CN112002760B - 一种基于MnBi2Te4单层的纳米尺度场效应晶体管 - Google Patents

一种基于MnBi2Te4单层的纳米尺度场效应晶体管 Download PDF

Info

Publication number
CN112002760B
CN112002760B CN202010888248.1A CN202010888248A CN112002760B CN 112002760 B CN112002760 B CN 112002760B CN 202010888248 A CN202010888248 A CN 202010888248A CN 112002760 B CN112002760 B CN 112002760B
Authority
CN
China
Prior art keywords
field effect
effect transistor
mnbi
layer
pin junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010888248.1A
Other languages
English (en)
Other versions
CN112002760A (zh
Inventor
安义鹏
朱明甫
武大鹏
马传琦
刘尚鑫
康军帅
焦照勇
徐国亮
王永永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202010888248.1A priority Critical patent/CN112002760B/zh
Publication of CN112002760A publication Critical patent/CN112002760A/zh
Application granted granted Critical
Publication of CN112002760B publication Critical patent/CN112002760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种基于MnBi2Te4单层的纳米尺度场效应晶体管结构,属于纳米尺度电子器件技术领域。本发明的技术方案要点为:一种基于MnBi2Te4单层的纳米尺度场效应晶体管,其由MnBi2Te4材料的单层结构构成;该MnBi2Te4材料的单层结构一端进行P型掺杂,另一端进行N型掺杂,中间区为其本征结构,构成一个PIN结结构;再在PIN结结构两端分别施加漏极电极和源极电极,上下两侧一次施加二氧化硅电介质和栅极,构成场效应晶体管,在场效应晶体管两端分别施加正向偏压和反向偏压时,该场效应晶体管表现出整流特性,进一步通过栅极电压来调控其整流作用。本发明具有结构超薄、尺寸可调、性能优良等优点。

Description

一种基于MnBi2Te4单层的纳米尺度场效应晶体管
技术领域
本发明属于纳米尺度电子器件技术领域,具体涉及一种基于MnBi2Te4单层的纳米尺度场效应晶体管。
背景技术
在后摩尔时代,传统硅基器件发展遇到较大瓶颈,需要采取新的技术或寻找新的材料来代替硅基器件。最近十年来,二维层状材料以其独特的几何和电子结构、力学和光电特性等吸引了众多科学家的极大研究兴趣。诸如石墨烯、硅烯、氮化硼、锗烯、锡烯、过渡金属二硫化物、磷烯、MX烯、硼烯等已在实验室被成功制备出来。大量研究发现,诸多二维单层材料在力热光电磁等方面表现出一些优异的性质,有望成为新型的高性能纳米器件的重要候选材料。
最近,一种层状的锰基材料MnBi2Te4激发了研究人员们的极大研究兴趣,并取得了一些重大研究进展。2019年,Xue课题组用分子束外延生长的方法制备了MnBi2Te4单层和少层结构,并获得了它们的ARPES图像(详见Experimental Realization of an IntrinsicMagnetic Topological Insulator.Chin.Phys.Lett.2019,36(7),076801)。2020年1月,Zhang课题组在Science上发表关于本征磁性的MnBi2Te4的量子反常霍尔效应研究工作,揭示了其磁性会随着层数变化表现出奇偶性(即:奇数层时表现出铁磁性,而偶数层时表现出反铁磁性),在1.4K时表现出反常量子霍尔效应,在外磁场作用下,该温度阈值提高到6.5K(Quantum anomalous Hall effect in intrinsic magnetic topological insulatorMnBi2Te4.Science 2020,367(6480),895-900)。2020年1月,Xu,Zhang和Wang课题组在Nature Materials上发表了关于MnBi2Te4拓扑性质的研究工作,他们研究了MnBi2Te4块体和薄膜晶体管结构的量子输运性质,在该体系中实现了轴子绝缘体和Chern绝缘体这两种拓扑量子态。观察到了较大的纵向电阻和零级霍尔电阻平台,揭示了中等强度的磁场即可驱动其转变成零级纵向电阻的Chern绝缘相(Robust axion insulator and Cherninsulator phases in a two-dimensional antiferromagnetic topologicalinsulator.Nat.Mater.2020,19,522-527)。然而,关于该MnBi2Te4单层结构的场效应晶体管器件设计工作报道较少。
发明内容
本发明解决的技术问题是提供了一种基于MnBi2Te4单层的纳米尺度场效应晶体管,通过设计对MnBi2Te4材料的单层结构两端分别进行P型掺杂和N型掺杂,保留中间区为其本征结构,进而构造成一个PIN结结构,再在PIN结结构两端分别施加漏极电极和源极电极,并在其上下两侧分别施加电介质和栅极,构造成场效应晶体管。
本发明为解决上述技术问题采用如下技术方案,一种基于MnBi2Te4单层的纳米尺度场效应晶体管,其特征在于该场效应晶体管是基于MnBi2Te4材料的单层结构,在MnBi2Te4材料的单层结构两端分别进行P型掺杂和N型掺杂,保留中间区为其本征结构,构造成PIN结结构,再在PIN结结构两端分别施加漏极电极和源极电极,并在其上下两侧分别施加二氧化硅电介质层和栅极,构造成场效应晶体管,在场效应晶体管两端分别施加正向偏压和反向偏压时,该场效应晶体管表现出整流特性,进一步通过栅极电压来调控其整流作用。
进一步限定,所述栅极电压为零时,在场效应晶体管两端施加正向偏压时,电流不能导通,在场效应晶体管两端施加反向偏压时,电流导通实现整流作用,整流比率高达107量级。
本发明设计了一种基于MnBi2Te4单层的纳米尺度场效应晶体管,结构如图1所示。该基于MnBi2Te4单层的纳米尺度场效应晶体管具有整流作用,如图2所示,其整流比率高,达到107量级,反向导通电流阈值电压较小为0.2V,通过栅极可以明显调控其导通电流的大小,该场效应晶体管厚度约1.1nm,宽度可任意选取。
本发明具有结构超薄、尺寸可调、功耗低、整流性能优良、场效应作用明显等特点,能够应用于纳米级场效应晶体管。
附图说明
图1是基于MnBi2Te4单层的纳米尺度场效应晶体管的结构示意图,中间层是MnBi2Te4材料的单层结构,其左侧为P型掺杂,右侧为N型掺杂,中间区为其本征结构,构造成PIN结结构,在PIN结结构左右两端分别施加有漏极(D)电极和源极(S)电极,上下面分别施加有二氧化硅电介质层和栅极。
图2是基于MnBi2Te4单层纳米尺度场效应晶体管在不同栅极电压时的电流-电压曲线和整流比曲线图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例
本发明构造了由MnBi2Te4材料的单层结构分别对其两端进行P型掺杂和N型掺杂,而保留中间区为其本征结构,并在其上下两侧施加二氧化硅电介质和栅极得到PIN结场效应晶体管。本发明通过使用业界先进的器件设计工具QuantumATK(
Figure BDA0002656199950000032
Smidstrup,etal.,QuantumATK:an integrated platform of electronic and atomic-scalemodelling tools[J].J.Phys.:Condens.Matter 32,015901(2020))进行器件模型设计,并对其进行性能测量。
通过对其电学性质如电流-电压曲线的测量,揭示了该种基于MnBi2Te4单层的纳米尺度PIN结场效应晶体管的场效应性质,为进一步设计和实现具有结构超薄、功耗低、性能优良且尺寸可调的场效应晶体管器件提供了相关理论依据和模型构造方案。
此基于MnBi2Te4单层的纳米尺度PIN结场效应晶体管的实现可按照如下步骤完成:
一、按照如图1所示,将MnBi2Te4材料的单层结构左右两侧分别进行P型掺杂和N型掺杂,保留中间区为其本征结构,构造成PIN结结构。
二、在上述得到MnBi2Te4单层PIN结结构的两端分别施加漏极电极和源极电极,并在其上下两侧分别施加二氧化硅电介质层和栅极,进而构造成基于MnBi2Te4单层的纳米尺度PIN结场效应晶体管,且在垂直于输运方向的大小尺寸可任意调节。
三、当在上述构造的基于MnBi2Te4单层的纳米尺度PIN结场效应晶体管两端分别施加正向偏压和反向偏压时,通过该场效应晶体管的电流可通过下式得到
Figure BDA0002656199950000031
当栅极电压为零时,其电流-电压曲线如图2a所示,表现出极好的整流作用(见图2a插图所示),整流比率高达107量级,且反向导通阈值电压较低,为0.2V。当栅极电压分别为10V和-10V时,其电流-电压和整流曲线如图2b、2c所示,明显地提高了导通电流大小。
本发明设计的基于MnBi2Te4单层的纳米尺度PIN结场效应晶体管具有结构超薄、尺寸可调、功耗低、整流性能优良、场效应作用明显等特点。可根据实际需要任意制作大小尺寸各异的各型号场效应晶体管。如图1所示,该基于MnBi2Te4单层的PIN结场效应晶体管厚度约为1.1nm,结构超薄,在纳米尺度场效应晶体管方面具有重要潜在应用。
以上描述了本发明的基本形状构造、技术方案、基本原理、主要特征及优点。本行业的技术人员应该了解。本发明凡符合上述由MnBi2Te4单层构造的PIN结场效应晶体管均落入本发明保护范围内。

Claims (2)

1.一种基于MnBi2Te4单层的纳米尺度场效应晶体管,其特征在于该场效应晶体管是基于MnBi2Te4材料的单层结构,在MnBi2Te4材料的单层结构两端分别进行P型掺杂和N型掺杂,保留中间区为其本征结构,构造成PIN结结构,再在PIN结结构两端分别施加漏极电极和源极电极,并在其上下两侧均分别同时施加二氧化硅电介质层和栅极,构造成场效应晶体管,在场效应晶体管两端分别施加正向偏压和反向偏压时,该场效应晶体管表现出整流特性,进一步通过栅极电压来调控其整流作用。
2.根据权利要求1所述的基于MnBi2Te4单层的纳米尺度场效应晶体管,其特征在于:所述栅极电压为零时,在场效应晶体管两端施加正向偏压时,电流不能导通,在场效应晶体管两端施加反向偏压时,电流导通实现整流作用,整流比率高达107量级。
CN202010888248.1A 2020-08-28 2020-08-28 一种基于MnBi2Te4单层的纳米尺度场效应晶体管 Active CN112002760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010888248.1A CN112002760B (zh) 2020-08-28 2020-08-28 一种基于MnBi2Te4单层的纳米尺度场效应晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010888248.1A CN112002760B (zh) 2020-08-28 2020-08-28 一种基于MnBi2Te4单层的纳米尺度场效应晶体管

Publications (2)

Publication Number Publication Date
CN112002760A CN112002760A (zh) 2020-11-27
CN112002760B true CN112002760B (zh) 2023-05-23

Family

ID=73464637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010888248.1A Active CN112002760B (zh) 2020-08-28 2020-08-28 一种基于MnBi2Te4单层的纳米尺度场效应晶体管

Country Status (1)

Country Link
CN (1) CN112002760B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151390A (zh) * 2013-03-15 2013-06-12 南通大学 一种隧穿场效应晶体管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848379B2 (ja) * 2006-01-31 2011-12-28 パナソニック株式会社 情報記録媒体およびその製造方法、並びにその製造装置
CN103560153B (zh) * 2013-11-15 2016-07-13 中国科学院上海微系统与信息技术研究所 一种隧穿场效应晶体管及其制备方法
CN104617137B (zh) * 2015-01-19 2018-09-21 华为技术有限公司 一种场效应器件及其制备方法
CN110726736B (zh) * 2019-10-18 2021-11-05 南京大学 一种无源低功耗的微波检测方法及其装置和制备方法
CN111487475A (zh) * 2020-03-26 2020-08-04 南京大学 一种无源低功耗的微波检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151390A (zh) * 2013-03-15 2013-06-12 南通大学 一种隧穿场效应晶体管

Also Published As

Publication number Publication date
CN112002760A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
Wang et al. Schottky barrier heights in two-dimensional field-effect transistors: from theory to experiment
Liu et al. Van der Waals heterostructures and devices
Yoshida et al. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals
Xu et al. Reconfigurable ion gating of 2H-MoTe2 field-effect transistors using poly (ethylene oxide)-CsClO4 solid polymer electrolyte
Ma et al. High-performance nano-Schottky diodes and nano-MESFETs made on single CdS nanobelts
Pradel et al. Piezotronic effect in solution-grown p-type ZnO nanowires and films
Berweger et al. Imaging carrier inhomogeneities in ambipolar tellurene field effect transistors
Moddel et al. Ultrahigh speed graphene diode with reversible polarity
Zhou et al. Two-dimensional pnictogen for field-effect transistors
Wang et al. Development of ultra-high density silicon nanowire arrays for electronics applications
Chaudhury et al. Carbon nanotube and nanowires for future semiconductor devices applications
CN112002760B (zh) 一种基于MnBi2Te4单层的纳米尺度场效应晶体管
Wu et al. Ultrahigh-performance inverters based on CdS nanobelts
CN112002766B (zh) 一种基于MnBi2Te4单层的纳米尺度PN结二极管整流器
CN108206214B (zh) 一种基于金-黑磷烯的负微分电阻场效应晶体管及其制备
Ramezani et al. Fundamental phenomena in nanoscale semiconductor devices
Wang et al. Electrical contacts to two-dimensional transition-metal dichalcogenides
Das et al. Spin filtering and rectification in lateral heterostructures of Zigzag-Edge BC3 and graphene nanoribbons: implications for switching and memory devices
Wang et al. Natural p–n Junctions at the MoS2 Flake Edges
CN110957373A (zh) 一种基于过渡金属二硫化物侧面异质结的纳米尺度整流器
CN112002782B (zh) 一种基于MnBi2Te4单层的纳米尺度光电传感器
Böckle et al. Ge quantum wire memristor
Raja Impact of nanoelectronics in the semiconductor field: Past, present and future
Chen et al. Introduction to nanotechnology
Zhao et al. The contact properties of bilayer tellurene/borophene van der Waals heterostructures with different Te orientations towards tunneling photodiode applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant