CN103155165B - 用于太阳电池的基板和太阳电池 - Google Patents

用于太阳电池的基板和太阳电池 Download PDF

Info

Publication number
CN103155165B
CN103155165B CN201180048928.1A CN201180048928A CN103155165B CN 103155165 B CN103155165 B CN 103155165B CN 201180048928 A CN201180048928 A CN 201180048928A CN 103155165 B CN103155165 B CN 103155165B
Authority
CN
China
Prior art keywords
substrate
bight
solar cell
diffusion layer
breach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180048928.1A
Other languages
English (en)
Other versions
CN103155165A (zh
Inventor
大岩秀雄
渡部武纪
大塚宽之
原一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of CN103155165A publication Critical patent/CN103155165A/zh
Application granted granted Critical
Publication of CN103155165B publication Critical patent/CN103155165B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/065Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the graded gap type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种用于太阳电池的基板和太阳电池,其中,在平面图中具有正方形形状的硅基板的一个角部处形成平的斜切的部分,或者在角部或角部附近形成缺口。本发明使得能够很容易地在太阳电池制造步骤中检查基板的位置并确定基板的方向,并抑制由于基板方向产生的失败。

Description

用于太阳电池的基板和太阳电池
技术领域
本发明涉及用于直接将光能转换成电力的太阳电池和用于太阳电池的基板。
背景技术
近年来,希望克服与全球规模的资源节约和环境污染有关的问题。除了核电以外,对于有效利用风力、潮汐和太阳光等的潜在能量作为化石燃料的替代能量的技术进行了开发,一些技术在商业上得到实现。
其中,作为用于利用清洁太阳光能量的主要技术,太阳电池受到关注。由于其低成本、简便和小规模发电的能力,太阳发电技术已在商业上在住宅和建筑物中得到利用,以在其中提供能量消耗的部分替代。
在用于住宅的当前主流太阳电池系统中,多个面板状太阳电池模块被串联或并联连接并且配置和安装于屋顶上,使得可以产生希望的电力。在面板状太阳电池模块中使用的太阳电池具有正方形形状或者切掉角部的伪正方形,以符合太阳电池面板的形状。
太阳电池是用于将光能转换成电力的半导体器件,并且包括p-n结型、pin型和肖特基型,其中,p-n结型被广泛使用。当按基板材料分类时,太阳电池一般成为三类,即,结晶硅太阳电池、非晶硅太阳电池和化合物半导体太阳电池。结晶硅太阳电池又分为单晶和多晶太阳电池。由于可相对容易地制造用于太阳电池的结晶基板,因此,结晶硅太阳电池变得最普及。
在一般的结晶硅太阳电池中,必须形成p-n结以使通过太阳光照射产生的载流子分离。在使用的基板是p型硅的一个例子中,通过扩散诸如磷的第V族元素在受光表面上形成n型硅层。在使用的基板是n型硅的另一例子中,通过扩散诸如硼的第III族元素,在受光表面上形成p型硅层。
例如通过约800~950°C的温度下的诸如磷的掺杂剂的热扩散以在基板的两个整个表面上形成扩散层,由p型硅基板制造硅太阳电池。如果希望的话,扩散层的不必要的部分被去除,并且,剩余的层用作太阳电池中的扩散层。
然后,在扩散层上形成例如氮化硅膜的抗反射涂层。受光表面上的格子图案的银糊剂和基本上整个后表面上的铝糊剂被印刷和烧制以形成电极,从而生成结晶硅太阳电池。
从增加太阳电池的光伏转换的观点,更薄的扩散层是更好的。但是,厚度太薄可能导致称为穿通的由电极导致的n型层的破裂,并且,由于电阻增加,电极上的电流收集受到抑制。因此,使用称为“选择性发射体”的结构,在该结构中,扩散层作为高电阻层(低浓度扩散)在受光表面区域中薄,而作为低电阻层(高浓度扩散)在电极区域中厚。
可通过用诸如SiO2的抗反射涂层覆盖基板的表面、去除抗扩散涂层的线条以打开扩散窗口并选择性地将掺杂剂扩散到窗户区域中以形成高浓度扩散层,来制备选择性发射体。
在形成高浓度扩散层之后,去除抗扩散涂层,并且,掺杂剂扩散到包含高浓度扩散层的整个表面中,使得包围高浓度扩散层的区域可变为掺杂剂浓度比高浓度扩散层低的低浓度扩散层。
然后,在表面上形成抗反射涂层。ARC可以是氮化硅膜、氧化钛膜或氧化铝膜。例如,可通过CVD形成这种膜。
用作ARC的氧化硅膜、氮化硅膜、氧化钛膜和氧化铝膜均用于终止硅晶片表面上的缺陷并提高性能,特别是太阳电池的短路电流。
在形成ARC之后,通过印刷形成电极指部。通过以基板的两个边为基准对齐基板并使指部与高浓度扩散层对准,确定电极指部的位置。
在扩散处理之后,不能通过视觉观察区分低浓度扩散层和高浓度扩散层。能够通过例如扩展电阻测量的电气评价进行这种区分,但这是破坏性的、耗时的试验。
由于太阳电池制造过程包括上述的许多步骤,因此,出现这样一种问题,即,如果基板在某个步骤中旋转,那么基板的取向不再能被识别。为了避免这种不便,基板可通过激光标记法配备标记,但是,在其上面形成ARC之后,标记是难以确认的。激光标记的另一问题是,太阳基板由此畸变,从而使得相关部分的性能劣化。
与本发明有关的现有技术参考包括以下的文件。
引文列表
专利文件
专利文件1:JP-A2004-064028
专利文件2:JP-A2005-123447
发明内容
技术问题
鉴于以上的情况提出的本发明的目的是,提供能够很容易地识别基板的方向并且基板的方向可在太阳电池的整个制造过程中很容易地保持对齐使得可以制造具有一致的性能的太阳电池的基板。
问题的解决方案
因此,本发明提供以下限定的太阳电池。
[1]一种太阳电池形成硅基板,当在平面图中观看时,具有带有角部的正方形形状,该正方形形状在一个角部处具有斜切(chamfer)或者在一个角部处或附近具有缺口(notch)。
[2]一种太阳电池形成硅基板,当在平面图中观看时,具有正方形形状,该正方形形状具有第一角部和不与第一角部对角的第二角部,该正方形形状在第一角部处具有斜切或者在第一角部处或附近具有缺口并在第二角部处或附近具有缺口或者在第二角部处具有斜切,第二角部处的缺口或斜切被选择为与第一角部处的斜切或缺口不同。
[3]一种太阳电池形成单晶硅基板,当在平面图中观看时,具有带有圆角的正方形形状,该正方形形状在一个角部处具有取向平切或者在一个角部处或附近具有缺口。
[4]一种太阳电池形成单晶硅基板,当在平面图中观看时,具有带有圆角的正方形形状,该基板具有沿(100)面的表面,该基板具有基本上穿过基板的中心的沿晶体取向<110>的取向平切或缺口。
[5]一种太阳电池形成单晶硅基板,当在平面图中观看时,具有带有圆角的正方形形状,该正方形形状在一个角部处具有取向平切并在不与一个角部对角的另一角部处或附近具有缺口。
[6]包括根据[1]~[5]中的任一项的基板的太阳电池,其中,在基板的受光表面上形成低浓度扩散层,并且,在要形成指部电极的位置上形成高浓度扩散层。
如这里使用的那样,术语“角部处或附近”指的是,不仅包含正方形直角角部或圆角的中心点,而且包含周围部分,并且包括修圆部分。
本发明的有利效果
由于根据本发明可以很容易地确认角部的位置,因此,可以在太阳电池的制造过程中很容易地识别角部的方向,从而抑制与基板方向相关的失败的形成。
附图说明
图1示出根据本发明的一个示例性太阳电池形成基板,图1a是具有取向平切的圆柱单晶锭的平面图,图1b是通过切除周边部分加工成在平面图中观看的伪正方形的基板的平面图。
图2示出根据本发明的另一示例性太阳电池形成基板,图2a是通过熔铸方法制备的单晶硅的平面图,图2b是在角部处具有斜切和缺口的基板的平面图。
图3示出太阳电池制造过程的依次的步骤。
具体实施方式
由于太阳电池的形状应符合太阳电池面板的形状,因此,当在平面图中观看时,其基板被加工成正方形或伪正方形,伪正方形指的是还有圆角的正方形(参见图1b)。为了在从圆柱单晶获得单晶基板时减少单晶材料的切割损失,基板被加工成伪正方形形状。在多晶基板的情况下,由于可通过模子改变形状,因此,使用正方形的基板(参见图2a)。
根据本发明,基板在第一角部处具有平的斜切,或者在第一角部处或附近具有缺口。于是第一角部具有与其它角部不同的形状,由此可以判断基板的方向。
在正方形基板的情况下,为了使与斜切或缺口加工相关的材料损失最小化,加工的部分优选具有达到5mm的外形尺寸。
在伪正方形基板的情况下,例如,可从具有200mm的直径的圆柱单晶锭获得156×156mm的伪正方形基板,使得各角部为具有100mm的半径的圆弧。一个弓形部分被提供具有代表解理方向的取向平切(orientationflat)(表示晶体方向的平的斜切,以下,简写为OF)或缺口。
关于加工的OF或缺口的数量,仅仅一个就足以识别基板的方向。如果OF和缺口被组合设置以相对于基板的对角线不对称,那么可以区分前表面和后表面。
第一实施例
参照图1和图3,描述使用源自CZ方法的单晶硅基板的太阳电池的制造过程。
一般通过浮动区域(FZ)方法和Czochralski(CZ)方法制备用于单晶太阳电池中的结晶硅基板,其中,CZ方法是主导性的。
首先,将高纯度多晶硅装载于石英坩埚中。然后,为了制造具有希望的导电类型和电阻率的单晶,用诸如硼或镓的第III元素掺杂硅以产生p型或者用诸如磷或砷的第V族元素掺杂硅以产生n型。0.1Ω-cm~10Ω-cm的电阻率,更希望为0.5Ω-cm~2Ω-cm的电阻率适于建立高性能太阳电池。
面取向为<100>方向的籽晶被浸入熔体中并在旋转的同时被拉拔,从而产生具有面取向<100>的圆柱单晶锭。通过切除锭的相反端并研磨外周,将单晶锭加工成圆柱块。
通过X射线取向测量,对具有面取向<100>的单晶锭进行晶体取向测量。对它进行机加工以形成穿过单晶的中心并与解理方向对应的沿<110>方向的OF或缺口(参见图1a)。
然后,为了将圆柱转换成大致正方形,通过切除圆周部分,将圆柱锭加工成正方形或伪正方形形状(参见图1b)。在相对于与解理方向对应的<110>方向旋转45度之后实施该切割,使得留下OF或缺口。在正方形基板的情况下,为了使与OF或缺口机加工相关的材料损失最小化,希望机加工部分具有最多5mm的外形尺寸。如这里使用的,外形尺寸指的是在OF的情况下斜切的弦的长度或者在缺口的情况下切出的主边的长度。
关于机加工的OF或缺口的数量,仅仅一个就足以识别基板的方向。如果OF和缺口被组合(至少两个特征被组合)并被布置为相对于基板的对角线不对称,那么可以区分前表面和后表面。
通过接合的碳或玻璃等,伪正方形的圆柱块被切成预定的基板厚度。关于基板厚度,虽然50μm的量级的厚度能够捕获太阳电池内的入射光并且在经济上是有利的,但是为了获得机械强度,150~300μm的厚度是希望的。
在将切割块切成太阳电池形成基板之前,沿解理方向切割的方法出现断裂或破碎的问题。可通过相对于解理方向旋转45度并且在切割时使得OF或缺口位于伪正方形形状的角部或附近,避免切割时的断裂或破碎的问题。
将切割的基板1(图3a)转移到用于清洁的载体上,以在那里清洁它。当从200mm直径的单晶锭制备156mm2的基板时,直径根据是否设置OF具有约0.5~0.7mm的偏差,并且,可通过视觉观察对准基板的方向。作为替代方案,使用CCD照相机以判断基板的形状,将改变了方向的基板加载到载体,使得OF或缺口的方向保持相同。这可在处理中避免由于基板的方向的不同导致的任何失败。
清洁后的基板在800~1000°C的热炉中在氧气气氛中经受热氧化,从而在基板的受光表面上形成约3~30nm厚的薄的氧化硅膜2(图3b)。
然后,将光刻胶材料旋涂到基板的受光表面上,并在70~100°C的温度下烘焙约20~80分钟。通过具有与受光表面电极图案相同的图案的玻璃掩模将光刻胶曝光并且将其显影。这里使用的光刻胶材料可以是正型或负型。将由此构图的基板浸入约1~50wt.%的氢氟酸水溶液或氢氟酸和氟化铵的混合水溶液中,由此,在正光刻胶材料的情况下,仅在去除了光刻胶膜的位置上去除氧化硅膜2。即,丢失氧化硅膜的具有与受光表面电极相同的图案的部分,从而形成扩散沟道3。然后,通过丙酮浸渍或硫酸蒸煮等完全去除光刻胶膜(图3c)。
作为基板上的受光面上的第一扩散处理,将含POCl3的N2气体馈送到900~950°C的热炉中,以实施以第V族元素的磷为掺杂剂的扩散处理4(图3d)。此时,由于留于表面上的氧化物膜用作针对磷扩散的掩模,因此,磷被选择性扩散。在处理基板时,基板上的OF和缺口使得能够识别基板的方向并区分前表面和后表面。
注意,也可通过涂敷/扩散或离子注入执行以上的步骤。
在第一扩散处理结束时,用约1~50wt.%的氢氟酸水溶液执行蚀刻以去除表面氧化物膜(图3e)。当基板从用于热处理的石英夹具被转移到清洁载体时,基板上的OF和缺口使得能够识别基板的方向并区分前表面和后表面。
