CN107195477A - 一种氧化物为模板制备高能量密度的超级电容器的方法 - Google Patents

一种氧化物为模板制备高能量密度的超级电容器的方法 Download PDF

Info

Publication number
CN107195477A
CN107195477A CN201710289446.4A CN201710289446A CN107195477A CN 107195477 A CN107195477 A CN 107195477A CN 201710289446 A CN201710289446 A CN 201710289446A CN 107195477 A CN107195477 A CN 107195477A
Authority
CN
China
Prior art keywords
oxide
energy density
voltage window
capacitor
density according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710289446.4A
Other languages
English (en)
Inventor
常铮
李昊远
孙晓明
张国新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201710289446.4A priority Critical patent/CN107195477A/zh
Publication of CN107195477A publication Critical patent/CN107195477A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种氧化物为模板制备高能量密度的超级电容器的方法,属于超级电容器技术领域。步骤如下:将氧化物、聚偏二氯乙烯和三聚氰胺混合在有机溶剂中,球磨后得到前驱体;将前驱体放在烘箱中干燥,在惰性气体保护下快速升温,高温煅烧得到多孔介孔碳材料;将得到的碳材料经酸洗后采用中性电解液组成电容器。表明其具有非常高的电压窗口,可达到1.8v,同时能量密度达到21.5Wh/kg‑1

Description

一种氧化物为模板制备高能量密度的超级电容器的方法
技术领域
本发明属于超级电容器技术领域,具体涉及一种氧化物为模板制备高能量密度的超级电容器的方法。
背景技术
现今能源已经成为所有的科研工作者最关注的问题之一了,所以超级电容器进入了我们的视野之中,超级电容器有很多的优势,例如它的功率密度高,充放电快,使用寿命长,有利于环境的保护,其中碳材料是很好的电极材料,由于它的导电性好、比表面积大等优势。碳材料应用在很多方面,现在多孔碳的合成方式有很多,对于不同结构、尺寸、形貌的调节也有很多。但是大部分的方法都比较繁琐,且制备的量很小,无法工业化大批量生产。各种各样的碳源也有很多,天然碳材料比较便宜,但是合成出的样品纯度低。同时,现在的超级电容器的主要的缺点是电压窗口过低,能量密度也很低,如采用碱性电解液,电压窗口最高才能达到1.25v,这是限制超级电容器应用的主要一个方面。
因此找到一种可以大量合成,且石墨化程度很高的多孔碳材料,通过在一定的电解液中抑制它的电解水反应,得到一种高能量密度的超级电容器成为了我们的目标。因此我们试图寻找一种无机模板,将合成出的碳材料在一定的电解液中组成超级电容器,得到了电压窗口高、能量密度高的超级电容器。
本研究是探索具有高能量密度的多孔碳材料在超级电容器中的应用。
发明内容
本发明通过选取金属氧化物和非金属氧化物为模板,在中性电解液中组成超级电容器,抑制电解水的发生,进一步有效地提高了电容器的电压窗口和能量密度。
本发明提供一种提高电容器的电压窗口和能量密度的方法,具体步骤如下:
(1)将氧化物、聚偏二氯乙烯和三聚氰胺混合在有机溶剂(N,N二甲基乙酰胺)中,球磨后得到前驱体;
(2)将步骤(1)中的前驱体放在烘箱中干燥,在惰性气体保护下快速升温,高温煅烧得到多孔介孔碳材料;
(3)将步骤(2)中得到的碳材料经酸洗后采用中性电解液组成电容器。
优选地,所述氧化物为金属氧化物或非金属氧化物,金属氧化物选自氧化镁、氧化锌、二氧化锰、三氧化铝、氧化钙,非金属氧化物为二氧化硅。
优选地,所述惰性气体为氮气或氩气。
优选地,步骤(2)快速升温的速率为每分钟10~20℃;所述高温煅烧温度不低于500℃,所述高温焙烧时间为0.5~2小时。
优选地,所述酸洗为质量百分含量为20%硫酸。
优选地所述的中性电解液选自硫酸锂、硫酸钠或硫酸钾水溶液。进一步优选,电解液为1摩尔/升的硫酸锂。
对本发明得到的产物进行表征:扫描电镜照片(附图1)显示,所合成的碳材料为孔分布均一的多孔碳材料。透射电镜照片(附图2)显示,制得的碳材料为介孔碳材料。XRD谱图(附图3)显示其在25°处有明显的尖峰,说明我们所合成的材料为碳材料。拉曼图谱(附图4)显示所合成的氧化石墨具有较高的石墨化程度,D峰与G峰比接近1:1。X光电子能谱中(附图5)显示其含碳量高达84.0at.%,剩余的元素含量几乎被氧元素占据。
通过使用氧化物为模板合成的多孔碳材料制备的超级电容器测试,表明其具有非常高的电压窗口,可达到1.8v,同时能量密度达到21.5Wh/kg-1(附图10,附图11),具有很好的稳定性(附图7)。
本发明的有益效果
1、本发明的制备方法原材料成本低廉、来源广泛,反应操作简单、安全性高、后处理易行,极易适用工业扩大生产。同时,本发明的制备方法对于特殊形貌的掺杂碳材料的制备也具有非常高的指导意义。
2、本发明通过在中性电解液硫酸锂中,抑制电解水的发生,以此提高了电容器电压窗口和能量密度。
附图说明
图1为本发明实施例1的具有多孔碳材料的扫描电镜图。
图2为本发明实施例1的具有多孔碳材料的透射电镜图。
图3为本发明实施例1的具有多孔碳材料的XRD谱图。
图4为本发明实施例1的具有多孔碳材料的Raman谱图。
图5为本发明实施例1的具有多孔碳材料的XPS元素图。
图6为本发明实施例1的具有多孔碳材料的循环伏安图。
图7为本发明实施例1的具有多孔碳材料的充放电线形图。
图8为对比例1碳材料(ZnO)在电解液为6MKOH时的CV曲线;
图9是对比例1的充放电曲线;
在电流密度为0.5A/g时,传统碱液下测试电容器电压为1V。
图10为实施例1和对比例1的中性电解液和碱性电解液的能量密度对比图;
其中碱性的能量密度是通过电压1V时计算的,中性的能量密度图是通过1.8V电压计算的。
图11为实施例在不同电压条件下的能量密度与电压的关系图。
图12本发明实施例1的具有多孔碳材料的扫描电镜图。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1
本发明的制备方法步骤为:
1.称取2g氧化锌,2.0g聚偏二氯乙烯,1.0g三聚氰胺,在氮氮二甲基乙酰胺中混合,球磨4个小时,在70℃烘箱中干燥,得到前驱物,将前驱体在10℃每分钟的升温速度氩气保护下高温700℃下煅烧2h,通过酸洗得到碳材料。
2.将该材料制备成电极片,在中性电解液硫酸锂中组装成纽扣电容进行测试。
所选酸洗为20%的硫酸。
硫酸锂的浓度为1摩尔每升。
实施例2
1.称取2g氧化镁,2.0g聚偏二氯乙烯,1.0g三聚氰胺,在氮氮二甲基乙酰胺中混合,球磨4个小时,在70°烘箱中干燥,得到前驱物,将前驱体在10℃每分钟的升温速度氩气保护下高温700℃下煅烧2h,通过硫酸水洗得到碳材料。
2.将该材料制备成电极片,在中性电解液硫酸锂(浓度1摩尔每升)中组装成纽扣电容进行测试。
实施例3
除参加反应的物质的使用量,将模板换为氧化锌,其他与实施例1同。
实施例4
除参加反应的物质的使用量,将模板换为二氧化锰,其他与实施例1同。
实施例5
除参加反应的物质的使用量,将模板换为二氧化硅,其他与实施例1同。
实施例6
除参加反应的物质的使用量,将模板换为三氧化二铝,其他与实施例1同。
对比例1
除参加反应的物质的使用量,将中性电解液换为氢氧化钾(浓度为6摩尔每升),其他与实施例1同。
实施例7
1.称取2g二氧化硅,2.0g聚偏二氯乙烯,1.0g三聚氰胺,在氮氮二甲基乙酰胺中混合,球磨4个小时,在70°烘箱中干燥,得到前驱物,将前驱体在10℃每分钟的升温速度氩气保护下高温700℃下煅烧2h,通过硫酸水洗得到碳材料,见图12。
2.将该材料制备成电极片,在中性电解液硫酸锂(浓度1摩尔每升)中组装成纽扣电容进行测试,得到类似实施例1的效果。

Claims (10)

1.一种提高电容器的电压窗口和能量密度的方法,其特征在于,包括以下步骤:
(1)将氧化物、聚偏二氯乙烯和三聚氰胺混合在有机溶剂中,球磨后得到前驱体;
(2)将步骤(1)中的前驱体放在烘箱中干燥,在惰性气体保护下快速升温,高温煅烧得到多孔介孔碳材料;
(3)将步骤(2)中得到的碳材料经酸洗后采用中性电解液组成电容器。
2.按照权利要求1所述的一种提高电容器的电压窗口和能量密度的方法,其特征在于,有机溶剂为N,N二甲基乙酰胺。
3.按照权利要求1所述的一种提高电容器的电压窗口和能量密度的方法,其特征在于,所述氧化物为金属氧化物或非金属氧化物,金属氧化物选自氧化镁、氧化锌、二氧化锰、三氧化铝、氧化钙,非金属氧化物为二氧化硅。
4.按照权利要求1所述的一种提高电容器的电压窗口和能量密度的方法,其特征在于,所述惰性气体为氮气或氩气。
5.按照权利要求1所述的一种提高电容器的电压窗口和能量密度的方法,其特征在于,步骤(2)快速升温的速率为每分钟10~20℃;所述高温煅烧温度不低于500℃,所述高温焙烧时间为0.5~2小时。
6.按照权利要求1所述的一种提高电容器的电压窗口和能量密度的方法,其特征在于,所述酸洗为质量百分含量为20%硫酸。
7.按照权利要求1所述的一种提高电容器的电压窗口和能量密度的方法,其特征在于,中性电解液选自硫酸锂、硫酸钠或硫酸钾水溶液。
8.按照权利要求1所述的一种提高电容器的电压窗口和能量密度的方法,其特征在于,电解液为1摩尔/升的硫酸锂。
9.按照权利要求1-8任一项所述的方法制备得到的电容器。
10.按照权利要求1-8任一项所述的方法制备得到的电容器,窗口电压达到1.8v,能量密度达到21.5Wh/kg-1
CN201710289446.4A 2017-04-27 2017-04-27 一种氧化物为模板制备高能量密度的超级电容器的方法 Pending CN107195477A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710289446.4A CN107195477A (zh) 2017-04-27 2017-04-27 一种氧化物为模板制备高能量密度的超级电容器的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710289446.4A CN107195477A (zh) 2017-04-27 2017-04-27 一种氧化物为模板制备高能量密度的超级电容器的方法

Publications (1)

Publication Number Publication Date
CN107195477A true CN107195477A (zh) 2017-09-22

Family

ID=59872257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710289446.4A Pending CN107195477A (zh) 2017-04-27 2017-04-27 一种氧化物为模板制备高能量密度的超级电容器的方法

Country Status (1)

Country Link
CN (1) CN107195477A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824029A (zh) * 2019-03-28 2019-05-31 桂林电子科技大学 基于聚偏二氯乙烯氮掺杂多孔碳材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735554A2 (en) * 1995-03-30 1996-10-02 Isuzu Motors Limited Electrode for electric double layer capacitor and method of manufacturing the same
CN101306807A (zh) * 2008-04-30 2008-11-19 中国科学院上海硅酸盐研究所 一种氮掺杂多孔碳材料的制备方法
CN103213968A (zh) * 2013-04-22 2013-07-24 北京化工大学 一种杂原子掺杂碳材料及其制备方法和应用
CN104900423A (zh) * 2015-06-10 2015-09-09 北京化工大学 一种用于超级电容器的掺杂型碳材料的制备方法
CN105692580A (zh) * 2014-11-28 2016-06-22 中国科学院大连化学物理研究所 一种多孔碳材料及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735554A2 (en) * 1995-03-30 1996-10-02 Isuzu Motors Limited Electrode for electric double layer capacitor and method of manufacturing the same
CN101306807A (zh) * 2008-04-30 2008-11-19 中国科学院上海硅酸盐研究所 一种氮掺杂多孔碳材料的制备方法
CN103213968A (zh) * 2013-04-22 2013-07-24 北京化工大学 一种杂原子掺杂碳材料及其制备方法和应用
CN105692580A (zh) * 2014-11-28 2016-06-22 中国科学院大连化学物理研究所 一种多孔碳材料及其制备和应用
CN104900423A (zh) * 2015-06-10 2015-09-09 北京化工大学 一种用于超级电容器的掺杂型碳材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824029A (zh) * 2019-03-28 2019-05-31 桂林电子科技大学 基于聚偏二氯乙烯氮掺杂多孔碳材料及其制备方法和应用
CN109824029B (zh) * 2019-03-28 2022-05-27 桂林电子科技大学 基于聚偏二氯乙烯氮掺杂多孔碳材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Wei et al. A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application
Yu et al. TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries
Lv et al. Inexpensive and eco-friendly nanostructured birnessite-type δ-MnO2: a design strategy from oxygen defect engineering and K+ pre-intercalation
Wu et al. NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor
Chen et al. Microwave-assisted synthesis of hybrid CoxNi1− x (OH) 2 nanosheets: tuning the composition for high performance supercapacitor
Qu et al. Rational design of NiSe2@ rGO nanocomposites for advanced hybrid supercapacitors
Yin et al. Hierarchical spheroidal MOF-derived MnO@ C as cathode components for high-performance aqueous zinc ion batteries
Chen et al. YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance
Zhang et al. Flaky N-doped hard carbon anode material for sodium-ion batteries
CN103682296B (zh) 一种高比容量纳米级钛酸锂材料的制备方法
CN106505185B (zh) 一种锑/氮掺杂碳复合物及其制备方法和应用
Karthikeyan et al. Electrochemical supercapacitor studies of hierarchical structured Co2+-substituted SnO2 nanoparticles by a hydrothermal method
CN102328952B (zh) 球形钛酸锂材料的制备方法
Zhou et al. Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2 (B)
CN105575675A (zh) 一种利用水/溶剂热法制备钛铌复合氧化物的方法及其在锂离子超级电容器中的应用
Wang et al. Oxygen-deficient tungsten oxide nanorods with high crystallinity: Promising stable anode for asymmetric supercapacitors
CN104409219B (zh) 六边形二氧化锰纳米片材料的制备及其作为超级电容器电极材料的应用
Tang et al. Carbon-coated Li4Ti5O12 tablets derived from metal-organic frameworks as anode material for lithium-ion batteries
CN110155983A (zh) 一种棉花基多孔生物质碳的制备方法
CN106683890A (zh) 碳/氧化锰复合材料及其制备方法与应用
Gou et al. Calcium-organic frameworks cathode for high-stable aqueous Zn/organic batteries
Li et al. Molten salt assisted conversion of corn lignocellulosic waste into carbon nanostructures with enhanced Li-ion storage performance
Liu et al. Hierarchical N/O co-doped hard carbon derived from waste saccharomyces cerevisiae for lithium storage
Sun et al. Preparation of N-doped biomass C@ SnO2 composites and its electrochemical performance
CN107195477A (zh) 一种氧化物为模板制备高能量密度的超级电容器的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170922