CN103201409A - 制备含氧化铟的层的方法 - Google Patents

制备含氧化铟的层的方法 Download PDF

Info

Publication number
CN103201409A
CN103201409A CN2011800544274A CN201180054427A CN103201409A CN 103201409 A CN103201409 A CN 103201409A CN 2011800544274 A CN2011800544274 A CN 2011800544274A CN 201180054427 A CN201180054427 A CN 201180054427A CN 103201409 A CN103201409 A CN 103201409A
Authority
CN
China
Prior art keywords
indium
alkoxide
layer
radiation
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800544274A
Other languages
English (en)
Other versions
CN103201409B (zh
Inventor
J.施泰格
D.V.范
H.蒂姆
A.默库洛夫
A.霍佩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of CN103201409A publication Critical patent/CN103201409A/zh
Application granted granted Critical
Publication of CN103201409B publication Critical patent/CN103201409B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Paints Or Removers (AREA)
  • Thin Film Transistor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本发明涉及生产包含氧化铟的层的液相方法,在其中将可以从含有至少一种氧化铟前体和至少一种溶剂和/或分散介质的混合物生产的涂料组合物以点a)-d)的次序,其中a)施涂到基材上,和b)将该施涂到基材上的组合物用电磁辐射进行照射,和c)任选地干燥,和d)热转化成包含氧化铟的层,其中所述氧化铟前体是通式InX(OR)2的铟卤素醇盐,其中R是烷基和/或烷氧基烷基,X是F、Cl、Br或I,使用具有显著含量的在170-210nm和250-258nm范围的辐射的电磁辐射实施照射。涉及可通过该方法制备的含氧化铟的层和其用途。

Description

制备含氧化铟的层的方法
本发明涉及一种制备含氧化铟的层的方法,涉及到能够通过本发明的方法制备的包含氧化铟的层及其用途。
与许多的其它方法例如化学气相沉积(CVD)相比,依靠印刷和其它液体沉积方法来制备半导体电子部件层能够简化加工工艺和产生显著更低的制备成本,因为半导体能够在此以连续的工艺来沉积。此外,在低的加工温度情况下,还开辟了下面的可能性:在柔性基材上工作,并且可能(特别是在非常薄的层的情况中,和特别是在氧化物半导体的情况中)实现印刷层的光学透明度。半导体层在这里和下面被理解为表示这样的层,其在50V栅源电压和50V漏源电压时,在通道长度为20µm的部件的情况中,具有1-50cm2/Vs的载流子迁移率。
因为打算依靠印刷方法或者其它液体沉积方法制备的部件层的材料对于具体层的性能具有决定性作用,因此这种材料的选择对于含有这种部件层的各部件具有重要影响。用于印刷半导体层的重要参数是它们具体的载流子迁移率和它们的制备中所用的可印刷前体的加工性和加工温度。该材料应当具有良好的载流子迁移率,并且能够在明显低于500℃的温度,从溶液中来制备,目的是适于多种应用和基材。同样对于许多新应用来说令人期望的是所获得的半导体层的光学透明度。
氧化铟(氧化铟(III),In2O3)由于具有在3.6和3.75eV之间的大的带间隙(对通过蒸镀施加的层所测量,H.S.Kim, P.D.Byrne, A. Facchetti, T.J.Marks; J. Am. Chem.Soc.2008, 130, 12580-12581),使其成为非常有前景的并因此受欢迎使用的半导体。此外,几百纳米厚度的薄膜可以在可见光谱范围内在550nm具有大于90%的高透明度。此外,在特别高度有序的氧化铟单晶中能测量到至多160cm2/Vs的载流子迁移率。然而,迄今为止,还不能通过从溶液进行加工获得这样的值(H. Nakazawa, Y. Ito, E. Matsumoto, K. Adachi, N. Aoki, Y. Ochiai; J. Appl.Phys.2006, 100, 093706. and A. Gupta, H. Cao, Parekh, K.K.V.Rao, A.R. Raju, U.V.Waghmare; J. Appl.Phys.2007, 101, 09N513)。
氧化铟经常与氧化锡(IV)(SnO2)一起作为半导混合氧化物ITO来使用。由于ITO层相对高的电导率以及同时具有的在可见光谱范围的透明度,ITO层的应用之一是用于液晶显示器(LCD)中,特别是用作“透明电极”。这些通常掺杂的金属氧化物层在工业上尤其是通过昂贵的蒸镀方法在高真空来制备的。由于ITO涂覆的基材大的经济利益,这里现在存在着一些针对含氧化铟的层的涂覆方法,特别是基于溶胶-凝胶技术的方法。
原则上,存在着两种经由印刷方法来制备氧化铟半导体的可能方式:1)颗粒概念,在其中(纳米)颗粒存在于可印刷的分散体中,并且在印刷过程之后,通过烧结过程转化成期望的半导体层,和2)前体概念,在其中在印刷适当的组合物之后,将至少一种可溶的或者可分散的前体转化成含氧化铟的层。前体在这里被理解为表示一种化合物,其能够用热或者用电磁辐射进行分解,使用该化合物,在氧或者其它氧化剂存在或者不存在的条件下,可以形成含金属氧化物的层。颗粒概念与使用前体相比具有两个显著缺点:首先,该颗粒分散体具有胶体不稳定性,其必需使用分散添加剂(这在随后的层性能方面是不利的),其次,许多能够使用的颗粒通过烧结仅仅形成了不完全的层(例如归因于钝化层),因此一些粒状结构仍然在层中显露出来。这导致在这种结构的颗粒边界处相当大的颗粒-颗粒阻抗,这降低了载流子的迁移率和提高了普遍的层阻抗。
存在着用于制备氧化铟层的不同的前体。因此,除了铟盐之外,还可以使用铟醇盐(均配(homoleptisch)的化合物,即,仅仅具有铟和醇盐基的这些化合物,特别是In(OR)3类型的铟化合物,这里R=烷基或者烷氧基烷基)和铟卤素醇盐(即,具有卤素和醇盐基团(Alkoxidreste)二者的铟化合物,特别是InXm(OR)3-m类型的三价铟化合物,这里X=卤素,R=烷基或者烷氧基烷基和m=1,2)作为制备含氧化铟的层的前体。
例如,Marks等人描述这样的部件,它的制备使用了包含前体的组合物,该组合物包含溶解在甲氧基乙醇中的盐InCl3和碱单乙醇胺(MEA)。在旋涂该组合物之后,相应的氧化铟层是通过在400℃热处理来获得的(H.S.Kim, P.D.Byrne, A. Facchetti, T.J.Marks; J. Am. Chem.Soc.2008, 130, 12580-12581和补充信息)。
与包含铟盐的组合物相比,包含铟醇盐或者铟卤素醇盐的组合物具有这样的优点,即,它们能够在更低的温度转化成包含氧化铟的涂层。此外,迄今认为含卤素前体潜在地具有导致低品质的含卤素层的缺点。为此,在过去试图用铟醇盐来形成层。
从上个世纪七十年代以来,已经描述了铟醇盐和铟卤素醇盐及其合成。
例如Carmalt等人在综述论文中总结了迄今为止已知的尤其关于铟(III)醇盐和铟(III)烷基醇盐的合成,结构和反应性数据(Carmalt等人,Coord. Chem Rev. 250(2006),682–709)。Chem Rev. 250 (2006), 682-709)。
Chatterjee等人描述了铟醇盐的一种最早知晓的合成。他们描述了由氯化铟(III)(InCl3)与烷醇钠NaOR(这里R代表甲基,乙基,异丙基,正、仲、叔丁基和正、仲、叔-戊基)来制备铟三醇盐In(OR)3(S. Chatterjee,S. R. Bindal,R.C.Mehrotra; J. Indian Chem.Soc.1976, 53, 867)。
Bradley等人报道了类似于Chatterjee等人的一种反应,并且使用了近似相同的原料(InCl3,异丙基钠)和反应条件,获得一种具有氧作为中心原子的铟-氧-醇盐蔟(D.C. Bradley, H. Chudzynska, D.M.Frigo, M.E.Hammond, M.B.Hursthouse, M.A. Mazid; Polyhedron 1990, 9, 719)。
这种方法的一种特别好的变型(其导致了产物中特别低的氯杂质)描述在US2009-0112012A1中。在产物中实现尽可能低程度的氯杂质的努力归功于这样的事实,即,迄今认为氯杂质导致了电子部件的性能或者寿命降低(参见例如US6426425B2)。
同样基于卤化铟但基于不同碱的是US5237081A中所述的制备纯铟醇盐的方法,在其中卤化铟(III)在碱性介质中与醇反应。据称所述的碱是具有低亲核性的强碱。除了作为举例而提及的复杂的环状杂环化合物之外,作为举例而提及的碱是叔胺。
Seigi Suh等人在J. Am. Chem. Soc. 2000,122,9396-9404中描述了一种可选择的合成均配铟醇盐络合物的路线。但是,此处所述的方法是非常复杂的和/或是基于非市售的原料(并因此首先必须在前面的步骤中以不利的方式来合成)。
US4681959A中描述了一种通用的制备卤素-烷氧基-金属化合物的方法:其中描述了一种用于制备金属醇盐(特别是四烷氧基化合物,例如四甲基钛酸酯)的通用的两级方法,在其中至少二价的金属的卤化物与醇反应,任选地在芳族溶剂存在下进行,首先产生中间体(金属的卤素-烷氧基化合物)。优选地,用惰性气体例如氮气将在该反应过程中所形成的卤化氢驱除。
铟卤素醇盐和它们的合成还描述在JP02-113033A和JP02-145459A中。例如,JP02-113033A公开了可以如下来制备含氯的铟醇盐:在将氯化铟溶解到对应于打算引入的烷氧基基团的醇中之后,随后加入特定比例的碱金属或者碱金属醇盐。相应的方法还描述在JP02-145459A中。
包含氧化铟的层原则上可以由铟醇盐和铟卤素醇盐如下来制备:i)通过溶胶-凝胶方法,在其中所用的前体首先在水存在下通过水解和随后缩合来反应,从而产生凝胶,然后转化成金属氧化物,或者ii)由非水性溶液来制备。转化成含氧化铟的层可以通过热方式和/或通过电磁辐射进行。
通过热转化制备包含氧化铟的层的方法属于现有技术。WO2008/083310A1描述了例如在基材上制备无机层或者有机/无机杂合层的方法,在其中将金属醇盐(例如通式R1M(OR2)y-x之一)或者其预聚物施涂到基材上,然后将所形成的金属醇盐层在水存在下与水反应并在供入热量下硬化。可用的金属醇盐可以尤其包括铟醇盐。转化之后,获得的层随后可以用热或UV处理。
JP01-115010A提出了在溶胶-凝胶方法中的一种热转化。该文献描述了用于透明导电薄层的组合物,其具有长的适用期(Topfzeit),并且不是水解组合物,其包含了式In(OR)xCl3-x的含氯铟醇盐。在施涂到基材上之后,通过空气中的水量,该醇盐在基材上凝胶化,随后在至多200℃干燥,这些组合物可以在400-600℃的温度转化。
JP02-113033 A描述了将抗静电涂料施涂到非金属材料上的方法,在其中将非金属材料用包含含氯铟醇盐的组合物进行涂覆,将该组合物在空气下凝胶化,然后煅烧。
JP 2007-042689 A描述了可以含有铟醇盐的金属醇盐溶液,以及使用这些金属醇盐溶液制备半导体元件的方法。金属醇盐溶液可以通过热处理转化为氧化物层。
JP02-145459 A描述了包含铟卤素醇盐的涂料组合物,其在存储过程中不水解,并且其能够通过煅烧转化成包含氧化铟的层。
JP59-198607 A描述了制备透明导电层的方法,其可以具有由不同树脂构成的保护膜。该透明的导电层可以是包含氧化铟的层,并且可以经由液相方法来制备,在其中将相应的组合物施涂到基材上,干燥和热转化。根据实施例,可以使用包含InCl(OC3H7)2的组合物。
JP59-198606 A描述了用于形成透明导电层的组合物,其包含InClx(OR)3-x和有机溶剂,并且含水量为0.1-10%,基于有机溶剂计。该组合物因此是铟卤素醇盐的溶胶。为了形成透明导电层,将该组合物施涂到基材上,并且在典型的150℃干燥,然后在优选300℃的温度焙烧。
然而,单独借助于热实施的转化具有的不利之处在于,它不能用于制备精致结构和此外不允许精确控制所得的层性质。
为此原因,基于使用电磁辐射(尤其UV辐射)开发了用于转化为含氧化铟的层的方法。
JP09-157855A描述了一种用于制备金属氧化物层的溶胶-凝胶方法,在其中将金属醇盐或金属盐(例如铟醇盐或者铟盐)通过水解制备的金属氧化物溶胶施涂到基材表面上,任选地在凝胶仍然未发生结晶的温度进行干燥和用小于360nm的UV辐射进行照射。
然而,仅仅通过辐射进行的转化具有的不利之处在于,它们在较长的时间内要求非常高的能量密度和因此在设备方面昂贵和不方便。为此原因,开发了不仅基于热转化而且也基于使用电磁辐射的转化的方法。
JP2000-016812 A还描述了一种经由溶胶-凝胶方法来制备金属氧化物层的方法。在此方法中,基材用包含金属盐或金属醇盐的金属氧化物溶胶的涂料组合物,特别是In2O3-SnO2组合物涂覆,和涂层用UV辐射在小于360nm的波长下照射,并进行热处理。
JP11-106935 A描述了一种制备基于氧化物的透明导电膜的方法,在其中尤其将包含金属(例如铟)的醇盐的无水组合物施涂到基材上并且加热。此外,该膜可以随后使用UV或者VIS辐射来转化成基于金属氧化物的薄层。
DE 10 2009 054 997描述了用于从非水溶液制备含氧化铟的层的液相方法,是通过将包含至少一种溶剂或分散介质和至少一种通式InX(OR)2的前体的无水组合物在无水气氛中施涂到基材上和利用<360nm的电磁辐射进行照射和进行热转化。
然而,通过组合的热转化和电磁辐射转化制备含氧化铟的层的已知方法具有的缺点是,在文献中详尽地描述的铟醇盐的使用展示出差得多的半导电性质。此外,甚至热转化与借助电磁辐射或UV辐射的转化的组合单独地没有导致充分令人满意的结果,特别是相对于所得的场效应迁移性µFET
因此所提出的问题是克服现有技术所概括的缺陷和提供用于制备含氧化铟的层的改进方法。
这个目标按照本发明,是通过根据权利要求1的用于制备包含氧化铟的层的液相方法来实现的,在其中将可以从含有至少一种氧化铟前体和至少一种溶剂和/或分散介质的混合物制备的涂料组合物以点a)-d)的次序
a) 施涂到基材上,
b) 将该施涂到基材上的组合物用电磁辐射进行照射,和
c) 任选地干燥,和
d) 热转化成包含氧化铟的层,
其中
- 所述铟氧化物前体是通式InX(OR)2的铟卤素醇盐,其中R是烷基和/或烷氧基烷基,X是F、Cl、Br或I,
- 使用具有显著含量的在170-210nm和250-258nm范围的辐射的电磁辐射实施照射。
根据本发明的用于制备包含氧化铟的层的液相方法是这样的方法,其包含至少一个方法步骤,在其中将待涂覆的基材用基于至少一种通式InX(OR)2(其中R=烷基和/或烷氧基烷基,X=F、Cl、Br或I)的铟卤素醇盐的液态涂料组合物进行涂覆,用电磁辐射照射,任选地随后干燥,然后热转化。特别地,这种方法不是溅射法或CVD方法。在本发明上下文中,液体组合物被理解为表示在SATP条件(“标准环境温度和压力”;T=25℃和p=1013 hPa)下和施涂到待涂覆的基材上时处于液体形式的组合物。
可以从包含所述至少一种通式InX(OR)2的氧化铟前体的混合物制备的涂料组合物不仅涵盖包含前体InX(OR)2的涂料组合物,而且涵盖包含(任选地除了InX(OR)2之外)可以从InX(OR)2与所述至少一种溶剂或分散介质的混合物制备的铟氧代醇盐或铟卤素氧代醇盐(尤其是通式In7O2(OH)(OR)12X4(ROH)x或In6O2X6(OR)6(R'CH(O)COOR")2(HOR)x(HNR'"2)y的醇盐)的涂料组合物。然而,优选地,本发明的方法使用包含InX(OR)2的涂料组合物实施。
根据本发明方法的方法产物,即包含氧化铟的层,被理解为表示包含金属或者半金属的层,其包含基本上以氧化物形式存在的铟原子或者离子。所述含氧化铟的层可以任选地也具有氮含量(来自反应)、碳含量(尤其碳烯)、卤素含量和/或来自不完全转化或不完全除去形成的副产物的醇盐含量。该包含氧化铟的层可以是纯的氧化铟层,即,忽视可能的氮,碳(特别是碳烯),醇盐或者卤素成分,主要由氧化物形式的铟原子或者离子组成,或者可以具有一定比例的另外金属,半金属或者非金属(它们本身可以是元素或者氧化物形式)。为了制备纯的氧化铟层,在本发明方法中应该仅仅使用铟卤素醇盐,优选仅仅一种铟卤素醇盐。相反,为了制备还包含其它金属、半金属和/或非金属的层,除了所述铟卤素醇盐外还应该使用这些元素在0价氧化态的前体(用于制备包含中性形式的其它金属的层)和/或包含正价氧化态的元素的含氧前体(例如其它金属醇盐或金属卤素醇盐)。
令人惊讶地,还已经发现迄今所假定的含卤素前体不可避免的导致了不利的层这样的观点并不总是正确的。例如,本发明的方法,在其中在使用铟氯二醇盐代替铟醇盐的情况中,将液体氧化铟前体组合物施涂到基材上并且该涂膜在热转化之前首先用UV辐射来处理,甚至产生了更好的层,因为它们具有更好的电性能,特别是更高的场效应迁移率。另外,在使用铟卤素二醇盐代替铟醇盐的情况中,还令人惊讶地实现了无定形的层。与由单独的纳米晶体构成的层相比,无定形层具有均匀性更大的优点,其同样体现在在较大的基材上更好的电性能,特别是更均匀的场效应迁移率方面。
根据本发明,利用电磁辐射的照射是使用具有显著含量的在170-210nm和250-258nm范围的辐射的电磁辐射实施的。使用“具有显著含量的在170-210nm和250-258nm范围的辐射”进行辐射在此是指基于待照射的样品的对于这两个波长范围累积测定的其强度为至少5mW/cm2的辐射,条件是与基材相关的至少为0.5mW/cm2的强度总是属于这两个范围其强度较弱的那个。可以使用各种市场装置直接地和与波长独立地测量绝对值。例如可以提及来自Hamamatsu的"UV Power Meter C9536"。
由于产生特别好的µFET值,优选的是用具有显著含量的在183-187nm和250-258nm范围的辐射进行照射,其中基于对于术语“具有显著量”的相应的理解(基于待照射的样品的对于这两个波长范围累积测定的强度为至少5mW/cm2,条件是与基材相关的至少为0.5mW/cm2的强度总是属于这两个范围其强度较弱的那个)。
当具有显著含量的在170-210nm和250-258nm范围的辐射的辐射,更优选具有显著含量的在183-187nm和250-258nm范围的相应的辐射,在每种情况下是相对于两个轴呈线性进行刻度的强度/波长谱中,在灯的整个发射上,在每种情况下所述的两个范围内展现出其强度的至少85%(通过所述部分范围积分总和在作为在光谱波长上积分测定的整体辐射强度中的百分比例确定)。
具有显著含量的在170-210nm和250-258nm范围的辐射的辐射的相应辐射优选地可以通过使用低压水银蒸汽灯,更特别是石英玻璃低压水银蒸汽灯产生。特别优选可以使用的一种石英玻璃低压水银蒸汽灯是配备有GLF-100光源的和可以商品名型号144AX-220从Jelight Company, Inc.获得的灯,其光谱描绘在图1中。
根据本发明使用的氧化铟前体InX(OR)2优选地具有选自C1-C15烷基或烷氧基烷基(即总共具有1-15个碳原子的烷基或烷氧基烷基)的烷基和/或烷氧基烷基R。优选的烷基和/或烷氧基烷基R选自-CH3 -CH2CH3、-CH2CH2OCH3、-CH(CH3)2或C(CH3)3
铟卤素醇盐可以含有相同或不同的基团R。然而,对于本发明的方法,优选使用具有相同烷基和/或烷氧基烷基R的铟卤素醇盐。
原则上,在铟卤素醇盐中可以使用所有的卤素。然而,使用铟氯醇盐,即当X=Cl时,取得了特别好的结果。
当所用的铟卤素醇盐是InCl(OMe)2、InCl(OCH2CH2OCH3)、InCl(OEt)2、InCl(OiPr)2或者InCl(OtBu)2,实现了最佳的结果。
该铟卤素醇盐InX(OR)2优选的使用比例是0.1-10重量%,特别优选0.5-6重量%和非常特别优选1-5重量%,基于该组合物总质量计。
该包含铟卤素醇盐的组合物可以包含它的溶解形式,即,离解形式或者在分子水平上与溶剂分子的络合的形式,或者分散在液相中。
如果仅仅使用含铟的前体,本发明的方法尤其适合于制备具有高质量和良好性能的In2O3层。当该唯一使用的前体是铟卤素烷醇盐时,获得了特别好的层。
然而,除了铟卤素醇盐外,所述组合物还可以包含溶解或分散形式的其它前体,优选地其它元素的醇盐或卤素醇盐。特别优选的是B、Al、Ga、Ge、Sn、Pb、P、Hf、Zn和Sb的醇盐和卤素醇盐。特别优选地可以使用的醇盐和卤素醇盐是化合物Ga(OiPr)3、Ga(OtBu)3、Zn(OMe)2、Sn(OtBu)4。因此,使用这些化合物可以制备另外含有元素B、Al、Ga、Ge、Sn、Pb、P、Zn和Sb和/或它们的氧化物的含氧化铟的层。
该组合物进一步包含至少一种溶剂和/或分散介质。该组合物因此还可以包含两种或者更多种溶剂和/或者分散介质。但是,为了实现特别好的包含氧化铟的层,该组合物中应当存在仅仅一种溶剂或者分散介质。
优选可以使用的溶剂或者分散介质是非质子和弱质子溶剂或者分散介质,即,选自下面的这些:非质子非极性溶剂/分散介质,即烷烃,取代烷烃,烯烃,炔烃,不具有或者具有脂肪族或者芳族取代基的芳族化合物,卤代烃,四甲基硅烷,非质子极性溶剂/分散介质,即,醚,芳族醚,取代的醚,酯或者酸酐,酮,叔胺,硝基甲烷,DMF(二甲基甲酰胺),DMSO(二甲基亚砜)或者碳酸异丙二醇酯,和弱质子溶剂/分散介质,即醇,伯胺和仲胺和甲酰胺。特别优选可使用的溶剂和分散介质是醇,以及甲苯,二甲苯,苯甲醚,三甲基苯,正己烷,正庚烷,三(3,6-二氧杂庚基)胺(TDA),2-氨基甲基四氢呋喃,苯乙醚,4-甲基苯甲醚,3-甲基苯甲醚,苯甲酸甲酯,乙酸丁酯,乳酸乙酯,甲氧基乙醇,丁氧基乙醇,1-甲氧基-2-丙醇,N-甲基-2-吡咯烷酮(NMP),萘满,苯甲酸乙酯和乙醚。非常特别优选的溶剂或者分散介质是甲醇,乙醇,异丙醇,四氢糠醇,叔丁醇,乙酸丁酯,乳酸乙酯,甲氧基乙醇,1-甲氧基-2-丙醇和甲苯,及其混合物。由于它们的低毒性,甚至更优选的是溶剂乙醇,异丙醇,四氢糠醇,叔丁醇,乙酸丁酯,乳酸乙酯,1-甲氧基-2-丙醇和甲苯。
该溶剂和/或分散介质优选的使用比例是99.9-90重量%,基于该组合物的总质量计。
为了实现特别好的适印性能(Verdruckbarkeit),用于本发明方法的组合物优选具有1mPa∙s~10Pa.s、尤其具有1mPa∙s~100mPa∙s的粘度,根据DIN 53019第1~2部分规定在20℃测定。可以通过加入聚合物、纤维素衍生物,或者例如在商品名称Aerosil下可得的SiO2,和尤其通过PMMA、聚乙烯醇、氨基甲酸酯增稠剂或者聚丙烯酸酯增稠剂来调整相应的粘度。
本发明方法所用的基材优选是这样的基材,其由下面材料组成:玻璃,硅,二氧化硅,金属氧化物或者过渡金属氧化物,金属或者聚合物材料,特别是PI,PEN,PEEK,PC或者PET。
本发明的方法特别有利的是一种涂覆方法,选自印刷方法(特别是柔版/凹版印刷,喷墨印刷,非常特别优选连续的,热或者压电喷墨印刷,胶版印刷,数字胶版印刷和丝网印刷),喷涂方法,旋涂方法(“旋涂”),浸渍方法(“浸涂”),和选自弯月面涂覆,狭缝涂覆,狭缝-模头涂覆和帘涂的方法。事实上非常优选地,本发明方法是印刷方法。合适的印刷方法特别是喷墨和液体复印法(例如HP Indigo),因为这些方法特别适于结构化施涂印刷材料。
如上所述,使用具有显著含量的在170-210nm和250-258nm范围的辐射的辐射实施照射。在此情况下,当在氧气(O2)存在下进行照射时获得的结果特别好。当在含有15-25体积%氧气的气氛中进行照射时取得了特别好的结果。氧在本发明的方法中的使用具有的优点是,由于选择的波长,选择性地从O2产生原子氧(O)和/或臭氧(O3),这些物质与前体的有机基团反应和从而降低了用于热转化为确定质量的含氧化铟的层所需要的温度。
如果在步骤b)中的照射是通过预先确定所述结构的掩模实施的话,本发明的方法可以以特别好的结果用于制备结构化的半导体区域。形成的原子氧在掩模可达到的部位与有机前体成分反应和/或将其除去。其结果是,相应地选择性照射的区域在热处理(tempern)之后相比于未照射的区域对于加工的耐受性低。在热处理之后,未照射的区域可以通过使用酸,特别是弱酸(更优选0.1M的草酸)简单地除去。因此本发明也提供一种相应的方法,其中步骤b)中的照射通过预先确定所述结构的掩模实施并在热处理之后在步骤e)中使用水性酸除去未照射的区域。特别优选的掩模类型是接触掩模和遮光掩模。接触掩模是一种位于样品上面并在要发生结构化的部位具有切口图样或较薄材料区域(更特别是孔)的掩模。一种特别优选的接触掩模类型是蚀刻的或激光切割的具有产生最终的布图的切口图样的片材。与接触掩模相反,当进行结构化时,遮光掩模是使用在离样品一定的距离处。优选的遮光掩模由石英玻璃组成,因为石英玻璃具有对UV光透明的优点。遮蔽住的区域优选地是用铬蒸汽涂覆的,和防止了UV光通过。这种遮光掩模也经常称作铬玻璃掩模。优选使用遮光掩模而不是接触掩模,因为它们具有不是用于与样品表面直接接触的优点。
本发明用于制备含氧化铟的层的方法原则上也适合于在水存在或不存在下实施。“在水存在下”实施这里尤其是指溶胶-凝胶法,其中氧化铟前体在照射之前在水存在下反应形成凝聚,然后进行照射。然而,优选地,由于它简化了方法体系,本发明的方法不作为溶胶-凝胶法进行。
然而,原则上,本发明的方法可以在完全无水气氛下(即含有少于500ppm水的气氛)和使用无水组合物(即同样含有少于500ppm水的组合物),或使用/在相应的含水气氛和组合物中实施。为了获得特别良好的结果,和特别是为了获得极其平滑的表面,相对空气湿度不高于70%。
在涂覆和辐射后和转化前,将该涂覆的基材还优选进行干燥。本领域技术人员已知相应的措施和条件。干燥与转化的区别在于它必须在基本上仍然不会产生材料变形的温度下除去溶剂和/或分散介质。如果以热方式进行干燥,温度不超过120℃。
最后以热方式转化成含氧化铟的层。优选地借助于低于500℃和高于120℃的温度进行最后的转化。然而,如果使用150-400℃的温度进行转化,可以取得特别好的结果。取得这些温度的方法优选地是基于利用炉子、热空气、加热板、IR发射器和电子束装置。
这里通常的是使用在几秒钟到几小时的转化时间。
该热转化还可以在热处理之前、期间或者之后通过用UV,IR或者VIS辐射或者用空气或者氧气处理该涂覆的基材来促进。
通过本发明的方法所获得的层的品质还可以如下来进一步提高:通过在转化步骤之后组合的热和气体处理(使用H2或者O2),等离子体处理(Ar,N2,O2或者H2等离子体),激光处理(用UV,VIS或者IR范围中的波长)或者臭氧处理。
该涂覆方法可以重复来提高厚度。在此情况下,所述涂覆操作可以采用这样一种形式,其中在每次单个施涂之后用电磁辐射照射涂层和然后转化,或者进行两次或多次施涂,每次接着进行电磁辐射,其中在最后一次施涂后进行唯一的热转化步骤。
本发明还涉及可以通过本发明方法可以制备的含氧化铟的层。经由本发明的方法可以制备的包含氧化铟的层具有特别好的性能,并且是纯氧化铟层。如上所述,在制备它们时使用仅仅含铟的前体,优选仅仅铟卤素醇盐,特别优选仅仅一种铟卤素醇盐。
由本发明方法可以制备的含氧化铟的层尤其有利地适合于制备用于电子元件,尤其是制备晶体管(尤其是薄膜晶体管)、二极管、传感器或者太阳能电池的导电或半导电层。
下面的实施例本身不具有任何的限制作用,意在用于更详细地阐述本发明的主题。
实施例
实施例(铟氯醇盐作为前体)
将100µl的1.0重量%的InCl(OMe)2乙醇溶液施涂到具有边缘长度大约15mm、氧化硅涂层大约200nm厚和由ITO/金形成的指纹结构的掺杂的硅基材上。然后在2000rpm进行旋涂(5秒钟)。直接在该涂覆程序之后,所述涂覆的基材用来自水银蒸汽灯(光源GLF-100, Jelight 144AX-220,石英玻璃,Jelight)的波长范围为150-300nm的UV辐射照射5分钟。然后将基材在加热板上在350℃的温度加热1小时。在转化之后在手套箱中可以确定8.5cm2/Vs的场效应迁移率µFET
对比例(铟醇盐作为前体)
将100µl的1.0重量%的In(OiPr)3乙醇溶液施涂到具有边缘长度大约15mm、氧化硅涂层大约200nm厚和由ITO/金形成的指纹结构的掺杂的硅基材上。然后在2000rpm进行旋涂(5秒钟)。直接在该涂覆程序之后,所述涂覆的基材用来自水银蒸汽灯(光源GLF-100, Jelight 144AX-220,石英玻璃,Jelight)的波长范围为150-300nm的UV辐射照射5分钟。然后将基材在加热板上在350℃的温度加热1小时。在转化之后在手套箱中可以确定3.8cm2/Vs的场效应迁移率µFET
对比例(铟氯醇盐作为前体和替代的UV源)
将100µl的1.0重量%的InCl(OMe)2乙醇溶液施涂到具有边缘长度大约15mm、氧化硅涂层大约200nm厚和由ITO/金形成的指纹结构的掺杂的硅基材上。然后在2000rpm进行旋涂(5秒钟)。直接在该涂覆程序之后,所述涂覆的基材用来自水银蒸汽灯(光源GLG-100, Jelight 144AX-220,无臭氧,Jelight,没有波长<210nm的辐射)的波长范围为230-350nm的UV辐射照射5分钟。然后将基材在加热板上在350℃的温度加热1小时。在转化之后在手套箱中可以确定4.5cm2/Vs的场效应迁移率µFET

Claims (15)

1.制备包含氧化铟的层的液相方法,在其中将能够从含有至少一种氧化铟前体和至少一种溶剂和/或分散介质的混合物制备的涂料组合物以点a)-d)的次序
a) 施涂到基材上,
b) 将该施涂到基材上的组合物用电磁辐射进行照射,
c) 任选地干燥,和
d) 热转化成包含氧化铟的层,
其特征在于
- 所述氧化铟前体是通式InX(OR)2的铟卤素醇盐,其中R是烷基和/或烷氧基烷基,X是F、Cl、Br或I,
- 使用具有显著含量的在170-210nm和250-258nm范围的辐射的电磁辐射实施照射。
2.根据权利要求1的方法,其特征在于使用具有显著含量的在183-187nm和250-258nm范围的辐射的电磁辐射实施照射。
3.根据权利要求1或2的方法,其特征在于使用低压水银蒸汽灯进行辐射。
4.根据权利要求1-3任一项的方法,其特征在于所述至少一种铟卤素醇盐的烷基和/或烷氧基烷基是C1-C15烷氧基或烷氧基烷基。
5.根据前述权利要求任一项的方法,其特征在于所述铟卤素醇盐是InCl(OMe)2、InCl(OCH2CH2OCH3)、InCl(OEt)2、InCl(OiPr)2或者InCl(OtBu)2
6.根据前述权利要求任一项的方法,其特征在于所述铟卤素醇盐InX(OR)2的使用比例是0.1-10重量%,基于该组合物的总质量计。
7.根据前述权利要求任一项的方法,其特征在于组合物不仅包含铟卤素醇盐而且包含溶解或分散形式的其它前体,优选地其它元素的醇盐或卤素醇盐,更优选B、Al、Ga、Ge、Sn、Pb、P、Hf、Zn和Sb的醇盐或卤素醇盐。
8.根据前述权利要求任一项的方法,其特征在于所述至少一种溶剂或分散介质是甲醇、乙醇、异丙醇、四氢糠醇、叔丁醇、乙酸丁酯、甲氧基乙醇、1-甲氧基-2-丙醇或甲苯。
9.根据前述权利要求任一项的方法,其特征在于所述至少一种溶剂或者分散介质存在的比例是90-99.9重量%,基于该组合物的总质量计。
10.根据前述权利要求任一项的方法,其特征在于步骤(b)中的辐射是在氧气(O2)存在下进行的。
11.根据权利要求10制备结构化的含氧化铟的层的方法,其特征在于步骤b)中的辐射通过预先确定相应结构的掩模进行。
12.根据权利要求11的方法,其特征在于在热处理之后,在步骤e)中通过使用含水酸除去未辐射的区域。
13.根据前述权利要求任一项的方法,其特征在于通过低于500℃和高于120℃的温度进行热转化。
14.能够通过权利要求1-13中任一项的方法制备的含氧化铟的层。
15.根据权利要求14的至少一种含氧化铟的层的用途,用于制备用于电子元件的导电或半导电层,尤其是制备用于晶体管、二极管、传感器或者太阳能电池的导电或半导电层。
CN201180054427.4A 2010-11-10 2011-10-26 制备含氧化铟的层的方法 Expired - Fee Related CN103201409B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010043668.2 2010-11-10
DE102010043668A DE102010043668B4 (de) 2010-11-10 2010-11-10 Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
PCT/EP2011/068736 WO2012062575A1 (de) 2010-11-10 2011-10-26 Verfahren zur herstellung von indiumoxid-haltigen schichten

Publications (2)

Publication Number Publication Date
CN103201409A true CN103201409A (zh) 2013-07-10
CN103201409B CN103201409B (zh) 2015-04-08

Family

ID=44907841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180054427.4A Expired - Fee Related CN103201409B (zh) 2010-11-10 2011-10-26 制备含氧化铟的层的方法

Country Status (8)

Country Link
US (1) US8859332B2 (zh)
EP (1) EP2638183B1 (zh)
JP (2) JP5933575B2 (zh)
KR (1) KR101801431B1 (zh)
CN (1) CN103201409B (zh)
DE (1) DE102010043668B4 (zh)
TW (1) TWI567232B (zh)
WO (1) WO2012062575A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573656A (zh) * 2016-12-22 2019-12-13 法国电力公司 在金属基底上生成防腐蚀涂层的溶胶-凝胶方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009338A1 (de) 2009-02-17 2010-08-26 Evonik Degussa Gmbh Indiumalkoxid-haltige Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102010031592A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010031895A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102011084145A1 (de) 2011-10-07 2013-04-11 Evonik Degussa Gmbh Verfahren zur Herstellung von hochperformanten und elektrisch stabilen, halbleitenden Metalloxidschichten, nach dem Verfahren hergestellte Schichten und deren Verwendung
DE102012209918A1 (de) 2012-06-13 2013-12-19 Evonik Industries Ag Verfahren zur Herstellung Indiumoxid-haltiger Schichten
DE102013212019A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Formulierungen zur Herstellung Indiumoxid-haltiger Schichten, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102013212017A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Verfahren zur Herstellung von Indiumalkoxid-Verbindungen, die nach dem Verfahren herstellbaren Indiumalkoxid-Verbindungen und ihre Verwendung
DE102013212018A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Metalloxid-Prekursoren, sie enthaltende Beschichtungszusammensetzungen, und ihre Verwendung
DE102014202718A1 (de) 2014-02-14 2015-08-20 Evonik Degussa Gmbh Beschichtungszusammensetzung, Verfahren zu ihrer Herstellung und ihre Verwendung
JP6828293B2 (ja) 2015-09-15 2021-02-10 株式会社リコー n型酸化物半導体膜形成用塗布液、n型酸化物半導体膜の製造方法、及び電界効果型トランジスタの製造方法
JP2019057698A (ja) * 2017-09-22 2019-04-11 株式会社Screenホールディングス 薄膜形成方法および薄膜形成装置
US11600489B2 (en) * 2018-06-08 2023-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157855A (ja) * 1995-12-06 1997-06-17 Kansai Shin Gijutsu Kenkyusho:Kk 金属酸化物薄膜の形成方法
JPH11106935A (ja) * 1997-09-30 1999-04-20 Fuji Photo Film Co Ltd 金属酸化物薄膜の製造方法及び金属酸化物薄膜
JP2000016812A (ja) * 1998-07-02 2000-01-18 Kansai Shingijutsu Kenkyusho:Kk 金属酸化物膜の製造方法
CN102652187A (zh) * 2009-12-18 2012-08-29 赢创德固赛有限公司 生产含氧化铟的层的方法,通过该方法生产的含氧化铟的层及其用途

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198606A (ja) 1983-04-27 1984-11-10 三菱マテリアル株式会社 透明導電膜形成用組成物
JPS59198607A (ja) 1983-04-27 1984-11-10 三菱マテリアル株式会社 保護膜を備えた透明導電膜
US4681959A (en) 1985-04-22 1987-07-21 Stauffer Chemical Company Preparation of insoluble metal alkoxides
JPS61295208A (ja) * 1985-06-07 1986-12-26 Sumitomo Chem Co Ltd 薄片状金属酸化物の製造法
JPH01115010A (ja) 1987-10-28 1989-05-08 Central Glass Co Ltd 透明導電性膜用組成物およびその膜の形成方法
JPH02113033A (ja) * 1988-10-21 1990-04-25 Central Glass Co Ltd 静電防止処理を施された非金属材料およびこれらの処理方法
JPH02145459A (ja) * 1988-11-28 1990-06-04 Central Glass Co Ltd 複写機用ガラスおよびその製造法
FR2659649B1 (fr) * 1990-03-16 1992-06-12 Kodak Pathe Preparation d'alkoxydes d'indium solubles dans les solvants organiques.
JP3901285B2 (ja) * 1997-05-26 2007-04-04 株式会社Kri In2O3−SnO2系薄膜の製造方法
JP2001172006A (ja) * 1999-12-15 2001-06-26 Fujitsu Ltd 金属酸化物膜の形成方法
JP4073146B2 (ja) 2000-03-17 2008-04-09 株式会社高純度化学研究所 ガリウムアルコキシドの精製方法
JP2005272189A (ja) * 2004-03-24 2005-10-06 Japan Science & Technology Agency 紫外光照射による酸化物半導体薄膜の作製法
JP2008500151A (ja) * 2004-05-28 2008-01-10 独立行政法人科学技術振興機構 パターン膜形成方法、装置と材料および製品
JP4767616B2 (ja) 2005-07-29 2011-09-07 富士フイルム株式会社 半導体デバイスの製造方法及び半導体デバイス
EP2118336B1 (en) 2006-12-29 2017-02-15 3M Innovative Properties Company Method of curing metal alkoxide-containing films
KR100819062B1 (ko) * 2007-03-19 2008-04-03 한국전자통신연구원 인듐 틴 산화물 전자빔 레지스트의 합성 방법 및 이를이용한 인듐 틴 산화물 패턴 형성 방법
DE102007013181B4 (de) * 2007-03-20 2017-11-09 Evonik Degussa Gmbh Transparente, elektrisch leitfähige Schicht
DE102007018431A1 (de) 2007-04-19 2008-10-30 Evonik Degussa Gmbh Pyrogenes Zinkoxid enthaltender Verbund von Schichten und diesen Verbund aufweisender Feldeffekttransistor
GB2454019B (en) * 2007-10-27 2011-11-09 Multivalent Ltd Improvements in or relating to synthesis of gallium and indium alkoxides
DE102008041276A1 (de) 2008-08-15 2010-02-18 Evonik Degussa Gmbh Reichweiten- und Material-optimiertes Antennendesign für eine UHF-RFID-Antenne mit an den Chip angepasster Impedanz
DE102008058040A1 (de) 2008-11-18 2010-05-27 Evonik Degussa Gmbh Formulierungen enthaltend ein Gemisch von ZnO-Cubanen und sie einsetzendes Verfahren zur Herstellung halbleitender ZnO-Schichten
DE102009009337A1 (de) 2009-02-17 2010-08-19 Evonik Degussa Gmbh Verfahren zur Herstellung halbleitender Indiumoxid-Schichten, nach dem Verfahren hergestellte Indiumoxid-Schichten und deren Verwendung
DE102009009338A1 (de) 2009-02-17 2010-08-26 Evonik Degussa Gmbh Indiumalkoxid-haltige Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102009001221A1 (de) 2009-02-27 2010-09-02 Evonik Degussa Gmbh Druckverfahren zur Herstellung individualisierter elektrischer und/oder elektronischer Strukturen
DE102009028801B3 (de) * 2009-08-21 2011-04-14 Evonik Degussa Gmbh Verfahren zur Herstellung Indiumoxid-haltiger Schichten, nach dem Verfahren herstellbare Indiumoxid-haltige Schicht und deren Verwendung
DE102009028802B3 (de) 2009-08-21 2011-03-24 Evonik Degussa Gmbh Verfahren zur Herstellung Metalloxid-haltiger Schichten, nach dem Verfahren herstellbare Metalloxid-haltige Schicht und deren Verwendung
DE102009050703B3 (de) 2009-10-26 2011-04-21 Evonik Goldschmidt Gmbh Verfahren zur Selbstassemblierung elektrischer, elektronischer oder mikromechanischer Bauelemente auf einem Substrat und damit hergestelltes Erzeugnis
DE102009053943A1 (de) 2009-11-19 2011-05-26 Evonik Degussa Gmbh Verfahren zur Erzeugung silberhaltiger Strukturen, die silberhaltigen Strukturen aufweisende Erzeugnisse und ihre Verwendung
DE102009054998A1 (de) * 2009-12-18 2011-06-22 Evonik Degussa GmbH, 45128 Verfahren zur Herstellung von Indiumchlordialkoxiden
DE102010031592A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010031895A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157855A (ja) * 1995-12-06 1997-06-17 Kansai Shin Gijutsu Kenkyusho:Kk 金属酸化物薄膜の形成方法
JPH11106935A (ja) * 1997-09-30 1999-04-20 Fuji Photo Film Co Ltd 金属酸化物薄膜の製造方法及び金属酸化物薄膜
JP2000016812A (ja) * 1998-07-02 2000-01-18 Kansai Shingijutsu Kenkyusho:Kk 金属酸化物膜の製造方法
CN102652187A (zh) * 2009-12-18 2012-08-29 赢创德固赛有限公司 生产含氧化铟的层的方法,通过该方法生产的含氧化铟的层及其用途

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573656A (zh) * 2016-12-22 2019-12-13 法国电力公司 在金属基底上生成防腐蚀涂层的溶胶-凝胶方法
CN110573656B (zh) * 2016-12-22 2022-05-24 法国电力公司 在金属基底上生成防腐蚀涂层的溶胶-凝胶方法
US11519072B2 (en) 2016-12-22 2022-12-06 Electricite De France Sol-gel method for producing an anti-corrosion coating on a metal substrate

Also Published As

Publication number Publication date
DE102010043668B4 (de) 2012-06-21
EP2638183B1 (de) 2017-12-06
JP5933575B2 (ja) 2016-06-15
TWI567232B (zh) 2017-01-21
JP2016169150A (ja) 2016-09-23
JP6161764B2 (ja) 2017-07-12
TW201235506A (en) 2012-09-01
US20130221352A1 (en) 2013-08-29
WO2012062575A1 (de) 2012-05-18
US8859332B2 (en) 2014-10-14
JP2013543931A (ja) 2013-12-09
CN103201409B (zh) 2015-04-08
KR20130126613A (ko) 2013-11-20
KR101801431B1 (ko) 2017-11-24
EP2638183A1 (de) 2013-09-18
DE102010043668A1 (de) 2012-05-10

Similar Documents

Publication Publication Date Title
CN103201409B (zh) 制备含氧化铟的层的方法
CN102652187B (zh) 生产含氧化铟的层的方法,通过该方法生产的含氧化铟的层及其用途
CN102317503B (zh) 包含铟醇盐的组合物,其制备方法及其用途
JP6141362B2 (ja) 半導体の酸化インジウム膜の製造法、該方法に従って製造された酸化インジウム膜及び該膜の使用
TWI548642B (zh) 用於製備含有氧化銦之層的烷醇側氧基銦(indium oxo alkoxide)
TWI485284B (zh) 用以製造含有金屬氧化物之層的方法
JP5933540B2 (ja) 酸化インジウム含有層を製造するためのインジウムオキソアルコキシド
TWI525047B (zh) 含氧化銦層之製造方法
JP6195916B2 (ja) 酸化インジウム含有層の製造法
TWI631100B (zh) 用於製造含氧化銦層之調合物、製造彼等之方法及彼等之用途
TWI437004B (zh) 金屬氧化物塗料
CN105492447A (zh) 用于制备铟烷氧化物化合物的方法、可由该方法制备的铟烷氧化物化合物及其用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150408