在去除氧化物膜之后,作为第二扩散热处理,将含POCl3的N2气体馈送到800~850°C的热炉中,用以第V族元素的磷为掺杂剂在整个表面上实施低浓度的扩散处理5(图3f)。低浓度扩散层5形成为具有50Ω/□~300Ω/□、典型地为100Ω/□的板层电阻(sheetresistance)。通过该第二扩散热处理,掺杂剂附加地扩散到通过第一扩散热处理预先形成的高浓度扩散层4中,该高浓度扩散层4变为具有1Ω/□~50Ω/□、典型地为10Ω/□的板层电阻的高浓度扩散层4。与第一扩散处理类似,也可通过涂敷/扩散或离子注入执行该步骤。当基板从清洁载体转移到用于热处理的石英夹具时,基板上的OF和缺口使得能够识别基板的方向并区分前表面和后表面。
在第二扩散处理结束时,通过等离子增强CVD在基板表面上沉积氮化硅膜作为用于防止太阳光的反射并且用于表面保护的抗反射膜6(图3g)。
在上面形成有氮化硅膜的基板的后表面上,通过铝等的真空沉积或溅射,形成后表面电极7。后表面电极7形成为例如1μm~10μm、典型为5μm的厚度(参见图3h)。
最后,电极糊剂印刷于前表面上并在500~800°C的温度下被烧制,以形成电极8(图3i)。此时,指部电极形成为覆盖高浓度扩散层。虽然包括许多转移步骤的过程具有不能通过视觉观察区分高浓度扩散层4和低浓度扩散层5并识别基板的方向的问题,但是,根据本发明的OF和缺口的设置使得能够对齐设定基板的方向并由此使得能够以高的产出率制造太阳电池。
第二实施例
参照图2和图3,描述使用源自熔铸方法的多晶硅基板的太阳电池的制造过程。
一般地通过熔铸方法制备用于多晶太阳电池中的结晶硅基板。首先,将冶金级微粒硅与掺杂剂一起投入到熔铸炉内的高纯度石英坩埚(衬有脱模剂)。由于掺杂剂被选择以制造希望的导电类型和电阻率的多晶硅,因此,用诸如硼或镓的第III元素掺杂硅以产生p型或者用诸如磷或砷的第V族元素掺杂硅以产生n型。0.1Ω-cm~10Ω-cm的电阻率,更希望为0.5Ω-cm~2Ω-cm的电阻率适于建立高性能太阳电池。为了熔融冶金级硅,驱动加热器以在约1500°C的温度下加热坩埚。
然后,控制加热器,使得下部的温度可较低。熔融的冶金级硅从下面凝固,获得多晶硅的铸件。从熔铸炉中取出坩埚,并且,从坩埚取出多晶硅的凝固铸件。切除该多晶硅的侧边部分、底部和顶面部分,原因是这些部分富含杂质。在200mm的立方多晶硅铸件的情况下,例如,切除25mm的侧边部分、20mm的底部和30mm的顶部。顶部相对在较大的程度上被切除的原因是,由于从下面凝固的熔铸过程中的偏析,因此杂质在顶部集中。
在侧边部分、底部和顶面部分被切除之后,通过机加工使多晶硅铸件(参见图2a)在角部处具有平的斜切或者在角部处或附近具有缺口(参见图2b)。此时,为了使与斜切或缺口加工相关的材料损失最小化,机加工的部分优选具有最多5mm的外形尺寸。
关于机加工的OF或缺口的数量,仅仅一个就足以识别基板的方向。如果OF和缺口被组合(至少两个特征被组合)并被放置为相对于伪正方形的对角线不对称,那么获得可以区分前表面和后表面的益处。
通过接合的碳或玻璃等,伪正方形的圆柱块被切成预定的基板厚度。关于基板厚度,虽然50μm的量级的厚度能够捕获太阳电池内的入射光并且在经济上是有利的,但是为了获得机械强度,150~300μm的厚度是希望的。
将切割的基板1(图3a)转移到用于清洁的载体上,以在那里清洁它。此时,如果通过视觉观察确认根据本发明设置的斜切或缺口,那么可以对准基板的方向。作为替代方案,使用CCD照相机以判断基板的形状,将改变了方向的基板加载到载体,使得OF或缺口的方向保持相同。这可在处理中避免由于基板的方向的不同导致的任何失败。
清洁后的基板在800°C~1000°C的热炉中在氧气气氛中经受热氧化,从而在基板的受光表面上形成约3~30nm厚的薄的氧化硅膜2(图3b)。
然后,将光刻胶材料旋涂到基板的受光表面上,并在70~100°C的温度下烘焙约20~80分钟。通过具有与受光表面电极图案相同的图案的玻璃掩模将光刻胶曝光并且将其显影。这里使用的光刻胶材料可以是正型或负型。将由此构图的基板浸入约1~50wt.%的氢氟酸水溶液或氢氟酸和氟化铵的混合水溶液中,由此,在正光刻胶材料的情况下,仅在去除了光刻胶膜的位置上去除氧化硅膜2。即,丢失氧化硅膜的具有与受光表面电极相同的图案的部分,从而形成扩散沟道3(参见“第一实施例”部分的第十二段)。然后,通过丙酮浸渍或硫酸蒸煮等完全去除光刻胶膜(图3c)。
作为基板上的受光面上的第一扩散处理,将含POCl3的N2气体馈送到900~950°C的热炉中,以实施以第V族元素的磷为掺杂剂的扩散处理4(图3d)。此时,由于留于表面上的氧化物膜用作针对磷扩散的掩模,因此,磷被选择性扩散。在处理基板时,基板上的OF和缺口使得能够识别基板的方向并区分前表面和后表面。
注意,也可通过涂敷/扩散或离子注入执行以上的步骤。
在第一扩散处理结束时,用约1~50wt.%的氢氟酸水溶液执行蚀刻以去除表面氧化物膜(图3e)。当基板从用于热处理的石英夹具被转移到清洁载体时,基板上的OF和缺口使得能够识别基板的方向并区分前表面和后表面。
在去除氧化物膜之后,作为第二扩散热处理,将含POCl3的N2气体馈送到800~850°C的热炉中,以以第V族元素的磷为掺杂剂在整个表面上实施低浓度的扩散处理5(图3f)。低浓度扩散层5形成为具有50Ω/□~300Ω/□、典型地为100Ω/□的板层电阻。通过该第二扩散热处理,掺杂剂附加地扩散到通过第一扩散热处理预先形成的高浓度扩散层4中,该高浓度扩散层4变为具有1Ω/□~50Ω/□、典型地为10Ω/□的板层电阻的高浓度扩散层4。与第一扩散处理类似,也可通过涂敷/扩散或离子注入执行该步骤。当基板从清洁载体转移到用于热处理的石英夹具时,基板上的OF和缺口使得能够识别基板的方向并区分前表面和后表面。
在第二扩散处理结束时,通过等离子增强CVD在基板表面上沉积氮化硅膜(图3g)作为用于防止太阳光的反射并且用于表面保护的抗反射膜6。
在上面形成有氮化硅膜的基板的后表面上,通过铝等的真空沉积或溅射,形成后表面电极7。后表面电极7形成为例如1μm~10μm、典型为5μm的厚度(参见图3h)。
最后,电极糊剂印刷于前表面上并在500~800°C的温度下被烧制,以形成电极8(图3i)。此时,指部电极形成为覆盖高浓度扩散层(参见“第一实施例”部分的最后一段)。虽然包括许多转移步骤的过程具有不能通过视觉观察区分高浓度扩散层4和低浓度扩散层5并识别基板的方向的问题,但是,根据本发明的OF和缺口的设置使得能够对齐设定基板的方向并由此使得能够以高的产出率制造太阳电池。
例子
以下给出本发明的例子。
首先通过CZ方法制备具有晶体取向<100>和200mm的直径的硼掺杂的p型单晶硅。将单晶进行圆柱抛光,并且通过X射线取向测量进行晶体取向的测量。沿晶体取向<100>机加工OF,并且,在穿过基板的中心并相对于OF位置旋转90度的位置上机加工缺口(图1)。
通过切除周边部分,将圆柱锭加工成伪正方形的块。通过将锭倾斜45度使得沿<100>方向即解理方向机加工的OF可位于一角部处并且通过外径锯切割四个边,执行该切割。
通过接合的碳,通过丝锯将伪正方形的圆柱块切割成具有300μm的厚度的基板。如图1b所示,由此切割的单晶基板具有在角部处具有OF和缺口的形状。一旦单个单晶锭机加工有OF和缺口,就可在基板操作中区分基板的前表面和后表面。
在基板的表面上,在1000°C的热炉中在氧气气氛中通过基板的热氧化,形成用作抗扩散层的氧化硅膜。膜厚为30nm(图3b)。然后将正光刻胶材料旋涂到基板表面上,并在70的温度下烘焙约20分钟。通过具有与受光表面电极图案相同的图案的玻璃掩模将光刻胶曝光并且将其显影。将由此构图的晶片浸入5wt.%的氢氟酸水溶液中,由此,仅在去除了光刻胶膜的位置上去除氧化硅膜。即,丢失氧化硅膜的具有与受光表面电极相同的图案的部分。然后,通过丙酮浸渍去除光刻胶(图3c)。
作为第一扩散处理,将含POCl3的N2气体馈送到950°C的热炉中,以实施以第V族元素的磷为掺杂剂的扩散处理(图3d)。此时,由于留于表面上的氧化物膜用作针对磷扩散的掩模,因此,磷被选择性扩散。
在第一扩散处理结束时,用氢氟酸水溶液执行蚀刻以去除表面氧化物膜(图3e)。
在去除氧化物膜之后,将含POCl3的N2气体馈送到800°C的热炉中,以形成n型低浓度扩散层(图3f)。磷被选择性地扩散的部分变为高浓度扩散层。
通过等离子增强CVD在基板表面上沉积氮化硅作为用于防止太阳光的反射并且用于表面保护的抗反射膜(图3g)。
在后表面上,通过铝的真空沉积形成5μm厚的后表面电极(图3h)。
最后,电极糊剂印刷于前表面上并且被烧制,以形成电极(图3i)。借助于根据本发明的太阳电池形成基板的形状,可在转移和对准步骤中从外观识别基板的方向。可以对齐设定基板的方向,从而使得能够以高的产出率制造太阳电池。
附图标记列表
1:基板
2:氧化硅膜
3:扩散沟道
4:高浓度扩散层
5:低浓度扩散层
6:抗反射膜
7:后表面电极
8:前表面电极

Claims (5)

1.一种制造太阳电池的方法,其使用当在平面图中观看时带有角部的正方形形状的硅基板,所述硅基板具有第一角部和不与所述第一角部对角的第二角部,所述硅基板在所述第一角部处具有斜切或者在所述第一角部处或附近具有缺口,并在所述第二角部处或附近具有缺口或者在所述第二角部处具有斜切,所述第二角部处的缺口或斜切与所述第一角部处的斜切或缺口不同,
其中所述第一角部和所述第二角部在所述制造过程中被用来识别所述基板的方向并且区别所述基板的前表面和后表面。
2.根据权利要求1的制造太阳电池的方法,其中所述方法包括:在所述基板的受光表面上形成低浓度扩散层和高浓度扩散层,并且在所述高浓度扩散层上形成指部电极,
其中形成所述高浓度扩散层和所述指部电极是在使用所述第一角部和所述第二角部以识别所述基板的所述方向并且区别所述基板的所述前表面和后表面来将所述基板对齐到位的状态下进行的。
3.一种制造太阳电池的方法,其使用当在平面图中观看时具有带有圆角的正方形形状的单晶硅基板,所述硅基板在第一角部处具有取向平切,并且在不与所述第一角部对角的第二角部处或附近具有缺口,所述取向平切是表示晶体方向的平的斜切,
其中所述第一角部和所述第二角部在所述制造过程中被用来识别所述基板的方向并且区别所述基板的前表面和后表面。
4.根据权利要求3的制造太阳电池的方法,其中所述硅基板具有沿(100)面的表面,该基板具有所述取向平切和穿过基板的中心的沿晶体取向<110>的所述缺口。
5.根据权利要求3的制造太阳电池的方法,其中所述方法包括:在所述基板的受光表面上形成低浓度扩散层和高浓度扩散层,并且在所述高浓度扩散层上形成指部电极,
其中形成所述高浓度扩散层和所述指部电极是在使用所述第一角部和所述第二角部以识别所述基板的所述方向并且区别所述基板的所述前表面和后表面来将所述基板对齐到位的状态下进行的。
CN201180048928.1A 2010-08-26 2011-08-16 用于太阳电池的基板和太阳电池 Active CN103155165B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-189213 2010-08-26
JP2010189213A JP2012049285A (ja) 2010-08-26 2010-08-26 太陽電池用基板及び太陽電池
PCT/JP2011/068540 WO2012026357A1 (ja) 2010-08-26 2011-08-16 太陽電池用基板及び太陽電池

Publications (2)

Publication Number Publication Date
CN103155165A CN103155165A (zh) 2013-06-12
CN103155165B true CN103155165B (zh) 2016-01-27

Family

ID=45723359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180048928.1A Active CN103155165B (zh) 2010-08-26 2011-08-16 用于太阳电池的基板和太阳电池

Country Status (10)

Country Link
US (2) US20130153026A1 (zh)
EP (1) EP2610918B1 (zh)
JP (1) JP2012049285A (zh)
KR (1) KR101877277B1 (zh)
CN (1) CN103155165B (zh)
AU (1) AU2011294367C1 (zh)
MY (1) MY157356A (zh)
RU (1) RU2569902C2 (zh)
SG (1) SG187963A1 (zh)
WO (1) WO2012026357A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165760B (zh) * 2013-04-01 2015-08-05 南通大学 一种太阳能电池的选择性掺杂方法
DE102014224679A1 (de) * 2014-12-02 2016-06-02 Solarworld Innovations Gmbh Solarzelle
US10784396B2 (en) * 2015-09-30 2020-09-22 Panasonic Intellectual Property Management Co., Ltd. Solar cell, solar cell module, and production method for solar cell
CN204991745U (zh) * 2015-10-12 2016-01-20 广东汉能薄膜太阳能有限公司 一种太阳能电池磨边机和一次清洗机联用的防堵片系统
FR3103965A1 (fr) * 2019-12-02 2021-06-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Clivage de plaque pour la fabrication de cellules solaires
CN111029440B (zh) 2019-12-11 2022-01-28 晶科能源有限公司 一种单晶电池及单晶硅片的制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533871A (zh) * 2009-04-01 2009-09-16 常州天合光能有限公司 晶体硅太阳电池选择性扩散工艺

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173931A (en) * 1981-04-17 1982-10-26 Toshiba Corp Substrate for semiconductor device
JPS59104181A (ja) * 1982-12-07 1984-06-15 Seiko Epson Corp 透明基板
JPS6088536U (ja) * 1983-11-24 1985-06-18 住友電気工業株式会社 化合物半導体ウエハ
JPS6146727U (ja) * 1984-08-29 1986-03-28 シャープ株式会社 太陽電池素子基板
JPH01217950A (ja) * 1988-02-26 1989-08-31 Toshiba Corp 固体撮像装置
JPH02130850A (ja) * 1988-11-10 1990-05-18 Hitachi Cable Ltd 半導体ウエーハのマーキング方法
JPH11297799A (ja) * 1998-04-10 1999-10-29 Hitachi Cable Ltd ノッチ付き半導体基板
JP2001026500A (ja) * 1999-07-14 2001-01-30 Canon Inc 薄膜単結晶デバイスの製造法
US6452091B1 (en) 1999-07-14 2002-09-17 Canon Kabushiki Kaisha Method of producing thin-film single-crystal device, solar cell module and method of producing the same
JP2001085710A (ja) * 1999-09-17 2001-03-30 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池モジュール及びその製造方法
US6482661B1 (en) * 2000-03-09 2002-11-19 Intergen, Inc. Method of tracking wafers from ingot
JP2002314059A (ja) * 2001-04-18 2002-10-25 Sony Corp 受光素子用パッケージと受光装置の製造方法
US6524880B2 (en) 2001-04-23 2003-02-25 Samsung Sdi Co., Ltd. Solar cell and method for fabricating the same
JP2003110041A (ja) * 2001-09-27 2003-04-11 Kyocera Corp 電子部品収納用パッケージ
JP4170701B2 (ja) 2002-07-31 2008-10-22 信越半導体株式会社 太陽電池及びその製造方法
JP2004193350A (ja) * 2002-12-11 2004-07-08 Sharp Corp 太陽電池セルおよびその製造方法
JP2004217491A (ja) * 2003-01-17 2004-08-05 Nikon Corp 光学素子
JP3580311B1 (ja) * 2003-03-28 2004-10-20 住友電気工業株式会社 表裏識別した矩形窒化物半導体基板
JP4660642B2 (ja) 2003-10-17 2011-03-30 信越化学工業株式会社 太陽電池及びその製造方法
KR101073016B1 (ko) * 2004-12-13 2011-10-12 삼성에스디아이 주식회사 태양전지 및 그 제조방법
EP1892767A1 (en) * 2006-08-22 2008-02-27 BP Solar Espana, S.A. Unipersonal Photovoltaic cell and production thereof
JP2008294364A (ja) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
JP2008294365A (ja) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd 太陽電池の製造方法
EP2168158B1 (en) * 2007-06-13 2013-06-05 Conergy AG Method for marking wafers
CN101842910B (zh) * 2007-11-01 2013-03-27 株式会社半导体能源研究所 用于制造光电转换器件的方法
JP5615837B2 (ja) * 2008-12-10 2014-10-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated スクリーン印刷パターンの位置合せのための強化された視覚システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533871A (zh) * 2009-04-01 2009-09-16 常州天合光能有限公司 晶体硅太阳电池选择性扩散工艺

Also Published As

Publication number Publication date
EP2610918B1 (en) 2018-12-05
EP2610918A1 (en) 2013-07-03
WO2012026357A1 (ja) 2012-03-01
US20130153026A1 (en) 2013-06-20
US20160141438A1 (en) 2016-05-19
EP2610918A4 (en) 2017-03-29
AU2011294367B2 (en) 2014-11-27
AU2011294367A1 (en) 2013-03-21
SG187963A1 (en) 2013-04-30
RU2013113212A (ru) 2014-10-27
KR101877277B1 (ko) 2018-07-11
KR20130111540A (ko) 2013-10-10
MY157356A (en) 2016-05-31
CN103155165A (zh) 2013-06-12
RU2569902C2 (ru) 2015-12-10
US10141466B2 (en) 2018-11-27
AU2011294367C1 (en) 2015-05-14
JP2012049285A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
CN103155165B (zh) 用于太阳电池的基板和太阳电池
KR101579854B1 (ko) 인 시투 표면 패시베이션을 구비한 이온 주입된 선택적 이미터 태양전지
CN101331614B (zh) 背接触式光伏电池
JP3838979B2 (ja) 太陽電池
KR101436357B1 (ko) 선택적 전면 필드를 구비한 후면 접합 태양전지
JP2013531371A (ja) 拡散とイオン注入とのハイブリッドプロセスによって形成される選択エミッタ太陽電池
JP2008519438A (ja) バックコンタクト太陽電池
JP5541409B2 (ja) 太陽電池の製造方法
TWI681566B (zh) 太陽能電池以及其製造方法
TWI520356B (zh) Solar cell substrate and solar cell
JP4431712B2 (ja) 太陽電池の製造方法
Saravanan et al. Studies on the influence of effective carrier lifetime in the performance of industrial silicon solar cells
Zhang et al. Crystalline Silicon Solar Cells
Libal et al. Record efficiencies of solar cells based on n-type multicrystalline silicon
Schubert et al. 15%-Efficient multicrystalline-silicon photovoltaic modules: cell processing and characterization
Azwar et al. Review of multicrystalline silicon wafer solar cell processing
JP2005129680A (ja) 光電変換装置
JP2002280582A (ja) 多結晶太陽電池及び多結晶膜
TW201342644A (zh) 光電動勢電力裝置的製造方法及光電動勢電力裝置的製造裝置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant