本发明提供了质粒DNA样品中多糖的检测及定量的方法,以及用于从质粒DNA样品中将多糖去除到低于产生临床显著毒性的多糖水平的方法。
应该理解的是本发明能够获得其他实施方案并能够以多种方式实践和实施。同时,应该理解在此使用的措辞及术语为了说明的目的,而不应该被认为是限制。
本文公开及要求的所有组合物及方法可以在不过度的试验下,在本发明的示教下制备或者实现。尽管本发明的组合物和方法已经以优选的实施方案描述,对于本领域技术人员显然的是,可以对组合物和/或方法以及在此描述的方法的步骤或者步骤的顺序加以改变,而不背离本发明的原理、精神和范围。更具体地,明显的是,化学上及生理学上相关的特定试剂可以用于替代再次描述的试剂,而能够得到相同的或者类似的结果。所有这些类似的和对于本领域技术人员而言显然的取代和修改认为位于本发明由所附的权利要求定义的精神、范围及概念中。
Figure IDA00002748883500011
Figure IDA00002748883500021
Figure IDA00002748883500041
Figure IDA00002748883500051
Figure IDA00002748883500071
Figure IDA00002748883500081
Figure IDA00002748883500091
Figure IDA00002748883500101
Figure IDA00002748883500121
Figure IDA00002748883500141
Figure IDA00002748883500151
Figure IDA00002748883500161
Figure IDA00002748883500171
Figure IDA00002748883500181
Figure IDA00002748883500191
Figure IDA00002748883500201

Claims (25)

1.一种用于纯化质粒DNA的方法,所述方法包括使用多肽处理含有质粒DNA的含水组合物以消化荚膜异多糖酸,然后将质粒DNA从经处理的含水组合物中分离;
优选地,所述含水组合物选自粗细菌裂解液、部分纯化的细菌裂解液以及含有提取的细菌核酸的含水溶液;
优选地,所述含水组合物为粗细菌裂解液;
优选地,所述含水组合物为部分纯化的细菌裂解液;或者
优选地,所述含水组合物为含有提取的细菌核酸的含水溶液。
2.权利要求1的方法,其中,所述分离包括将所述经处理的含水组合物与层析材料组合;
优选地,所述层析材料选自阴离子交换层析树脂、阳离子交换层析树脂、疏水相互作用层析树脂及亲和层析树脂;或者
优选地,所述分离包括将所述经处理的含水组合物与亲和层析树脂组合,随后将经处理的含水组合物与疏水相互作用层析树脂组合;更优选地,所述亲和层析树脂包括基于硼酸的或者含有硼酸盐的化合物。
3.权利要求1或2的方法,其中,在使用多肽处理之前预处理所述含水组合物以从含水组合物中部分去除内毒素,所述预处理包括将所述含水组合物与层析材料组合;
优选地,所述层析材料为阴离子交换树脂;以及
更优选地,所述阴离子交换树脂包括季铵树脂。
4.权利要求1-3中任一项的方法,其进一步包括过滤所述含水组合物以进一步从质粒DNA中分离内毒素;
优选地,所述过滤在从层析材料洗脱经处理的含水组合物之后进行。
5.权利要求1-4中任一项的方法,其中,所述多肽为重组多肽。
6.权利要求1的方法,其中,在使用多肽处理之前预处理所述含水组合物以从含水组合物中部分去除内毒素,所述预处理包括将所述含水组合物与层析材料组合;在使用多肽处理后与亲和层析树脂组合,随后与疏水相互作用层析树脂组合;以及在将质粒DNA从所述疏水相互作用层析树脂上洗脱后,过滤以进一步从质粒DNA中分离内毒素。
7.权利要求1-6中任一项所述的方法,其中,所述多肽包含与SEQ IDNO:1或者SEQ ID NO:2及其保守的氨基酸取代具有至少90%同源性的氨基酸序列;
优选地,所述多肽包含与SEQ ID NO:1或者SEQ ID NO:2及其保守的氨基酸取代具有至少98%同源性的氨基酸序列;
更优选地,所述多肽为SEQ ID NO:1或者SEQ ID NO:2。
8.权利要求1的方法,其中,所述质粒DNA为革兰氏阴性细菌质粒DNA。
9.一种用于纯化质粒DNA的方法,所述方法包括:
(a)通过将含水组合物与阴离子交换树脂组合预处理含有质粒DNA的含水组合物;
(b)使用多肽处理所述经预处理的含水组合物以消化荚膜异多糖酸;
(c)将所述质粒DNA从经处理的含水组合物中分离,该分离包括将经处理的含水组合物与亲和层析树脂组合,随后将经处理的含水组合物与疏水相互作用层析树脂组合;以及
(d)过滤所述质粒DNA;
优选地,所述阴离子交换树脂包括季铵树脂;
优选地,所述亲和层析树脂包括基于硼酸的或者含有硼酸盐的化合物;
优选地,所述多肽包含与SEQ ID NO:1或者SEQ ID NO:2及其保守的氨基酸取代具有至少90%同源性的氨基酸序列;更优选地,所述多肽包含与SEQ ID NO:1或者SEQ ID NO:2及其保守的氨基酸取代具有至少98%同源性的氨基酸序列;再更优选地,所述多肽为SEQ ID NO:1或SEQ ID NO:2;
优选地,所述质粒DNA为革兰氏阴性细菌质粒DNA;或者
优选地,所述多肽为重组多肽。
10.一种多肽,其包含与SEQ ID NO:1及其保守的氨基酸取代具有至少90%同源性的氨基酸序列;
优选地,所述氨基酸序列与SEQ ID NO:1及其保守的氨基酸取代具有至少95%同源性;
更优选地,所述氨基酸序列与SEQ ID NO:1及其保守的氨基酸取代具有至少98%同源性;
再更优选地,所述氨基酸序列与SEQ ID NO:1及其保守的氨基酸取代具有至少99%同源性;
具体地,所述氨基酸序列为SEQ ID NO:1。
11.一种多肽,其包含与SEQ ID NO:2及其保守的氨基酸取代具有至少90%同源性的氨基酸序列;
优选地,所述氨基酸序列与SEQ ID NO:2及其保守的氨基酸取代具有至少95%同源性;
更优选地,所述氨基酸序列与SEQ ID NO:2及其保守的氨基酸取代具有至少98%同源性;
再更优选地,所述氨基酸序列与SEQ ID NO:2及其保守的氨基酸取代具有至少99%同源性;
具体地,所述氨基酸序列为SEQ ID NO:2。
12.权利要求10-11中任一项的多肽,其中,所述多肽为纯化的多肽、重组的多肽或同时为两者。
13.一种分离的多核苷酸,其包含与SEQ ID NO:7或其互补序列具有至少90%序列同一性的核酸序列;
优选地,所述核酸序列与SEQ ID NO:7或其互补序列具有至少95%序列同一性;
更优选地,所述核酸序列与SEQ ID NO:7或其互补序列具有至少98%序列同一性;
再更优选地,所述核酸序列与SEQ ID NO:7或其互补序列具有至少99%序列同一性;
具体地,所述核酸序列为SEQ ID NO:7。
14.一种分离的多核苷酸,其包含与SEQ ID NO:8或其互补序列具有至少90%序列同一性的核酸序列;
优选地,所述核酸序列与SEQ ID NO:8或其互补序列具有至少95%序列同一性;
更优选地,所述核酸序列与SEQ ID NO:8或其互补序列具有至少98%序列同一性;
再更优选地,所述核酸序列与SEQ ID NO:8或其互补序列具有至少99%序列同一性;
具体地,所述核酸序列为SEQ ID NO:8。
15.一种载体,其包含权利要求13的多核苷酸,其中,所述载体选自质粒、病毒及噬菌体;
优选地,所述载体为质粒或者噬菌体,例如为噬菌体;
优选地,所述核酸序列与SEQ ID NO:7或其互补序列具有至少99%序列同一性;具体地,所述核酸序列为SEQ ID NO:7;或者
优选地,所述载体为重组表达载体。
16.一种载体,其包含权利要求14的多核苷酸,其中,所述载体选自质粒、病毒及噬菌体;
优选地,所述载体为质粒或者噬菌体,例如为质粒;或者
优选地,所述核酸序列与SEQ ID NO:8或其互补序列具有至少99%序列同一性;具体地,所述核酸序列为SEQ ID NO:8;或者
优选地,所述载体为重组表达载体。
17.一种用于消化生物材料中的荚膜异多糖酸的方法,所述方法包括使所述生物材料与能够消化荚膜异多糖酸的多肽接触;
优选地,所述生物材料为细菌粘液;更优选地,所述荚膜异多糖酸存在于细菌的细胞膜中;
优选地,所述生物材料选自粗细菌裂解液、部分纯化的细菌裂解液以及含有提取的细菌核酸的含水溶液;
优选地,所述生物材料为粗细菌裂解液;
优选地,所述生物材料为部分纯化的细菌裂解液;
优选地,所述生物材料为含有提取的细菌核酸的含水溶液;
优选地,所述生物材料为生物膜;或者
优选地,所述多肽为重组多肽。
18.权利要求17的方法,其中,所述多肽包含与SEQ ID NO:1或者SEQID NO:2及其保守的氨基酸取代具有至少90%同源性的氨基酸序列;
优选地,所述多肽包含与SEQ ID NO:1或者SEQ ID NO:2及其保守的氨基酸取代具有至少98%同源性的氨基酸序列;
更优选地,所述多肽为SEQ ID NO:1或SEQ ID NO:2。
19.一种用于从含有细菌大分子的含水组合物中去除内毒素的方法,所述方法包括消化所述含水组合物中的荚膜异多糖酸,随后将所述含水组合物与层析材料组合,以从细菌大分子中分离内毒素;
优选地,所述含水组合物得自细菌裂解液;
更优选地,在使用多肽处理之前预处理所述细菌裂解液,以从所述裂解液中部分去除内毒素;
再更优选地,所述预处理包括使所述细菌裂解液与层析材料组合;
进一步优选地,所述层析材料为阴离子交换树脂;
再进一步优选地,所述阴离子交换树脂包括季铵树脂。
20.权利要求19的方法,其中,所述细菌大分子包括质粒DNA;
优选地,所述质粒DNA为革兰氏阴性细菌质粒DNA。
21.权利要求19-20中任一项的方法,其中,通过使用具有荚膜异多糖酸降解活性的多肽处理所述含水组合物来消化荚膜异多糖酸。
22.权利要求19-20中任一项的方法,其中,所述层析材料选自阴离子交换层析树脂、阳离子交换层析树脂、疏水相互作用层析树脂及亲和层析树脂;
优选地,所述亲和层析树脂包括基于硼酸或者硼酸盐的树脂。
23.权利要求19-22中任一项的方法,其进一步包括在从层析材料上洗脱所述生物大分子后过滤所述含水组合物,以进一步从生物大分子中分离内毒素。
24.权利要求19的方法,其中,所述含水组合物首先与亲和层析树脂组合,随后与疏水相互作用层析树脂组合;
优选地,所述亲和层析树脂包括基于硼酸或者硼酸盐的树脂。
25.权利要求19-24中任一项的方法,其中,所述多肽为重组多肽。
25.权利要求19-25中任一项的方法,其中,所述多肽包含与SEQ ID NO:1或者SEQ ID NO:2及其保守的氨基酸取代具有至少90%同源性的氨基酸序列;
优选地,所述多肽包含与SEQ ID NO:1或者SEQ ID NO:2及其保守的氨基酸取代具有至少98%同源性的氨基酸序列;
更优选地,所述多肽为SEQ ID NO:1或SEQ ID NO:2。
CN201310018399.1A 2008-04-30 2009-04-30 高纯度质粒dna制备物及其制备方法 Expired - Fee Related CN103255130B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12591608P 2008-04-30 2008-04-30
US12592308P 2008-04-30 2008-04-30
US61/125923 2008-04-30
US61/125916 2008-04-30
CN2009801255363A CN102171341A (zh) 2008-04-30 2009-04-30 高纯度质粒dna制备物及其制备方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2009801255363A Division CN102171341A (zh) 2008-04-30 2009-04-30 高纯度质粒dna制备物及其制备方法

Publications (2)

Publication Number Publication Date
CN103255130A true CN103255130A (zh) 2013-08-21
CN103255130B CN103255130B (zh) 2015-12-23

Family

ID=41255821

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2009801255363A Pending CN102171341A (zh) 2008-04-30 2009-04-30 高纯度质粒dna制备物及其制备方法
CN201310018399.1A Expired - Fee Related CN103255130B (zh) 2008-04-30 2009-04-30 高纯度质粒dna制备物及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2009801255363A Pending CN102171341A (zh) 2008-04-30 2009-04-30 高纯度质粒dna制备物及其制备方法

Country Status (11)

Country Link
US (8) US8460908B2 (zh)
EP (1) EP2283131B1 (zh)
JP (2) JP5693449B2 (zh)
KR (1) KR20110028258A (zh)
CN (2) CN102171341A (zh)
AU (1) AU2009242587B2 (zh)
CA (1) CA2739341A1 (zh)
HK (1) HK1189027A1 (zh)
IL (1) IL209001A (zh)
SG (1) SG2014015010A (zh)
WO (1) WO2009135048A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106554956A (zh) * 2016-12-07 2017-04-05 安徽智飞龙科马生物制药有限公司 一种产业化制备BCG‑CpG‑DNA的方法
CN111304193A (zh) * 2020-02-28 2020-06-19 恒瑞源正(上海)生物科技有限公司 一种大规模快速纯化质粒dna的方法
CN112960780A (zh) * 2021-03-03 2021-06-15 龙江环保集团股份有限公司 一种生物膜载体的预处理方法及生物法污水处理工艺
CN113265396B (zh) * 2021-05-31 2024-01-09 上海碧博生物医药科技有限公司 大型质粒dna的连续化生产的工艺方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2283131B1 (en) * 2008-04-30 2016-08-10 Strike Bio, Inc. Highly pure plasmid dna preparations and processes for preparing the same
EP2718713B1 (en) * 2011-06-06 2019-07-17 Koninklijke Philips N.V. Selective lysis of cells by ionic surfactants
JP5899731B2 (ja) * 2011-09-13 2016-04-06 ソニー株式会社 核酸精製方法、核酸抽出方法、及び核酸精製用キット
CA2868154A1 (en) 2012-03-20 2013-09-26 The Research Foundation For The State University Of New York Flocculation of lignocellulosic hydrolyzates
US9556427B2 (en) * 2013-02-27 2017-01-31 Syngenta Participations Ag Methods and compositions for preparation of nucleic acids
US9850512B2 (en) 2013-03-15 2017-12-26 The Research Foundation For The State University Of New York Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield
US9951363B2 (en) 2014-03-14 2018-04-24 The Research Foundation for the State University of New York College of Environmental Science and Forestry Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects
JP6914189B2 (ja) 2014-05-02 2021-08-04 ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn 官能化担体材料並びに官能化担体材料を作製及び使用する方法
KR102445863B1 (ko) * 2014-06-13 2022-09-20 아반토 퍼포먼스 머티리얼즈, 엘엘씨 고순도 저급 내독소 탄수화물(hple) 조성물, 및 그것의 분리방법
EP3302784B1 (en) * 2015-06-05 2021-10-06 W.R. Grace & Co.-Conn. Adsorbent bioprocessing clarification agents and methods of making and using the same
JP7075359B2 (ja) * 2016-06-14 2022-05-25 バイオジェン・エムエイ・インコーポレイテッド オリゴヌクレオチドの精製のための疎水性相互作用クロマトグラフィー
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance
US11365405B2 (en) 2019-03-20 2022-06-21 Anchor Molecular Inc. Method of removing nucleic acids from human plasma
CN111088248B (zh) * 2019-12-23 2020-10-16 广州湾区生物科技有限公司 一种用于提取无内毒素质粒的磁性材料及其使用方法
CA3158900A1 (en) 2020-01-13 2021-07-22 John Nemunaitis Methods for treating cancers using gm-csf encoding polynucleotide and additional agents
CN111462813B (zh) * 2020-03-18 2020-10-20 华东师范大学 一种基于α螺旋融合两种蛋白质且保持各自亚基活性的蛋白质融合设计方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342832A (en) * 1979-07-05 1982-08-03 Genentech, Inc. Method of constructing a replicable cloning vehicle having quasi-synthetic genes
US4981591A (en) 1989-04-07 1991-01-01 Cuno, Incorporated Cationic charge modified filter media
US5206161A (en) 1991-02-01 1993-04-27 Genentech, Inc. Human plasma carboxypeptidase B
JP3696238B2 (ja) * 1993-08-30 2005-09-14 プロメガ・コーポレイシヨン 核酸精製用組成物及び方法
GB9401603D0 (en) * 1994-01-27 1994-03-23 Univ Strathclyde Purification of plant-derived polynucleotides
US5747663A (en) * 1994-02-07 1998-05-05 Qiagen Gmbh Process for the depletion or removal of endotoxins
DE59506355D1 (de) * 1994-02-07 1999-08-12 Qiagen Gmbh Chromatographische isolierung von nucleinsäuren
MX9603866A (es) 1994-03-18 1997-03-29 Boehringer Ingelheim Int Procedimiento para el tratamiento de celulas eucarioticas.
US5705628A (en) * 1994-09-20 1998-01-06 Whitehead Institute For Biomedical Research DNA purification and isolation using magnetic particles
US5534911A (en) * 1994-11-02 1996-07-09 Levitan; Gutman Virtual personal channel in a television system
US6069230A (en) * 1994-11-10 2000-05-30 Promega Corporation High level expression and facile purification of proteins, peptides and conjugates for immunization, purification and detection applications
US5758257A (en) * 1994-11-29 1998-05-26 Herz; Frederick System and method for scheduling broadcast of and access to video programs and other data using customer profiles
ATE214099T1 (de) * 1995-04-07 2002-03-15 Betzdearborn Inc Exopolysaccharid abbauendes enzym und verwendung davon
ES2195112T5 (es) 1996-02-06 2015-10-15 Roche Diagnostics Gmbh Procedimiento para la preparación de ácido nucleico purificado y el uso del mismo
US5981735A (en) * 1996-02-12 1999-11-09 Cobra Therapeutics Limited Method of plasmid DNA production and purification
US7026468B2 (en) * 1996-07-19 2006-04-11 Valentis, Inc. Process and equipment for plasmid purification
DE19726083A1 (de) 1997-06-19 1998-12-24 Consortium Elektrochem Ind Mikroorganismen und Verfahren zur fermentativen Herstellung von L-Cystein, L-Cystin, N-Acetyl-Serin oder Thiazolidinderivaten
SE9703532D0 (sv) * 1997-09-30 1997-09-30 Pharmacia Biotech Ab A process for the purification of plasmid DNA
US7041814B1 (en) * 1998-02-18 2006-05-09 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Enterobacter cloacae for diagnostics and therapeutics
US6194562B1 (en) * 1998-04-22 2001-02-27 Promega Corporation Endotoxin reduction in nucleic acid purification
DE69922740T2 (de) 1998-05-11 2005-12-08 Tosoh Corp., Shinnanyo Methode zur Trennung von Nucleinsäuren mittels Flüssigchromatographie
US20030064951A1 (en) * 1998-11-12 2003-04-03 Valentis, Inc. Methods for purifying nucleic acids
DE19903507A1 (de) 1999-01-29 2000-08-10 Roche Diagnostics Gmbh Verfahren zur Herstellung endotoxinfreier oder an Endotoxin abgereicherter Nukleinsäuren und deren Verwendung
US6617108B1 (en) 1999-07-12 2003-09-09 Technology Licensing Co. Llc Methods and compositions for biotechnical separations using selective precipitation by compaction agents
US20020010145A1 (en) 1999-07-12 2002-01-24 Willson Richard C. Apparatus, methods and compositions for biotechnical separations
DE10010342A1 (de) * 2000-03-06 2001-09-20 Merck Patent Gmbh Verfahren zur Abreicherung von Endotoxinen
EP1290158B1 (en) * 2000-06-02 2006-12-06 Pall Corporation Processing of plasmid-containing fluids
US6504021B2 (en) * 2000-07-05 2003-01-07 Edge Biosystems, Inc. Ion exchange method for DNA purification
PT102491B (pt) 2000-07-10 2003-02-28 Inst Superior Tecnico Processo para producao e purificacao de dna plasmidico
US6579705B2 (en) 2001-04-04 2003-06-17 Consortium Fur Elektrochemische Industrie Gmbh Process for preparing non-proteinogenic L-amino acids
US20020197637A1 (en) * 2001-06-02 2002-12-26 Willson Richard C. Process and compositions for protection of nucleic acids
SE0200543D0 (sv) 2002-02-21 2002-02-21 Amersham Biosciences Ab Method of separation using aromatic thioether ligands
US6772147B2 (en) * 2002-02-26 2004-08-03 Sony Corporation System and method for effectively implementing a personal channel for interactive television
CN101006170A (zh) * 2004-04-19 2007-07-25 森特利昂公司 纯化质粒dna的方法
TW200744455A (en) * 2005-07-21 2007-12-16 Syngenta Participations Ag Fungicidal combinations
ES2589314T3 (es) * 2006-01-19 2016-11-11 Research Corporation Technologies, Inc. Bacterias Gram-negativas viables no tóxicas
EP2027272B1 (en) * 2006-05-24 2016-01-06 Scarab Genomics, LLC Plasmid dna preparations and methods for producing same
CN101091797B (zh) 2006-06-23 2012-08-01 上海海规生物科技有限公司 去除初纯质粒或蛋白质溶液中内毒素的方法及试剂盒
US8252526B2 (en) 2006-11-09 2012-08-28 Gradalis, Inc. ShRNA molecules and methods of use thereof
EP2139921A2 (en) 2007-04-17 2010-01-06 Imclone LLC PDGFRbeta-SPECIFIC INHIBITORS
US9211581B2 (en) 2007-09-21 2015-12-15 Wilson Tool International Inc. Stripper assemblies and components thereof for multi-tool punch assemblies
US20120231537A1 (en) 2008-04-30 2012-09-13 Gradalis, Inc. Highly Pure Plasmid DNA Preparations
EP2283131B1 (en) 2008-04-30 2016-08-10 Strike Bio, Inc. Highly pure plasmid dna preparations and processes for preparing the same
US20140093888A1 (en) 2009-04-30 2014-04-03 Gradalis, Inc. Highly pure plasmid dna preparations
US8166038B2 (en) * 2009-06-11 2012-04-24 Kaufman Mark A Intelligent retrieval of digital assets

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106554956A (zh) * 2016-12-07 2017-04-05 安徽智飞龙科马生物制药有限公司 一种产业化制备BCG‑CpG‑DNA的方法
CN111304193A (zh) * 2020-02-28 2020-06-19 恒瑞源正(上海)生物科技有限公司 一种大规模快速纯化质粒dna的方法
CN112960780A (zh) * 2021-03-03 2021-06-15 龙江环保集团股份有限公司 一种生物膜载体的预处理方法及生物法污水处理工艺
CN112960780B (zh) * 2021-03-03 2023-02-03 龙江环保集团股份有限公司 一种生物膜载体的预处理方法及生物法污水处理工艺
CN113265396B (zh) * 2021-05-31 2024-01-09 上海碧博生物医药科技有限公司 大型质粒dna的连续化生产的工艺方法

Also Published As

Publication number Publication date
US20140349389A1 (en) 2014-11-27
WO2009135048A2 (en) 2009-11-05
SG2014015010A (en) 2014-05-29
US20110020924A1 (en) 2011-01-27
EP2283131B1 (en) 2016-08-10
US8647857B2 (en) 2014-02-11
KR20110028258A (ko) 2011-03-17
US20090275122A1 (en) 2009-11-05
CN102171341A (zh) 2011-08-31
US20130309752A1 (en) 2013-11-21
JP2011519560A (ja) 2011-07-14
CN103255130B (zh) 2015-12-23
IL209001A0 (en) 2011-01-31
AU2009242587A1 (en) 2009-11-05
US8969068B2 (en) 2015-03-03
WO2009135048A3 (en) 2009-12-23
US20150132843A1 (en) 2015-05-14
JP6038972B2 (ja) 2016-12-07
CA2739341A1 (en) 2009-11-05
US20090275088A1 (en) 2009-11-05
AU2009242587B2 (en) 2015-05-28
US8524475B1 (en) 2013-09-03
US8735119B2 (en) 2014-05-27
HK1189027A1 (zh) 2014-05-23
US20130210118A1 (en) 2013-08-15
IL209001A (en) 2016-10-31
JP5693449B2 (ja) 2015-04-01
US20100075404A1 (en) 2010-03-25
EP2283131A4 (en) 2011-08-10
US8460908B2 (en) 2013-06-11
JP2015128428A (ja) 2015-07-16
EP2283131A2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
CN103255130B (zh) 高纯度质粒dna制备物及其制备方法
Peumans et al. Ribosome‐inactivating proteins from plants: more than RNA N‐glycosidases?
US20120231537A1 (en) Highly Pure Plasmid DNA Preparations
NZ265537A (en) A cellulose binding domain (cbd) protein and its use
US20140093888A1 (en) Highly pure plasmid dna preparations
US7462701B2 (en) Non-denaturing process to purify recombinant proteins from plants
CN112752842B (zh) 碱性磷酸酶组合物以及去磷酸化核酸和标记化核酸的制造方法
CN101280001A (zh) 人SDF-1α的制备及由此获得的人SDF-1α及其用途
Zhang et al. Two proteins of the Dictyostelium spore coat bind to cellulose in vitro
CN100429312C (zh) 一种热敏磷酸酶的过量表达、纯化和表征
JP2013165669A (ja) 変異型逆転写酵素
CN116970593A (zh) 丝氨酸蛋白酶同系物slp-1及其制备方法和应用
Ekborg The agarase system of Saccharophagus degradans strain 2-40: analysis of the agarase system and protein localization
Oey Chloroplasts as bioreactors: high-yield production of active bacteriolytic protein antibiotics
Creavin PA-IIL as a model lectin for the structural and functional characterisation of related lectins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1189027

Country of ref document: HK

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20151030

Address after: American Texas

Applicant after: STERLECCO BIOLOGICAL CO., LTD.

Address before: American Texas

Applicant before: Gradalis Inc

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1189027

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151223

Termination date: 20170430