CN103151390A - 一种隧穿场效应晶体管 - Google Patents

一种隧穿场效应晶体管 Download PDF

Info

Publication number
CN103151390A
CN103151390A CN2013100830205A CN201310083020A CN103151390A CN 103151390 A CN103151390 A CN 103151390A CN 2013100830205 A CN2013100830205 A CN 2013100830205A CN 201310083020 A CN201310083020 A CN 201310083020A CN 103151390 A CN103151390 A CN 103151390A
Authority
CN
China
Prior art keywords
effect transistor
tunneling field
tunneling
region
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100830205A
Other languages
English (en)
Other versions
CN103151390B (zh
Inventor
张雪锋
陈建新
章国安
张士兵
魏崃
王志亮
尹海宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201310083020.5A priority Critical patent/CN103151390B/zh
Publication of CN103151390A publication Critical patent/CN103151390A/zh
Application granted granted Critical
Publication of CN103151390B publication Critical patent/CN103151390B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及一种隧穿场效应晶体管,在绝缘层上形成凸出于该绝缘层的轻掺杂或不掺杂的衬底脊,源极区和漏极区在间隔一定距离的所述脊上形成,使源极区和漏极区之间存有一间隔区,在对应于源极区和间隔区的一侧面上形成绝缘介质层,在该绝缘介质层的外侧面形成栅电极,在源极区未被绝缘介质层覆盖且与所述栅电极平行的侧面形成欧姆接触的源电极,在漏极区上形成欧姆接触个漏电极。优点是,克服了掺杂原子扩散导致的pn结耗尽展宽造成电子隧穿几率下降的问题;并且电子隧穿发生在整个源区,电子隧穿面积大,因而能够获得大的开态电流;通过平行设置的栅电极-源电极结构简便地实现电子的垂直隧穿。

Description

一种隧穿场效应晶体管
 
技术领域
本发明涉及晶体管制造技术,尤其涉及一种隧穿场效应晶体管的结构设计。
背景技术
为满足新一代移动计算设备工作时间的要求,CMOS逻辑电路的功耗需要进一步减小。降低MOS晶体管的工作电压V DD 可以有效降低CMOS逻辑电路的功耗,但是为确保电路能逻辑功能的可靠实现,MOS场效应晶体管的开/关态电流比(I ON /I OFF )必须足够高,因此要求构成逻辑电路的晶体管具有小的亚阈斜率。而受限于载流子的热扩散过程,MOS场效应晶体管的亚阈斜率S≥60 mV/dec(室温)。另一方面,大的亚阈斜率也会导致晶体管开关过程中的动态功耗变大。为克服上述困难,人们提出了不受亚阈斜率S≥60 mV/dec限制的、基于量子效应的隧穿场效应晶体管以替代传统MOS场效应晶体管。
图1、2示意性地给出了隧穿场效应晶体管的一般工作原理。源极p+掺杂,漏极n+掺杂,源、漏极区是在低浓度掺杂的n型衬底上形成;在源、漏极之间的低掺杂区上形成栅电极,该栅电极利用绝缘层与低掺杂沟道区绝缘。当在栅极施加正偏压时,栅极绝缘层下面的低掺杂沟道区表面形成电子积累层和耗尽层,电子能带向下弯曲。源极p+掺杂区的价带与低掺杂区的导带发生交叠,此时在漏极和源极之间施加正偏压,电子会以一定的几率从源极价带隧穿到低掺杂区导带(通过带带隧穿机制),并在电场作用下流进漏极。源极价带与低掺杂区导带交叠程度越大,电子隧穿几率就越大;电子从源极隧穿到沟道的距离越短,电子隧穿几率就越大。栅极电压控制源极区的价带与低掺杂区的导带交叠程度和电子从源极隧穿到沟道的距离,从而控制电子隧穿几率进而控制源极-漏极之间电流大小。该器件的工作原理不同于传统MOS场效应晶体管,因而不受亚阈斜率S≥60 mV/dec的限制。然而由于电子隧穿只是发生在p+源区和本征区构成的pn结的表面区域,因此电子隧穿区域面积小;另外,由于在器件制备过程中的热处理导致的掺杂扩散,所以p+源区/本征区构成的pn耗尽区变厚,增大了电子隧穿距离从而减小了电子隧穿几率。因此,图1中的隧穿场效应晶体管的驱动电流(开态电流)I ON 通常比MOSFET低很多。从隧穿场效应晶体管的工作原理分析,有两种途径可以提高该晶体管的驱动电流:(1)提高电子从源极区到沟道区域的量子隧穿几率;(2)使电子在更大的区域内发生隧穿以增大电子隧穿面积。
近来,一种垂直隧穿场效应晶体管被提出来以增大电子隧穿面积、提高隧穿场效应晶体管开态电流。然而在现有的垂直隧穿场效应晶体管中也需要通过掺杂来形成各式各样的复杂pn结结构以实现电子隧穿,所以也必然受到pn耗尽区变厚引起的电子隧穿几率降低的影响。
发明内容
本发明的目的在于提供可克服晶体管因在热处理过程中掺杂原子扩散导致pn结耗尽展宽从而使电子隧穿几率下降的一种隧穿场效应晶体管。
上述目的由下述技术方案得以实现。
所述隧穿场效应晶体管,在绝缘层上形成凸出于该绝缘层的轻掺杂或不掺杂的衬底脊,源极区和漏极区在间隔一定距离的所述脊上形成,使源极区和漏极区之间存有一间隔区,在对应于源极区和间隔区的一侧面上形成绝缘介质层,在该绝缘介质层的外侧面形成栅电极,在源极区未被绝缘介质层覆盖且与所述栅电极平行的侧面形成欧姆接触的源电极,在漏极区上形成欧姆接触个漏电极。
    所述隧穿场效应晶体管的进一步设计在于,所述不掺杂半导体晶体衬底脊为用半导体晶体锗Ge或半导体晶体硅Si形成卧于所述绝缘层上呈矩形体的脊。
所述隧穿场效应晶体管的进一步设计在于,所述轻掺杂半导体晶体衬底脊为用轻掺杂的p型或n型半导体晶体锗Ge或半导体晶体硅Si形成卧于所述绝缘层上呈矩形体的脊。
所述隧穿场效应晶体管的进一步设计在于,所述绝缘层采采用二氧化硅SiO2材料。
所述隧穿场效应晶体管的进一步设计在于,所述绝缘介质层采用二氧化硅或高介电材料
    所述隧穿场效应晶体管的更进一步设计在于,所述轻掺杂p型半导体晶体的掺杂浓度为1015~1017cm-3
    所述隧穿场效应晶体管的更进一步设计在于,所述轻掺杂n型半导体晶体的掺杂浓度为1015~1017cm-3
    所述隧穿场效应晶体管的更进一步设计在于,所述源极区和漏极区的掺杂浓度为1019~1021cm-3
所述隧穿场效应晶体管的更进一步设计在于,所述间隔区用以间隔源极区和漏极区的间隔为25~30 nm。
所述隧穿场效应晶体管的更进一步设计在于,所述漏电极覆盖在漏极区所述对应脊的外周侧面上。
本发明利用施加在平行栅极-源极的正电压在超薄半导体层中产生强电场,使半导体的导带和价带严重弯曲以实现电子隧穿。不同于现有技术的隧穿场效应晶体管,在这种新结构的隧穿场效应晶体管中,电子隧穿发生在p+源区中,电子隧穿区域不需要掺杂形成pn结,从而克服了由于热处理过程中掺杂原子扩散导致的pn结耗尽展宽造成电子隧穿几率下降的问题;并且在这种新结构的隧穿场效应晶体管中电子隧穿发生在整个源区,电子隧穿面积大,因而能够获得大的开态电流;通过平行设置的栅电极-源电极结构简便地实现所谓的电子的垂直隧穿。
附图说明
图1是现有技术中的单栅隧穿场效应晶体管结构示意图。
图2是现有技术中的双栅隧穿场效应晶体管结构示意图。
图3是本发明的隧穿场效应晶体管结构示意图。
图4是图3所示晶体管的俯视图。
图 5是本发明的隧穿场效应晶体管在开启状态(ON-state)电子和空穴的带带隧穿产生的对数分布图。
图 6是本发明的隧穿场效应晶体管在开启状态电子和空穴的带带隧穿产生率和半导体能带沿栅极-源极方向的变化示意图。
图7是本发明的隧穿场效应晶体管的转移特性示意图。
图8是本发明的隧穿场效应晶体管的输出特性示意图。
具体实施方式
对照图3、4,本发明的隧穿场效应晶体管,在绝缘层1上形成凸出于该绝缘层的半导体晶体衬底脊2,该衬底脊2可以是轻掺杂半导体晶体或不掺杂的半导体晶体,图中给出了一种轻掺杂衬底脊2,源极区3和漏极区4是在间隔一定距离的该衬底脊2上形成的,这样源极区和漏极区之间存有一间隔区5,在对应于源极区3和间隔区5的一侧面上形成绝缘介质层6,在该绝缘介质层的外侧面形成栅电极7,在源极区3未被绝缘介质层6覆盖且与栅电极7平行的侧面上形成欧姆接触的源极8,在漏极区上形成欧姆接触的漏电极9。
上述技术方案中的衬底脊2较优选的结构是横卧于绝缘层上的矩形体,该衬底脊2的制作材料优先选用轻掺杂的p型锗Ge,其掺杂浓度控制在1015~1017cm-3;当然也可选用轻掺杂的n型硅Si,其掺杂浓度控制在1015~1017cm-3。另外还可采用不掺杂的半导体晶体锗Ge或半导体晶体硅Si。间隔区5实际是衬底脊2的一部分,所以自然也是轻掺杂的p型区或轻掺杂的n型区,当然也可是不掺杂的的半导体晶体锗Ge或半导体晶体硅Si。间隔区5用以间隔源极区3和漏极区4,其间隔的距离为25~30 nm。源极区3和漏极区4是在衬底脊2上分别形成的p+重掺杂区和n+重掺杂区,其掺杂浓度控制在1019~1021cm-3,形成n型隧穿场效应晶体管(n-TFET器件结构)。
绝缘层1采用二氧化硅SiO2材料。绝缘介质层6采用二氧化硅SiO2或高介电介质材料,如HfO2来隔离栅电极与源区。漏电极9是覆盖于漏极区及所对应衬底脊的外周侧面。
图3、4所示的场效应晶体管工作时源极接地,漏极接电源正极,其中电子的隧穿路径如图4中带箭头虚线所示。当栅压为0时,源-漏pn结反向偏置,只有极小的漏电流流过(I OFF ),场效应晶体管处于关断状态。当对栅极施加正向偏压时,在半导体薄层中产生从栅极指向源极的电场使其导带和价带弯曲(参见图5中的导带和价带变化)。由于受到栅电场的吸引,在足够大栅极电压条件下,电子聚集在p+源区3靠近栅电极的表面处并形成电子反型层,从而在p+源区3的体内和表面形成感应p+n结。p+源区3导带和价带沿着垂直于栅-源方向严重弯曲,并且在该区域半导体导带和价带交叠,导致电子从源极价带隧穿到栅极下面半导体表面,发生带带隧穿。
对上述实施例的场效应晶体管进行开启状态的试验,将源极接地,漏极接电源正极,栅压为+1.5V电压、漏极-源极电压为0.5V。从图5可以看出,源区3中电子和空穴的带带隧穿产生率,该图是从器件结构顶部向下看的。从图中可以清楚看到在整个栅极下面都有带带隧穿发生,带带隧穿面积大。
对照图6,开启状态电子和空穴的带带隧穿产生率和半导体能带沿垂直于栅-源方向(图5中A-A’方向):电子和空穴的隧穿势垒宽度最小距离小于4 nm,因而带带隧穿几率大。在整个源区中电子和空穴的隧穿几率都很高。栅压增大时,电子从价带隧穿到导带的隧穿势垒变窄,电子隧穿概率增加。
图7和图8 分别示出了器件的转移特性和输出特性曲线。如图5中虚线所示,在电流变化跨越7个量级的范围得到的亚阈斜率为51 mV/dec.,开关态电流比I ON /I OFF  > 107,表明器件具有极好的开关特性。如图6中的输出特性曲线所示,漏电流I D 随漏电压V D 增大表现出好的饱和特性,并且开态电流达到I ON =5 μA/μm (栅压V GS =1.2 V,漏压V DS =0.5 V)。

Claims (10)

1.一种隧穿场效应晶体管,在绝缘层上形成凸出于该绝缘层的轻掺杂或不掺杂半导体晶体衬底脊,源极区和漏极区在间隔一定距离的所述脊上形成,使源极区和漏极区之间存有一间隔区,在对应于源极区和间隔区的一侧面上形成绝缘介质层,在该绝缘介质层的外侧面形成栅电极,在源极区未被绝缘介质层覆盖且与所述栅电极平行的侧面形成欧姆接触的源电极,在漏极区上形成欧姆接触的漏电极。
2.根据权利要求1所述的一种隧穿场效应晶体管,其特征在于所述不掺杂半导体晶体衬底脊为用半导体晶体锗Ge或半导体晶体硅Si形成卧于所述绝缘层上呈矩形体的脊。
3.根据权利要求1所述的一种隧穿场效应晶体管,其特征在于所述轻掺杂半导体晶体衬底脊为用轻掺杂的p型或n型半导体晶体锗Ge或半导体晶体硅Si形成卧于所述绝缘层上呈矩形体的脊。
4.根据权利要求1任一项所述的一种隧穿场效应晶体管,其特征在于所述绝缘层采用二氧化硅SiO2材料。
5.根据权利要求1~4任一项所述的一种隧穿场效应晶体管,其特征在于所述绝缘介质层采用二氧化硅或高介电材料。
6.根据权利要求1~5任一项所述的一种隧穿场效应晶体管,其特征在于所述轻掺杂p型半导体晶体的掺杂浓度为1015~1017cm-3
7.根据权利要求1~5任一项所述的一种隧穿场效应晶体管,其特征在于所述轻掺杂n型半导体晶体的掺杂浓度为1015~1017cm-3
8.根据权利要求1~5任一项所述的一种隧穿场效应晶体管,其特征在于所述源极区和漏极区的掺杂浓度为1019~1021cm-3
9.根据权利要求1~5任一项所述的一种隧穿场效应晶体管,其特征在于所述间隔区用以间隔源极区和漏极区的间隔为25~30 nm。
10.根据权利要求1~5任一项所述的一种隧穿场效应晶体管,其特征在于所述漏电极覆盖在漏极区所述对应脊的外周侧面上。
CN201310083020.5A 2013-03-15 2013-03-15 一种隧穿场效应晶体管 Expired - Fee Related CN103151390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310083020.5A CN103151390B (zh) 2013-03-15 2013-03-15 一种隧穿场效应晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310083020.5A CN103151390B (zh) 2013-03-15 2013-03-15 一种隧穿场效应晶体管

Publications (2)

Publication Number Publication Date
CN103151390A true CN103151390A (zh) 2013-06-12
CN103151390B CN103151390B (zh) 2015-07-29

Family

ID=48549355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310083020.5A Expired - Fee Related CN103151390B (zh) 2013-03-15 2013-03-15 一种隧穿场效应晶体管

Country Status (1)

Country Link
CN (1) CN103151390B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663696A (zh) * 2014-09-24 2017-05-10 英特尔公司 使用具有表面终止物的纳米线形成的缩放的tfet晶体管
CN108780812A (zh) * 2016-06-30 2018-11-09 华为技术有限公司 隧穿场效应晶体管及其制备方法
CN109660238A (zh) * 2018-12-27 2019-04-19 徐国强 结控管
CN112002760A (zh) * 2020-08-28 2020-11-27 河南师范大学 一种基于MnBi2Te4单层的纳米尺度场效应晶体管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558497A (zh) * 2006-12-15 2009-10-14 Nxp股份有限公司 晶体管器件和制造这一晶体管器件的方法
US20100140589A1 (en) * 2008-12-04 2010-06-10 Ecole Polytechnique Federale De Lausanne (Epfl) Ferroelectric tunnel fet switch and memory
US7824969B2 (en) * 2008-01-23 2010-11-02 International Business Machines Corporation Finfet devices and methods for manufacturing the same
CN101969061A (zh) * 2010-09-27 2011-02-09 复旦大学 一种鳍型隧穿晶体管集成电路及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558497A (zh) * 2006-12-15 2009-10-14 Nxp股份有限公司 晶体管器件和制造这一晶体管器件的方法
US7824969B2 (en) * 2008-01-23 2010-11-02 International Business Machines Corporation Finfet devices and methods for manufacturing the same
US20100140589A1 (en) * 2008-12-04 2010-06-10 Ecole Polytechnique Federale De Lausanne (Epfl) Ferroelectric tunnel fet switch and memory
CN101969061A (zh) * 2010-09-27 2011-02-09 复旦大学 一种鳍型隧穿晶体管集成电路及其制造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663696A (zh) * 2014-09-24 2017-05-10 英特尔公司 使用具有表面终止物的纳米线形成的缩放的tfet晶体管
CN106663696B (zh) * 2014-09-24 2020-12-08 英特尔公司 使用具有表面终止物的纳米线形成的缩放的tfet晶体管
CN108780812A (zh) * 2016-06-30 2018-11-09 华为技术有限公司 隧穿场效应晶体管及其制备方法
CN108780812B (zh) * 2016-06-30 2020-10-16 华为技术有限公司 隧穿场效应晶体管及其制备方法
US11152500B2 (en) 2016-06-30 2021-10-19 Huawei Technologies Co., Ltd. Tunneling field-effect transistor and method for manufacturing tunneling field-effect transistor
CN109660238A (zh) * 2018-12-27 2019-04-19 徐国强 结控管
CN112002760A (zh) * 2020-08-28 2020-11-27 河南师范大学 一种基于MnBi2Te4单层的纳米尺度场效应晶体管
CN112002760B (zh) * 2020-08-28 2023-05-23 河南师范大学 一种基于MnBi2Te4单层的纳米尺度场效应晶体管

Also Published As

Publication number Publication date
CN103151390B (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
Zhang et al. A Schottky-barrier silicon FinFET with 6.0 mV/dec subthreshold slope over 5 decades of current
CN103500758A (zh) 半栅极控制源极肖特基势垒型隧穿场效应晶体管
CN104201206A (zh) 一种横向soi功率ldmos器件
CN103268889A (zh) 一种无结型横向隧穿场效应晶体管
CN104183646A (zh) 一种具有延伸栅结构的soi ldmos器件
CN103474459B (zh) 隧穿场效应晶体管
CN103280464A (zh) 一种无结型纵向隧穿场效应晶体管
CN103151390B (zh) 一种隧穿场效应晶体管
US8853824B1 (en) Enhanced tunnel field effect transistor
CN102694030B (zh) 具有石墨烯纳米带异质结构的隧穿场效应晶体管
CN102544073A (zh) 无结纳米线场效应晶体管
CN108389896B (zh) 一种有效抑制双极性电流的双栅隧穿场效应晶体管
CN105702721A (zh) 一种新型非对称双栅隧穿场效应晶体管
KR101576267B1 (ko) 순방향 터널링에 의한 저전력 터널링 전계효과 트랜지스터
CN105870182A (zh) 一种三明治结构双栅垂直隧穿场效应晶体管
KR101902843B1 (ko) 듀얼 게이트를 갖는 무접합 터널링 전계효과 트랜지스터
CN104518008B (zh) 一种结型场效应管
CN216213470U (zh) 半导体器件
CN109560128B (zh) 隧穿场效应晶体管
KR101709541B1 (ko) 들려진 드레인 영역을 갖는 터널링 전계효과 트랜지스터
KR102273935B1 (ko) 음성 트랜스 컨덕턴스 기반의 터널링 트랜지스터
CN109755306B (zh) 一种无结型双栅线隧穿场效应晶体管
CN104425606A (zh) 隧穿场效应晶体管及其形成方法
CN203521424U (zh) 半栅极控制源极肖特基势垒型隧穿场效应晶体管
CN102354708A (zh) 具有悬空源漏的隧穿场效应晶体管结构及其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150729

Termination date: 20160315

CF01 Termination of patent right due to non-payment of annual fee