CN103213968A - 一种杂原子掺杂碳材料及其制备方法和应用 - Google Patents

一种杂原子掺杂碳材料及其制备方法和应用 Download PDF

Info

Publication number
CN103213968A
CN103213968A CN2013101403382A CN201310140338A CN103213968A CN 103213968 A CN103213968 A CN 103213968A CN 2013101403382 A CN2013101403382 A CN 2013101403382A CN 201310140338 A CN201310140338 A CN 201310140338A CN 103213968 A CN103213968 A CN 103213968A
Authority
CN
China
Prior art keywords
carbon material
nitrogen
heteroatoms
heteroatom
doped carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101403382A
Other languages
English (en)
Other versions
CN103213968B (zh
Inventor
孙晓明
张国新
常铮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201310140338.2A priority Critical patent/CN103213968B/zh
Publication of CN103213968A publication Critical patent/CN103213968A/zh
Application granted granted Critical
Publication of CN103213968B publication Critical patent/CN103213968B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种杂原子掺杂碳材料及其制备方法及其在催化氧气还原反应领域的应用。该杂原子掺杂碳材料的制备方法是:依次将只含有卤素的有机高分子、含有杂原子的有机物和碳化钙分散在强极性溶剂中,于160-200℃环境进行预混和碳化。再将得到的固体产物,在惰性气氛下于700-900℃进行高温焙烧,得到杂原子掺杂碳材料,所掺杂的杂原子为N、S、B或P。该方法原材料便宜易得,操作简单。制备的杂原子掺杂碳材料具有较高的石墨化程度,且具有高导电性高和高活性催化中心等特性。修饰有该碳材料的电极可以高效地催化氧气还原反应。同时,其在超级电容器材料、锂电池等能量存储领域也存在潜在的应用。

Description

一种杂原子掺杂碳材料及其制备方法和应用
技术领域
本发明涉及一种杂原子掺杂的碳材料及其制备方法。并将该掺杂的碳材料制备成电极,用于超电容和催化氧气还原反应。
技术领域
碳元素特殊的成键性质使得碳材料的身影遍布各个领域。针对电化学领域来说,碳材料的兼容性、可操作性、廉价、高稳定性和高性能不但对科学研究也有着非常重要的意义,对实际生产也具有极大的吸引力。目前,其经济和操作性高的特点使其在氧气还原反应催化领域存在潜在替代商业铂碳催化剂的可能。而氧气还原反应是燃料电池、锂空气电池等领域的关键反应,此步骤效率的提高可以极大推动燃料电池和锂空气电池等实际应用的推广。
目前已有很多种用于催化氧气还原反应的杂原子掺杂的碳材料。研究者基本沿着杂原子掺杂碳材料的两条主线进行实验:1)使用石墨烯作为碳基体,含有杂原子的有机物与石墨烯共混,高温下焙烧。如Liang等[Angew.Chem.Int.Ed.,2012,51,11496-11500.]使用三聚氰胺与氧化石墨烯液相混合后,焙烧后得到可催化ORR的氮掺杂碳材料。2)使用具有高反应性官能团的有机分子,与其他有机分子反应,得到的产物再进行焙烧。如Lyth等[J.Phys.Chem.C,2009,113(47):20148-20151.]使用氯腈与叠氮化钠反应,得到同样为C3N4的二维碳网络结构,将其用于催化氧气还原反应,测试表明起峰电位达到0.69伏(相对可逆氢电极,RHE),Lyth等的实验结果表明杂原子的引入可以极大提高碳材料的催化性能。这些方法的不足之处在于:最后形成的碳材料不能保留下太多有效的活性位点,且产率很低。如何在保证碳材料上活性位点多且均匀的前提下,提高碳材料的产率,目前仍是一个挑战。
我们将从碳材料制备的原料入手,尝试解决产率的问题,同时保证高效的催化性能。以往的碳源选取均为正碳材料,即碳的价态为正的有机物,这类有机物需要更高温度的处理或是还原剂的引入才能得到石墨化程度较高的碳材料。而通常含有羟基和卤素的有机物中的杂原子使得该类有机物极难石墨化。如果引入负碳碳源,这些强极性的官能团的离去将变得容易,所得到碳材料易石墨化且杂原子易掺入石墨化碳材料的晶格中,这样可以完成高产率和高效催化性能的目标。
发明内容
本发明的目的是提供一种非金属杂原子掺杂碳材料及其制备方法,本发明的另一目的是并将该杂原子掺杂碳材料修饰到电极上,用于催化氧气还原反应。
上述非金属杂原子掺杂碳材料的制备方法,技术方案如下:
A.将只含有卤素的有机高分子溶解到强极性溶剂中,使含卤素有机高分子的浓度为0.0125-0.15g/mL,搅拌或超声使其均匀分散,之后加入含有杂原子的有机物,其摩尔量与含卤素有机高分子链段摩尔量之比为1:20-1:4之间,搅拌或超声使均匀分散进入含卤素有机高分子乳浊液中,加入与含卤素有机高分子链段摩尔量摩尔数之比在1:4~4:1之间的碳化钙粉末,超声或搅拌使之形成均匀的悬浊液,将此悬浊液放入聚四氟乙烯水热反应釜中,于160-200℃反应12-36小时,反应结束后,自然冷却到室温,取出反应产物,清洗2-3次,60-100℃干燥,得到初步碳化产物。
所述的只含有卤素的有机高分子为聚偏二氟乙烯、聚氯乙烯或聚偏二氯乙烯,所述的强极性溶剂为氮氮二甲基甲酰胺、氮氮二甲基乙酰胺、二甲基亚砜或氮甲基吡咯烷酮中的一种。
所述的含有杂原子的有机物是:三聚氰胺、乙二胺、硫脲、硫代乙酰胺、硼酸或硼烷氨中的一种或多种;其中的氮、硫、磷或硼元素被所掺杂到碳中。
所述的碳化钙粉末的粒度为小于100微米。
所述的溶剂热反应机理是:碳化钙中的钙元素的强亲电性使其与卤族元素极易结合,生成化学性质稳定的氟化钙,同时,卤族元素离开后留下较多的碳自由基可以与含有N/S/B/P的有机物热解形成的非金属原子结合,完成非金属元素掺杂进入碳网络中,形成初步碳化产物。
B.将步骤A干燥的初步碳化产物,在氩气或氮气保护下于700-900℃温度焙烧1-3小时,待降至室温,取出,用稀盐酸洗涤,再用去离子水或乙醇清洗3-4次,60-100℃烘箱干燥,即得到杂原子掺杂碳材料。其中所掺杂的杂原子为N、S、B或P其中的一种或多种。
用稀盐酸洗涤过程是:将焙烧后的碳材料分散到稀盐酸溶液中,且碳材料在稀盐酸溶液的质量浓度约为0.05-0.10g/mL,并超声1-2小时,分离。所述的稀盐酸为质量浓度5-10%的盐酸水溶液。
所述焙烧过程的反应机理是:碳化产物继续去官能团化,并完成部分石墨化形成较多的sp2杂化石墨碳区域,同时,杂原子借助供给的较高能量嵌入到石墨化碳晶区中。
对得到的产物进行表征。其透射电镜照片(附图1)和扫描电镜照片(附图2)显示所合成的杂原子掺杂碳材料的表观形貌为多孔无定形结构。拉曼图谱(附图3)显示所合成的非金属掺杂碳材料具有较高的石墨化程度,ID/IG接近1.00。X光电子能谱中的C1s(附图4)显示C1s谱在结合能为286.5eV位置的强度较低,此处即为C-O键峰位,说明此类杂原子掺杂碳材料的含氧量较低。X光电子能谱N1s谱在结合能为401eV位置附近的峰面积积分较大,占到总的峰面积积分的50%以上,此处即为氮以石墨化氮形式存在的位置,说明所合成的氮掺杂碳材料的氮元素有50%以上的氮元素是以石墨化氮的形式存在的。通过X射线光电子能谱计算得到氮掺杂碳材料的含氮量约为3.41±0.50%,且其石墨化氮-占全部氮原子的比重超过50%。图6为五个实施例的X射线多晶衍射图谱,在26°左右均出现一个较尖锐的小峰,这个小峰的出现代表其具有一定的规整的石墨化晶区。
综上,所合成的杂原子掺杂碳材料是利用碳化钙与卤化高分子极易反应的特征制备的多孔无定形石墨化碳材料,其中掺杂的杂原子为非金属N、S、B或P中的一种或多种,且杂原子以石墨化形式存在的比例较高
将所制得的杂原子掺杂碳材料修饰到旋转圆盘电极的玻碳电极上,进行催化氧气还原反应的测试和应用。
具体结果见附图7和图8。催化效果最好的样品为实施例2提供的900℃焙烧的氮掺杂碳材料,其起峰电位为0.93V,半波电位为0.82V,电极过程转移电子数为4。效果其次的催化剂为实施例2提供的硼掺杂碳材料(起峰电位为0.90V,半波电位为0.80V,电极过程转移电子数为3.95),再次的为实施例3提供的硫掺杂碳材料(起峰电位为0.88V,半波电位为0.73V,电极过程转移电子数为3.05)。
本发明有益效果在于:1)首次将负碳材料碳化钙引入到杂原子碳材料的制备中。2)将溶解热反应引入到碳化过程,帮助各组分实现深度的混合,以防止出现高温区段剧烈去官能团化造成的产率降低和杂原子流失。3)生成的氟化钙被包埋在碳基体材料中,除去后,可以制造丰富的孔道结构,利于气固非均相催化反应的发生。4)原材料便宜易得,操作简单。5)拉曼测试显示ID/IG接近1.00,具有较高的石墨化程度。6)通过旋转圆盘装置测试,制备得到的氮掺杂碳材料的起峰电位处于0.86-0.91伏(相对可逆氢电极,RHE)范围内,半波电势在0.75-0.80伏范围内,电催化反应过程中电子转移数接近4,这些性能均与铂炭催化剂(铂炭催化剂的起峰电位约在0.95伏,半波电势在0.80伏左右,电催化反应过程中电子转移数为4.00)非常接近。
附图说明
图1为实施例1中制备的氮掺杂碳材料的透射电镜图。
图2为实施例1中制备的氮掺杂碳材料的扫描电镜图。
图3为实施例1中制备的氮掺杂碳材料的的拉曼图谱。
图4为实施例1中制备的氮掺杂碳材料的O1s X射线光电子能谱谱图。
图5为实施例1中制备的氮掺杂碳材料的N1s X射线光电子能谱谱图。
图6为实施例1、2、3、4、5中碳材料的X射线衍射图谱。
图7为实施例1、2、3、4、5中制备的杂原子掺杂碳材料的旋转圆盘电极极化曲线图,圆盘转速为2025rpm。
图8为实施例1、2、3、4、5中制备的杂原子掺杂碳材料的旋转圆盘电极极化曲线对应的电极过程转移电子数,电位选择在0.30、0.35、0.40和0.45伏处计算。
具体实施方式
实施例1
A、初步碳化
将1.00克聚偏二氟乙烯溶解到30毫升氮氮二甲基乙酰胺中,使用搅拌手段使其均匀的溶入氮氮二甲基乙酰胺中,溶解均匀后,加入0.5克三聚氰胺。之后加入1.00克碳化钙粉末,搅拌均匀。将反应物放入48毫升水热反应釜中,180℃反应24小时。反应结束后,自然冷却到室温,取出反应产物,清洗及干燥。
B、高温石墨化
将干燥好的碳化固体在氮气保护下,700℃焙烧2小时。炉子降温到室温,取出,称重约为3克加入20毫升去离子水,同时再加入10毫升质量比为37%的浓盐酸,超声1-2小时,取出全部离心下来,使用去离子水离心清洗3-5,100℃干燥10小时(给你实际用地温度),得到氮掺杂的碳材料。
具体得到的产物的透射电镜照片参见图1。扫面电镜照片参见图2。具体数据;拉曼图谱参见图3。X射线光电子能谱图谱参见图4和图5,通过X射线光电子能谱计算得到氮掺杂碳材料的含氮量约为3.41%,且其石墨化氮所占所有氮原子的比重超过50%。X射线衍射图谱参见图6。
C、电化学性能测试
称取5毫克的干燥好的催化剂粉末,溶解于500微升氮氮二甲基乙酰胺中,超声均匀后,加入50微升的质量比为5%Nafion溶液,继续超声均匀后,取5微升滴在旋转圆盘装置的玻碳电极上,80℃烘箱中使溶剂挥发完全。使用旋转圆盘电极装置测试其催化氧气还原反应的性能。使用饱和甘汞电极和铂电极分别作为参比电极和对电极,0.1mol/L的氢氧化钾水溶液作为电解液。具体旋转圆盘电极极化曲线图参见图7。具体电极过程电子转移数参见图8。制备得到的氮掺杂碳材料的起峰电位处于0.89伏(相对可逆氢电极,RHE)范围内,半波电势在0.78伏范围内,电催化反应过程中平均电子转移数接近4.00。
实施例2
A、将0.50克聚偏二氟乙烯溶解到30毫升氮氮二甲基乙酰胺中,搅拌,加入0.25克三聚氰胺和0.50克碳化钙粉末,搅拌均匀。将反应物放入48毫升水热反应釜中,180℃反应24小时。反应结束后,自然冷却到室温,取出反应产物,清洗及干燥。
B、焙烧温度改变为900℃,其他处理条件同实施例1。最后得到900℃下焙烧的氮掺杂碳材料。
C、催化氧气还原反应性能测试条件与实施例1中相同。具体旋转圆盘电极极化曲线图参见图7。具体电极过程电子转移数参见图8。其起峰电位为0.93伏,半波电势为0.82伏,电极反应平均转移电子数为4.00。
实施例3
A、使用0.5克硫代乙酰胺代替三聚氰胺,其他同时实例1。
B、同实施例1。得到硫掺杂碳材料。
C、催化氧气还原反应性能测试条件与实施例1中相同。具体旋转圆盘电极极化曲线图参见图7。具体电极过程电子转移数参见图8。其起峰电位为0.88伏,半波电势为0.73伏,电极反应平均转移电子数为3.05。
实施例4
A、使用0.5克硼酸代替三聚氰胺,其他同时实例1。
B、同实施例1。得到硼掺杂碳材料
C、催化氧气还原反应性能测试条件与实施例1中相同。具体旋转圆盘电极极化曲线图参见图7。具体电极过程电子转移数参见图8。其起峰电位为0.90伏,半波电势为0.80伏,电极反应平均转移电子数为3.95。
实施例5
A、使用聚氯乙烯替换实施例1中的聚偏二氟乙烯,其他同时实例1。
B、同实施例1。得到氮掺杂碳材料。
C、催化氧气还原反应性能测试条件与实施例1中相同。具体旋转圆盘电极极化曲线图参见图7。具体电极过程电子转移数参见图8。其起峰电位为0.88伏,半波电势为0.71伏,电极反应平均转移电子数为3.62。

Claims (4)

1.一种杂原子掺杂碳材料的制备方法,具体步骤如下:
A.将只含有卤素的有机高分子溶解到强极性溶剂中,使只含有卤素的有机高分子的浓度为0.0125-0.15g/mL,搅拌或超声使其均匀分散,之后加入含有杂原子的有机物,其摩尔量与含有卤素的有机高分子链段摩尔量之比为1:20-1:4之间,搅拌或超声使其分散均匀,再加入与含有卤素的有机高分子链段摩尔量摩尔数之比在1:4-4:1之间的碳化钙粉末,超声或搅拌使之形成均匀的悬浊液,将此悬浊液放入聚四氟乙烯水热反应釜中,于160-200℃反应12-36小时,反应结束后,自然冷却到室温,取出反应产物,清洗2-3次,60-100℃干燥,得到初步碳化产物;
所述的只含有卤素的有机高分子为聚偏二氟乙烯、聚氯乙烯或聚偏二氯乙烯,所述的强极性溶剂为氮氮二甲基甲酰胺、氮氮二甲基乙酰胺、二甲基亚砜或氮甲基吡咯烷酮中的一种;
所述的含有杂原子的有机物是:三聚氰胺、乙二胺、硫脲、硫代乙酰胺、硼酸或硼烷氨中的一种或多种;其中的氮、硫、磷或硼元素被掺杂到碳中;所述的碳化钙粉末的粒度小于100微米;
B.将步骤A干燥的初步碳化产物在氩气或氮气保护下于700-900℃温度焙烧1-3小时,待降至室温,取出,用稀盐酸洗涤,再用去离子水或乙醇清洗3-4次,60-100℃烘箱干燥,即得到非金属掺杂碳材料。
2.一种根据权利要求1所述的方法制备杂原子掺杂碳材料,该杂原子掺杂碳材料是多孔无定形石墨化碳材料,且杂原子以石墨化形式存在的比例较高。
3.根据权利要求2所述的杂原子掺杂碳材料,其特征是其中掺杂的杂原子为非金属N、S、B或P其中的一种或多种。
4.一种权利要求2所述的杂原子掺杂碳材料的应用,将该杂原子掺杂碳材料制备成电极,用于催化氧气还原反应。
CN201310140338.2A 2013-04-22 2013-04-22 一种杂原子掺杂碳材料及其制备方法和应用 Active CN103213968B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310140338.2A CN103213968B (zh) 2013-04-22 2013-04-22 一种杂原子掺杂碳材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310140338.2A CN103213968B (zh) 2013-04-22 2013-04-22 一种杂原子掺杂碳材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103213968A true CN103213968A (zh) 2013-07-24
CN103213968B CN103213968B (zh) 2015-01-14

Family

ID=48812200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310140338.2A Active CN103213968B (zh) 2013-04-22 2013-04-22 一种杂原子掺杂碳材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN103213968B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553017A (zh) * 2013-10-14 2014-02-05 南京大学 一步制备氟、氮双掺氧化石墨烯的方法和装置
CN103806129A (zh) * 2014-02-19 2014-05-21 中国科学院化学研究所 一种氮掺杂多孔碳纤维材料及其制备方法与应用
CN104779075A (zh) * 2015-03-26 2015-07-15 珠海市赛纬电子材料有限公司 一种超级电容器高电压非水电解液
CN104785283A (zh) * 2015-03-25 2015-07-22 江西师范大学 一种利用秸秆制备高效氧气还原催化剂的方法及其在中性电池中的应用
CN104900423A (zh) * 2015-06-10 2015-09-09 北京化工大学 一种用于超级电容器的掺杂型碳材料的制备方法
CN104891475A (zh) * 2015-06-10 2015-09-09 北京化工大学 一种杂原子掺杂型碳材料的室温制备方法
WO2016197420A1 (zh) * 2015-06-10 2016-12-15 北京化工大学 一种基于高分子脱卤反应制备掺杂型碳材料的方法及该掺杂型碳材料在电化学中的应用
CN106450230A (zh) * 2016-11-28 2017-02-22 中国石油大学(北京) 一种利用掺硫调变碳材料脱锂电压平台的方法
CN107017412A (zh) * 2017-04-28 2017-08-04 哈尔滨工业大学 一种有单分散金属原子掺杂的sp2杂化碳材料及其制备方法
CN107195477A (zh) * 2017-04-27 2017-09-22 北京化工大学 一种氧化物为模板制备高能量密度的超级电容器的方法
CN107887613A (zh) * 2017-10-18 2018-04-06 温州大学 基于三维网状氮磷硫共掺杂多孔碳材料的氧还原电极及制备方法与应用
CN108190854A (zh) * 2018-01-22 2018-06-22 西南交通大学 一种超掺杂层次孔碳材料及其制备方法
CN108545714A (zh) * 2018-05-13 2018-09-18 程桂平 一种含硫氮掺杂碳的制备方法
CN109216661A (zh) * 2017-07-07 2019-01-15 广隆光电科技股份有限公司 具玻璃态石墨碳极板的复合铅碳蓄电池
CN109485129A (zh) * 2018-12-16 2019-03-19 北京化工大学 一种pvc废旧塑料制备的多孔碳材料电吸附金属离子的方法
CN110668415A (zh) * 2019-09-19 2020-01-10 山东科技大学 基于气相二氧化硅制备原子级分散的金属氮碳材料的方法
CN110804305A (zh) * 2019-12-02 2020-02-18 惠州市良化新材料有限公司 一种渔具用耐候增强尼龙组合物及其制备方法
CN110872434A (zh) * 2019-12-02 2020-03-10 惠州市晋裕塑料科技有限公司 一种电子电气用高阻燃尼龙组合物及其制备方法
CN110922750A (zh) * 2019-11-29 2020-03-27 惠州市良化新材料有限公司 一种童车用耐寒增强尼龙66组合物及其制备方法
CN112723334A (zh) * 2019-10-28 2021-04-30 中国科学院上海硅酸盐研究所 一种利用含氟高分子制备氮掺杂碳材料的方法
CN114497601A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 掺杂碳材料、铂碳催化剂及其制备方法和应用
CN115318312A (zh) * 2022-09-01 2022-11-11 浙江工业大学 一种高稳定性铂炭催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102302939A (zh) * 2011-07-05 2012-01-04 上海大学 一种无金属氮掺杂石墨化多孔碳基氧还原催化剂的制备方法
CN102671686A (zh) * 2012-05-31 2012-09-19 新疆大学 氮掺杂石墨烯的制备及其氧还原性能

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102302939A (zh) * 2011-07-05 2012-01-04 上海大学 一种无金属氮掺杂石墨化多孔碳基氧还原催化剂的制备方法
CN102671686A (zh) * 2012-05-31 2012-09-19 新疆大学 氮掺杂石墨烯的制备及其氧还原性能

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
廖世军等: "新型氮掺杂碳基非金属催化剂的制备及其氧还原性能", 《华南理工大学学报》, vol. 40, no. 10, 31 October 2012 (2012-10-31), pages 121 - 127 *
黄启忠等: "《高性能炭/炭复合材料的制备、结构与应用》", 31 December 2010, article "微纳米碳球的反应热力学", pages: 728-730 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553017B (zh) * 2013-10-14 2015-09-16 南京大学 一步制备氟、氮双掺氧化石墨烯的方法和装置
CN103553017A (zh) * 2013-10-14 2014-02-05 南京大学 一步制备氟、氮双掺氧化石墨烯的方法和装置
CN103806129A (zh) * 2014-02-19 2014-05-21 中国科学院化学研究所 一种氮掺杂多孔碳纤维材料及其制备方法与应用
CN103806129B (zh) * 2014-02-19 2015-09-30 中国科学院化学研究所 一种氮掺杂多孔碳纤维材料及其制备方法与应用
CN104785283A (zh) * 2015-03-25 2015-07-22 江西师范大学 一种利用秸秆制备高效氧气还原催化剂的方法及其在中性电池中的应用
CN104779075A (zh) * 2015-03-26 2015-07-15 珠海市赛纬电子材料有限公司 一种超级电容器高电压非水电解液
WO2016197420A1 (zh) * 2015-06-10 2016-12-15 北京化工大学 一种基于高分子脱卤反应制备掺杂型碳材料的方法及该掺杂型碳材料在电化学中的应用
CN104891475A (zh) * 2015-06-10 2015-09-09 北京化工大学 一种杂原子掺杂型碳材料的室温制备方法
CN104900423B (zh) * 2015-06-10 2017-10-27 北京化工大学 一种用于超级电容器的掺杂型碳材料的制备方法
CN104900423A (zh) * 2015-06-10 2015-09-09 北京化工大学 一种用于超级电容器的掺杂型碳材料的制备方法
CN106450230A (zh) * 2016-11-28 2017-02-22 中国石油大学(北京) 一种利用掺硫调变碳材料脱锂电压平台的方法
CN107195477A (zh) * 2017-04-27 2017-09-22 北京化工大学 一种氧化物为模板制备高能量密度的超级电容器的方法
CN107017412B (zh) * 2017-04-28 2019-07-16 哈尔滨工业大学 一种有单分散金属原子掺杂的sp2杂化碳材料的制备方法
CN107017412A (zh) * 2017-04-28 2017-08-04 哈尔滨工业大学 一种有单分散金属原子掺杂的sp2杂化碳材料及其制备方法
CN109216661A (zh) * 2017-07-07 2019-01-15 广隆光电科技股份有限公司 具玻璃态石墨碳极板的复合铅碳蓄电池
CN107887613A (zh) * 2017-10-18 2018-04-06 温州大学 基于三维网状氮磷硫共掺杂多孔碳材料的氧还原电极及制备方法与应用
CN107887613B (zh) * 2017-10-18 2021-03-26 温州大学 基于三维网状氮磷硫共掺杂多孔碳材料的氧还原电极及制备方法与应用
CN108190854A (zh) * 2018-01-22 2018-06-22 西南交通大学 一种超掺杂层次孔碳材料及其制备方法
CN108190854B (zh) * 2018-01-22 2019-12-27 西南交通大学 一种超掺杂层次孔碳材料及其制备方法
CN108545714A (zh) * 2018-05-13 2018-09-18 程桂平 一种含硫氮掺杂碳的制备方法
CN109485129A (zh) * 2018-12-16 2019-03-19 北京化工大学 一种pvc废旧塑料制备的多孔碳材料电吸附金属离子的方法
CN110668415B (zh) * 2019-09-19 2022-06-28 山东科技大学 基于气相二氧化硅制备原子级分散的金属氮碳材料的方法
CN110668415A (zh) * 2019-09-19 2020-01-10 山东科技大学 基于气相二氧化硅制备原子级分散的金属氮碳材料的方法
CN112723334A (zh) * 2019-10-28 2021-04-30 中国科学院上海硅酸盐研究所 一种利用含氟高分子制备氮掺杂碳材料的方法
CN110922750A (zh) * 2019-11-29 2020-03-27 惠州市良化新材料有限公司 一种童车用耐寒增强尼龙66组合物及其制备方法
CN110872434A (zh) * 2019-12-02 2020-03-10 惠州市晋裕塑料科技有限公司 一种电子电气用高阻燃尼龙组合物及其制备方法
CN110804305A (zh) * 2019-12-02 2020-02-18 惠州市良化新材料有限公司 一种渔具用耐候增强尼龙组合物及其制备方法
CN114497601A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 掺杂碳材料、铂碳催化剂及其制备方法和应用
CN114497601B (zh) * 2020-10-26 2024-04-02 中国石油化工股份有限公司 掺杂碳材料、铂碳催化剂及其制备方法和应用
CN115318312A (zh) * 2022-09-01 2022-11-11 浙江工业大学 一种高稳定性铂炭催化剂及其制备方法和应用
CN115318312B (zh) * 2022-09-01 2024-01-30 浙江工业大学 一种高稳定性铂炭催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN103213968B (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
CN103213968B (zh) 一种杂原子掺杂碳材料及其制备方法和应用
Pietrzak et al. Preparation of nitrogen-enriched activated carbons from brown coal
Zhao et al. KHCO3 activated carbon microsphere as excellent electrocatalyst for VO2+/VO2+ redox couple for vanadium redox flow battery
Wang et al. Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells treating wastewater
WO2018120067A1 (en) Waste biomass-derived metal-free catalysts for oxygen reduction reaction
CN105529475A (zh) 一种铂单原子分散的催化剂及其制备方法
Yang et al. Polyacrylonitrile‐based electrospun carbon paper for electrode applications
CN108529619A (zh) 一种氮硫共掺杂多孔碳材料及其制备方法和应用
CN106159287A (zh) 一种复合型燃料电池阴极催化剂NGPC/NCNTs及其制备方法
CN111320172B (zh) 一种含微孔-介孔孔道的生物质活性炭基电极材料的定向合成方法及其应用
Qiao et al. Bio‐inspired synthesis of an ordered N/P dual‐doped porous carbon and application as an anode for sodium‐ion batteries
CN105800600A (zh) 利用果皮制备氮自掺杂三维石墨烯的方法
Lin et al. Self‐nitrogen‐doped porous biocarbon from watermelon rind: a high‐performance supercapacitor electrode and its improved electrochemical performance using redox additive electrolyte
KR20180037829A (ko) 붕소와 질소가 동시에 도핑된 다공성 탄소소재의 제조방법
Cordero-Lanzac et al. Role of different nitrogen functionalities on the electrochemical performance of activated carbons
Wang et al. N‐Doped Porous Carbon Derived from Solvent‐Free Synthesis of Cross‐Linked Triazine Polymers for Simultaneously Achieving CO2 Capture and Supercapacitors
CN103252250A (zh) 氮、铁修饰的碳材料的制备及应用
Pourjavadi et al. Novel synthesis route for preparation of porous nitrogen-doped carbons from lignocellulosic wastes for high performance supercapacitors
CN102921444B (zh) 一种制备p25/氮掺杂石墨烯复合材料的方法
Ma et al. Uric acid-derived Fe3C-containing mesoporous Fe/N/C composite with high activity for oxygen reduction reaction in alkaline medium
CN105932310A (zh) 硼氮掺杂石墨烯载钯催化剂
Wang et al. Self‑nitrogen-doped carbon materials derived from microalgae by lipid extraction pretreatment: Highly efficient catalyst for the oxygen reduction reaction
CN107352527A (zh) 一种磷氮共掺杂的碳纳米管材料制备工艺
Lv et al. Controlled synthesis of carbon nanonetwork wrapped graphite felt electrodes for high-performance vanadium redox flow battery
Miao et al. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant