CN103117303B - 一种氮化物功率器件及其制造方法 - Google Patents

一种氮化物功率器件及其制造方法 Download PDF

Info

Publication number
CN103117303B
CN103117303B CN201310049854.4A CN201310049854A CN103117303B CN 103117303 B CN103117303 B CN 103117303B CN 201310049854 A CN201310049854 A CN 201310049854A CN 103117303 B CN103117303 B CN 103117303B
Authority
CN
China
Prior art keywords
nitride
layer
power devices
nitride power
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310049854.4A
Other languages
English (en)
Other versions
CN103117303A (zh
Inventor
程凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU JINGZHAN SEMICONDUCTOR CO Ltd
Original Assignee
SUZHOU JINGZHAN SEMICONDUCTOR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU JINGZHAN SEMICONDUCTOR CO Ltd filed Critical SUZHOU JINGZHAN SEMICONDUCTOR CO Ltd
Priority to CN201310049854.4A priority Critical patent/CN103117303B/zh
Publication of CN103117303A publication Critical patent/CN103117303A/zh
Priority to JP2015556386A priority patent/JP6588340B2/ja
Priority to PCT/CN2014/071559 priority patent/WO2014121710A1/zh
Priority to EP14748959.5A priority patent/EP2955757B1/en
Priority to DK14748959T priority patent/DK2955757T3/da
Application granted granted Critical
Publication of CN103117303B publication Critical patent/CN103117303B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供了一种氮化物功率器件及其制造方法。该氮化物功率器件在现有器件结构的基础上,在硅衬底上制作出p型硅层和n型硅层交替排列的半导体掺杂多层结构,当有外加电压加载到氮化物功率器件上时,每层半导体掺杂结构都会形成一个空间电荷耗尽区,通过一个或多个空间电荷耗尽区的叠加,使得整个器件的击穿电压大大提高,从而降低了器件被电压击穿的风险。同时本发明也提出了上述氮化物功率器件的制作方法。

Description

一种氮化物功率器件及其制造方法
技术领域
本发明属于微电子技术领域,涉及一种氮化物功率器件,以及该氮化物功率器件的制造方法,尤其是通过在Si衬底中引入可以形成较厚空间电荷耗尽区的半导体掺杂多层结构,可以承受较大的外加电压,从而提高器件击穿电压。
背景技术
第三代半导体材料氮化镓(GaN)由于具有禁带宽度大、电子饱和漂移速度高、击穿场强高、导热性能好等特点,已经成为目前的研究热点。在电子器件方面,氮化镓材料比硅和砷化镓更适合于制造高温、高频、高压和大功率器件,因此氮化镓基电子器件具有很好的应用前景。
以往氮化镓功率器件都是在蓝宝石或碳化硅衬底上制成的,由于氮化镓异质结导电沟道的特殊性及工艺难度所限,氮化镓功率器件基本都是平面结构,因为衬底很厚且击穿电场较高,所以器件一般是横向击穿,通过一些平面优化技术,如场板结构、增加栅极与漏极距离等可以提高器件的击穿电压。但是蓝宝石和碳化硅衬底材料比较贵且难以实现大尺寸的衬底材料和外延层,所以氮化镓功率器件成本很高,难以市场化。
目前在大尺寸硅衬底上生长氮化镓功率器件的技术日趋成熟,并且成本较低,是推动氮化镓功率器件市场化的主流方向,以三极管结构的氮化镓功率器件为例,其结构如图1A所示,包括硅衬底1、氮化物成核层2、氮化物缓冲层3、氮化物沟道层4、氮化物势垒层5、介质钝化层9,以及包括源极6、漏极7和栅极8的三个电极。由于硅材料本身的导电性和低的临界电场,硅基氮化镓功率器件都存在一个饱和击穿电压,该饱和击穿电压由硅衬底上生长的氮化物外延层厚度来决定。此外,为了避免器件中静电的积累而导致ESD(静电放电)和为了在电路中实现电压匹配,衬底接地是必不可免的选择,这导致硅基氮化镓功率器件衬底接地时的击穿电压Vbr1比浮地击穿电压Vbr2减小了一半,如图1B所示,即使采用高阻区熔硅,其电阻率通常也不超过104Ohm.cm,远小于氮化物电阻率(>109Ohm.cm),无法起到分压的作用。所以提高硅衬底上氮化物功率器件的击穿电压是目前急需解决的问题。
通过增加外延层厚度的方法可以提高硅衬底氮化物高压器件的击穿电压,尽管目前在硅材料上生长氮化物外延层的技术正日趋成熟,但是因为硅材料和氮化物之间存在巨大的晶格失配和热失配,生长的氮化物外延层厚度受到极大的限制,一般来说大约在2um至4um左右,生长过厚的氮化物外延层不仅会需要更长的时间,提高成本、降低产能,而且外延层的质量会变差,容易翘曲或龟裂,增加工艺难度,降低成品率等等。
衬底接地后,器件的击穿电压也为纵向击穿所影响。此纵向击穿电压由外延层的可耐受电压和硅衬底的可耐受电压决定。所以,总的纵向击穿电压可通过改善硅衬底的耐压性来提高。
硅衬底的厚度一般是固定的,过厚会增加成本,并且影响硅上氮化物外延层的质量,也会增加工艺难度,所以通过增加衬底厚度来提高硅衬底耐压性并不可行。
在硅半导体器件中,用硅材料制作的PN二极管可以承受很高的反向外加电压。一般是在硅衬底中通过掺杂形成N型掺杂区域和P型掺杂区域,两个掺杂区域内部会形成一个PN结,形成空间电荷耗尽区,空间电荷区内部导电的电子和空穴非常少,近似于零,类似于一个高阻区,击穿电场比较高,可以承受一定的外加电压。空间电荷区可耐受的电压与其宽度有关,空间电荷区越宽,所能耐受的电压越大,即PN二极管的击穿电压就越大。空间电荷区的宽度受掺杂浓度和外加电压的影响,一般随着外加电压的增加空间电荷区的宽度逐渐变大,掺杂浓度较高时空间电荷区较窄,相比同样电压下掺杂浓度较低时空间电荷区宽度较宽,可以承受更高的外加电压。当N型掺杂区域和P型掺杂区域内部的电子和空穴被完全耗尽时,空间电荷区的宽度便不会再扩展,继续增加外加电压空间电荷区就会击穿。因为硅掺杂工艺成熟稳定,可以形成不同结构、不同浓度的掺杂分布,所以产生了能够耐受不同电压的PN二极管。
发明内容
有鉴于此,可以通过外延掺杂或离子注入的方法在硅衬底内部引入厚度较薄的横向P型掺杂半导体层和N型掺杂半导体层,P型掺杂半导体层和N型掺杂半导体层内部会形成空间电荷区,空间电荷区内部的导电电子和空穴被完全耗尽,空间电荷区基本绝缘,近似于一个高阻区,击穿电场比较高,可以承受一定的外加电压。空间电荷区所能耐受的电压与空间电荷区的宽度有关,空间电荷区越宽,可以耐受的电压越大。随着反向外加电压的增加,空间电荷区不断增宽,所能耐受的电压也不断增大,因为半导体掺杂层很薄,所以整个掺杂半导层内部的电子和空穴都会被完全被耗尽,整个掺杂半导区域都会成为一个高阻区,可以承受较高的外加电压。如果有多层N型半导体层和P型半导体层,就会形成多层的空间电荷耗尽区,并且组成一个较厚的空间电荷耗尽区,可以耐受很高的外加电压,实际中可以根据器件所需耐受的电压来决定具体掺杂半导体层的结构。
硅衬底中引入的P型掺杂半导体层和N型掺杂半导体层所形成的空间电荷区相当于在导电硅衬底中插入了一层高电压耐受层,提高了硅衬底的耐压性,进而提高了整个器件的击穿电压,尤其是在硅衬底接地的情况下,大大提高了漏极与衬底电极之间的纵向击穿电压。
本发明的目的在于提供一种通过在硅衬底中引入可以形成空间电荷耗尽区的半导体掺杂多层结构,该半导体掺杂多层结构由较薄的n型硅层和p型硅层反复交替组成,在一定外加电压下,每一层半导体掺杂层都产生空间电荷耗尽区,整个半导体掺杂多层结构形成一个厚的空间电荷耗尽区,可以承受较大外加电压,半导体掺杂多层结构越厚,所形成的空间电荷区越厚,可承受的压降越高。通过这种方法,可以实现耐高击穿电压的氮化物功率器件。另外,本发明的另一目的在于还提出了上述氮化物功率器件的制造方法。
根据本发明的一个方面,提供了一种氮化物功率器件,包括:硅衬底,该硅衬底包括可以形成空间电荷耗尽区的半导体掺杂多层结构;在上述硅衬底上的外延多层结构,该外延多层结构至少包括氮化物成核层、形成于所述氮化物成核层上的氮化物缓冲层和形成于所述氮化物缓冲层上的氮化物沟道层;以及形成于所述外延多层结构上的电极,其中所述氮化物功率器件为三极管结构时,所述电极包括源极和漏极,以及源极和漏极之间的栅极;所述氮化物功率器件为二极管结构时,所述电极包括正极和负极。
优选的,在上述氮化物功率器件中,上述半导体掺杂多层结构可以是一层n型半导体层和一层p型半导体层组成的pn结构,含有一个空间耗尽区;或者是n型半导体层和p型半导体层反复交替组成的多层结构,含有多个pn结,即多个空间耗尽区。
优选,在上述氮化物功率器件中,上述半导体掺杂多层结构中的n型半导体层和p型半导体层厚度大于2nm,该半导体掺杂多层结构中的n型半导体层和p型半导体层分别为n-和p-型半导体;整个半导体掺杂多层结构的层数、厚度及掺杂浓度可根据所需要耐受的电压调节。
优选,在上述氮化物功率器件中,上述半导体掺杂多层结构的制备方法为外延生长或离子注入。
优选,在上述氮化物功率器件中,上述半导体掺杂多层结构可在硅衬底顶层或者内部或者背面形成,或者是其任意组合。
优选,在上述氮化物功率器件中,上述半导体掺杂多层结构中的半导体,可以是硅、锗、锗硅、碳化硅、III-V族化合物中的任意一种或其任意组合。
优选,在上述氮化物功率器件中,上述氮化物沟道层上,设有氮化物势垒层,在氮化物沟道层和氮化物势垒层的界面处形成二维电子气。
优选,在上述氮化物功率器件中,还包括在上述势垒层上的介质层。
优选,在上述氮化物功率器件中,上述介质层包括SiN、SiO2、SiON、Al2O3、HfO2、HfAlOx中的一种,或者是其任意组合。
优选,在上述氮化物功率器件中,还包括在上述势垒层上的氮化镓冒层。
优选,在上述氮化物功率器件中,还包括在上述势垒层和沟道层之间的AlN插入层。
优选,在上述氮化物功率器件中,还包括在上述缓冲层和沟道层之间的AlGaN背势垒层。
优选,在上述氮化物功率器件中,上述栅极下有介质层。
优选,在上述氮化物功率器件中,上述栅极具有栅场板和/或源极具有源场板。
根据本发明的一个方面,提供了一种用于制造氮化物功率器件的方法,包括以下步骤:在硅衬底中引入可以形成空间电荷耗尽区的半导体掺杂多层结构;在上述含有半导体掺杂多层结构的硅衬底上生长氮化物成核层;在上述氮化物成核层上生长氮化物缓冲层;在上述氮化物缓冲层上生长氮化物沟道层;在上述氮化物沟道层上形成接触电极其中所述氮化物功率器件为三极管结构时,所述电极包括源极和漏极,以及源极和漏极之间的栅极;所述氮化物功率器件为二极管结构时,所述电极包括正极和负极。
优选,在上述用于制造氮化物功率器件的方法中,上述半导体掺杂多层结构的制备方法为外延生长或离子注入。
附图说明
相信通过以下结合附图对本发明具体实施方式的说明,能够使人们更好地了解本发明上述的特点、优点和目的,其中:
图1A为现有的Si衬底上氮化物功率器件结构示意图;图1B为硅上氮化物功率器件在浮地和衬底接地两种情况下的击穿电压。
图2A为本发明第一实施方式的氮化物功率器件结构示意图;
图2B为本发明第一实施方式的一种变形结构;
图2C为本发明第一实施方式的另一种变形结构;
图3为本发明第一实施方式的一种变形结构;
图4为本发明第一实施方式的另一种变形结构;
图5为本发明第一实施方式的另一种变形结构;
图6为本发明第二实施方式的硅衬底上氮化物功率器件结构示意图;
图7为本发明第三实施方式的硅衬底上氮化物功率器件结构示意图;
图8为本发明第四实施方式的硅衬底上氮化物功率器件结构示意图;
图9为本发明第五实施方式的硅衬底上氮化物功率器件结构示意图;
图10为本发明第六实施方式的硅衬底上氮化物功率器件结构示意图;
图11为本发明第七实施方式的硅衬底上氮化物功率器件结构示意图;
图12为本发明第八实施方式的硅衬底上氮化物功率器件结构示意图。
具体实施方式
如背景技术中所述,现有的硅衬底氮化物功率器件,由于硅衬底接地后,整个器件的纵向击穿电压减为原来的一半,大大加大了器件的电压击穿几率。
本发明根据现有技术的不足,提出了一种可以耐高击穿电压的氮化物功率器件,该氮化物功率器件在硅衬底上制作出p型硅层和n型硅层交替排列的pn结。当有外加电压加载到氮化物功率器件上时,每个pn结都会形成一个空间电荷耗尽区,通过一个或多个空间电荷耗尽区的叠加,使得整个器件的击穿电压大大提高,从而降低了器件被电压击穿的风险。
下面就结合附图对本发明的技术方案做详细介绍。
请参见图2A,图2A为本发明第一实施方式的硅衬底上氮化物功率器件结构示意图。在本实施方式中,采用具有三极管结构的场效应管作为说明,该氮化物功率器件包括:硅衬底1,该硅衬底1包括可以形成空间电荷耗尽区的半导体掺杂多层结构10;在上述硅衬底1上的外延多层结构,该外延多层结构包括;氮化物成核层2和缓冲层3,缓冲层3包括GaN或AlN或其他氮化物,起到匹配衬底材料和高质量氮化物外延层的作用,影响上方由氮化镓/铝镓氮构成的异质结的晶体质量、表面形貌以及电学性质等参数;在缓冲层3上生长沟道层4,沟道层包含非的掺杂GaN层;在沟道层4上生长势垒层5,势垒层包含AlGaN或其他氮化物;沟道层4和势垒层5一起组成半导体异质结结构,在界面处形成高浓度二维电子气,并在GaN沟道层的异质结界面处产生导电沟道;在势垒层5上沉积介质层9对材料表面进行钝化保护,介质层包括SiN、SiO2、SiON、Al2O3、HfO2、HfAlOx中的一种,或者是其任意组合;在源极6和漏极7之间的区域,介质层被刻蚀出凹槽,然后沉积金属形成栅极8。在本发明中,在硅衬底上引入了可以形成空间电荷耗尽区的横向半导体掺杂多层结构10,该半导体掺杂多层结构10是本发明的一个创新之处,它是由p型半导体层和n型半导体层组成的pn结,或者由多层p型半导体层和n型半导体层反复交替组成的多个pn结,半导体层很薄,厚度一般大于2nm,可通过外延生长或者离子注入形成,整个半导体掺杂多层结构的层数、厚度及掺杂浓度可根据所需要耐受的电压调节,n型和p型半导体的掺杂浓度可以很低,即形成n-和p-型半导体。当漏极外加正向电压,衬底接地时,每一个pn结都产生空间电荷耗尽区,整个半导体掺杂多层结构形成一个很厚的空间电荷耗尽区,可以承受很大的压降,通过这种方法,器件的击穿电压大大增加。需要指出的是,该实施方式例举的功率器件为场效应管,因此在衬底上的外延多层结构包括了在沟道层上的势垒层以及势垒层表面的介质层等,然而功率器件也可以是其它功能的半导体器件,因此对于本发明来说,外延多层结构仅为实现特定功能的半导体器件时,最少包括成核层、缓冲层以及氮化物沟道层。
图2B为本发明第一实施方式的一种变形,与图2A不同之处在于硅衬底1,该硅衬底1由轻掺杂的p-硅和n型硅组成,当漏极加正压,衬底接地时,该硅衬底1类似于一个反偏PN结,形成空间电荷耗尽区,可以承受一定的压降,提高器件的击穿电压。
图2C为本发明第一实施方式的另一种变形,与图2A和图2B不同之处在于硅衬底1,该硅衬底1具有三层结构,由重掺杂的p+硅、轻掺杂的p-硅和n型硅组成,该硅衬底1的作用与图2A和图2B中硅衬底1的作用相同,在此不再赘述。
图3为本发明第一实施方式的一种变形,直接在硅衬底顶层进行外延生长或掺杂工艺,使得半导体掺杂多层结构位于硅衬底的顶层,氮化物成核层2和缓冲层3等可以直接在半导体掺杂多层结构上进行生长,相比图2中位于硅衬底内部的半导体掺杂多层结构,该结构制造工艺相对简化。
图4为本发明第一实施方式的另一种变形,直接在硅衬底背面进行外延生长或掺杂工艺,使得半导体掺杂多层结构位于硅衬底的背面,相比图3中位于硅衬底顶层的半导体掺杂多层结构,降低了氮化物成核层2和缓冲层3等直接在半导体掺杂多层结构上进行生长的工艺难度。
图5为本发明第一实施方式的另一种变形,一般半导体掺杂多层结构的层数及厚度由所需要耐受的电压决定,当外加电压不是很高时,半导体掺杂多层结构不需要太厚,工艺可以简化,如图5所示,该半导体掺杂多层结构10由一层n型半导体和一层p型半导体组成,其中n型半导体层位于最顶层靠近氮化物外延层,n型半导体层可以是比较厚的轻掺杂半导体层,p型半导体层可以是比较薄的重掺杂半导体层,当漏极加正压,衬底接地时,该半导体掺杂双层结构类似于一个反偏PN结,形成空间电荷耗尽区,可以承受一定的压降,提高器件的击穿电压,该半导体掺杂双层结构也可以位于硅衬底的顶层或背面。
制作该第一实施方式的氮化物功率器件时,包括步骤:
在硅衬底中引入可以形成空间电荷耗尽区的半导体掺杂多层结构;在上述含有半导体掺杂多层结构的硅衬底上生长氮化物成核层;在上述氮化物成核层上生长氮化物缓冲层;在上述氮化物缓冲层上生长氮化物沟道层;在上述氮化物沟道层上形成接触电极。
对于半导体掺杂多层结构,可以通过外延生长或离子注入,可以将该半导体掺杂多层结构制作在硅衬底的内部、顶表面或者背面,且根据所需击穿电压的多少,决定该半导体掺杂多层结构的层数以及厚度。
图6为本发明第二实施方式的硅衬底上氮化物功率器件结构示意图。在该实施方式中,采用具有二极管结构的二极管器件作为说明。在氮化物二极管器件的硅衬底中引入半导体掺杂多层结构,可以增强二极管的反向击穿电压,其中电极8为肖特基结,作为二极管的正极,电极7为欧姆接触,作为二极管的负极。
图7为本发明第三实施方式的硅衬底上氮化物功率器件结构示意图。在该实施方式中,采用另一种三极管结构的MOSFET器件作为说明。该MOSFET器件为氮化物n沟道MOSFET器件,在该器件的硅衬底中引入半导体掺杂多层结构,器件击穿电压大大提高。在氮化物沟道层的源极和漏极下方区域为n型重掺杂区域,一般掺硅,栅极下方区域为p型轻掺杂,一般掺镁,栅金属下的介质层一般为SiO2、SiN、AlN、Al2O3或其他绝缘介质层。
图8为本发明第四实施方式的硅衬底上氮化物功率器件结构示意图。在势垒层上生长GaN冒层11,由于AlGaN势垒层材料表面的缺陷和表面态密度较大,会俘获很多电子,会对沟道中的二维电子气产生影响,降低器件特性及可靠性。通过在势垒层表面生长一层GaN作为保护层可以有效减小势垒层材料表面的缺陷和表面态对器件特性的影响。
图9为本发明第五实施方式的硅衬底上氮化物功率器件结构示意图。在势垒层和沟道层之间引入AlN插入层12,因为AlN的禁带宽度非常高,可以更有效地将电子限制在异质结势井中,提高了二维电子气的浓度;AlN插入层还将导电沟道与AlGaN势垒层隔离开,减小了势垒层对电子的散射效应,从而提高电子的迁移率,使得器件整体特性得以提高。
图10为本发明第六实施方式的硅衬底上氮化物功率器件结构示意图。在缓冲层和沟道层之间引入AlGaN背势垒层13,在一定外加电压下,沟道中的电子会进入缓冲层,尤其是在短沟道器件中这种现象更为严重,使得栅极对沟道电子的控制相对变弱,出现短沟道效应;加上缓冲层中的缺陷和杂质比较多,会对沟道中的二维电子气产生影响,如产生电流崩塌。通过引入AlGaN背势垒层可以将沟道电子与缓冲层隔离开,将二维电子气有效地限制在沟道层中,改善短沟道效应及电流崩塌效应。
图11示出了本发明第七实施方式的硅衬底上氮化物功率器件结构示意图。栅极下方插入绝缘介质层14,形成MISFET结构,这一层绝缘介质既作为器件的钝化层,又是栅极绝缘层,可有效降低栅极漏电电流。绝缘介质层14包括SiN、SiO2、SiON、Al2O3、HfO2、HfAlOx中的一种,或者是其任意组合。
图12示出了本发明第八实施方式的硅衬底上氮化物功率器件结构示意图。该氮化物功率器件的栅极8和/或源极6上进一步设有栅场板15和/或源场板16。通过在栅极和/或源极引入场板结构,能够降低栅极近漏端电场强度,减小栅极漏电电流,进一步提高器件击穿电压。
在本发明基础上,通过改变硅衬底上氮化物沟道层或势垒层的结构或器件制造工艺,也可以实现氮化物功率器件增强型器件,如用氟离子轰击栅金属下方材料区域可以形成增强型器件等。
综上所述,本发明提出了一种硅衬底上氮化物功率器件及其制作方法,通过在硅衬底上引入由n型硅层和p型硅层反复交替组成的半导体掺杂多层结构,形成了空间电荷耗尽区,从而加大了器件的击穿电压,降低了器件被电压击穿的风险。
以上虽然通过一些示例性的实施例对本发明的氮化物功率器件以及用于制造氮化物功率器件的方法进行了详细的描述,但是以上这些实施例并不是穷举的,本领域技术人员可以在本发明的精神和范围内实现各种变化和修改。因此,本发明并不限于这些实施例,本发明的范围仅以所附权利要求书为准。例如,以上虽然以硅衬底中由n型硅层和p型硅层反复交替组成的半导体掺杂多层结构为例进行了描述,但是应该理解,可以使用本领域的技术人员公知的其它结构或材料来提高衬底耐压性,本发明对此没有任何限制。

Claims (15)

1.一种氮化物功率器件,包括:
硅衬底,该硅衬底包括可以形成空间电荷耗尽区的横向半导体掺杂多层结构,其中所述半导体掺杂多层结构由n型半导体层和p型半导体层组成,所述n型半导体层和所述p型半导体层的单层厚度大于2nm;
在上述硅衬底上的外延多层结构,该外延多层结构至少包括氮化物成核层、形成于所述氮化物成核层上的氮化物缓冲层和形成于所述氮化物缓冲层上的氮化物沟道层;以及
形成于所述外延多层结构上的电极,其中所述氮化物功率器件为三极管结构时,所述电极包括源极和漏极,以及源极和漏极之间的栅极;所述氮化物功率器件为二极管结构时,所述电极包括正极和负极。
2.根据权利要求1所述的氮化物功率器件,其特征在于:所述半导体掺杂多层结构为一层n型半导体层和一层p型半导体层组成的pn结,含有一个空间耗尽区;或者是n型半导体层和p型半导体层反复交替组成的多层结构,含有多个pn结,即多个空间耗尽区。
3.根据权利要求2所述的氮化物功率器件,其特征在于:该半导体掺杂多层结构中的n型半导体层和p型半导体层分别为n-和p-型半导体;整个半导体掺杂多层结构的层数、厚度及掺杂浓度根据所需要耐受的电压调节。
4.根据权利要求1所述的氮化物功率器件,其特征在于:所述半导体掺杂多层结构在硅衬底顶层或者内部或者背面形成,或者是其任意组合。
5.根据权利要求1所述的氮化物功率器件,其特征在于:所述半导体掺杂多层结构中的半导体,是硅、锗、锗硅、碳化硅、III-V族化合物中的任意一种或其任意组合。
6.根据权利要求1所述的氮化物功率器件,其特征在于:所述氮化物沟道层上,进一步设有氮化物势垒层,在氮化物沟道层和氮化物势垒层的界面处形成二维电子气。
7.根据权利要求6所述的氮化物功率器件,其特征在于:所述氮化物势垒层上还设有介质层。
8.根据权利要求7所述的氮化物功率器件,其特征在于:所述介质层包括SiN、SiO2、SiON、Al2O3、HfO2、HfAlOx中的一种,或者是其任意组合。
9.根据权利要求6所述的氮化物功率器件,其特征在于:还包括在上述氮化物势垒层上的氮化镓冒层。
10.根据权利要求6所述的氮化物功率器件,其特征在于:还包括在上述氮化物势垒层和氮化物沟道层之间的AlN插入层。
11.根据权利要求1所述的氮化物功率器件,其特征在于:还包括在上述缓冲层和沟道层之间的AlGaN背势垒层。
12.根据权利要求1所述的氮化物功率器件,其特征在于:所述栅极下方还设有绝缘介质层。
13.根据权利要求1所述的氮化物功率器件,其特征在于:所述栅极和/或源极具有场板结构。
14.一种用于制造氮化物功率器件的方法,其特征在于包括以下步骤:
在硅衬底中引入可以形成空间电荷耗尽区的横向半导体掺杂多层结构;
在上述含有半导体掺杂多层结构的硅衬底上生长氮化物成核层;
在上述氮化物成核层上生长氮化物缓冲层;
在上述氮化物缓冲层上生长氮化物沟道层;
在上述氮化物沟道层上形成接触电极,其中所述氮化物功率器件为三极管结构时,所述电极包括源极和漏极,以及源极和漏极之间的栅极;所述氮化物功率器件为二极管结构时,所述电极包括正极和负极。
15.根据权利要求14所述一种用于制造氮化物功率器件的方法,其特征在于:所述半导体掺杂多层结构的制备方法为外延生长或离子注入。
CN201310049854.4A 2013-02-07 2013-02-07 一种氮化物功率器件及其制造方法 Active CN103117303B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201310049854.4A CN103117303B (zh) 2013-02-07 2013-02-07 一种氮化物功率器件及其制造方法
JP2015556386A JP6588340B2 (ja) 2013-02-07 2014-01-27 窒化物パワーデバイスおよびその製造方法
PCT/CN2014/071559 WO2014121710A1 (zh) 2013-02-07 2014-01-27 一种氮化物功率器件及其制造方法
EP14748959.5A EP2955757B1 (en) 2013-02-07 2014-01-27 Nitride power component and manufacturing method therefor
DK14748959T DK2955757T3 (da) 2013-02-07 2014-01-27 Nitrid-effektkomponent og fremgangsmåde til fremstilling deraf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310049854.4A CN103117303B (zh) 2013-02-07 2013-02-07 一种氮化物功率器件及其制造方法

Publications (2)

Publication Number Publication Date
CN103117303A CN103117303A (zh) 2013-05-22
CN103117303B true CN103117303B (zh) 2016-08-17

Family

ID=48415625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310049854.4A Active CN103117303B (zh) 2013-02-07 2013-02-07 一种氮化物功率器件及其制造方法

Country Status (5)

Country Link
EP (1) EP2955757B1 (zh)
JP (1) JP6588340B2 (zh)
CN (1) CN103117303B (zh)
DK (1) DK2955757T3 (zh)
WO (1) WO2014121710A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117303B (zh) * 2013-02-07 2016-08-17 苏州晶湛半导体有限公司 一种氮化物功率器件及其制造方法
CN104347695A (zh) * 2013-07-31 2015-02-11 浙江大学苏州工业技术研究院 一种提高器件纵向耐压能力的半导体装置
CN103500763B (zh) * 2013-10-15 2017-03-15 苏州晶湛半导体有限公司 Ⅲ族氮化物半导体器件及其制造方法
CN103531615A (zh) * 2013-10-15 2014-01-22 苏州晶湛半导体有限公司 氮化物功率晶体管及其制造方法
CN103887325A (zh) * 2013-12-18 2014-06-25 杭州恩能科技有限公司 一种提高器件耐压能力的半导体装置及其制备方法
CN103779208B (zh) * 2014-01-02 2016-04-06 中国电子科技集团公司第五十五研究所 一种低噪声GaN HEMT器件的制备方法
CN103745991B (zh) * 2014-01-22 2016-05-04 西安电子科技大学 基于超结的AlGaN/GaN高压器件及其制作方法
CN104241400B (zh) * 2014-09-05 2017-03-08 苏州捷芯威半导体有限公司 场效应二极管及其制备方法
CN105280725B (zh) * 2015-04-17 2019-03-12 苏州捷芯威半导体有限公司 一种氮化镓二极管及其制作方法
CN112201693A (zh) * 2020-09-30 2021-01-08 锐石创芯(深圳)科技有限公司 一种氮化镓半导体器件和制造方法
CN113380877A (zh) * 2021-06-10 2021-09-10 四川美阔电子科技有限公司 一种双结型场板的功率器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060030A (en) * 1990-07-18 1991-10-22 Raytheon Company Pseudomorphic HEMT having strained compensation layer
CN102306659A (zh) * 2011-09-08 2012-01-04 浙江大学 一种基于体电场调制的ldmos器件
CN102903738A (zh) * 2012-09-06 2013-01-30 程凯 Ⅲ族氮化物半导体器件及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449467B2 (ja) * 2004-01-28 2010-04-14 サンケン電気株式会社 半導体装置
JP5041701B2 (ja) * 2005-12-07 2012-10-03 日本電信電話株式会社 ヘテロ接合型電界効果トランジスタ
JP2007250721A (ja) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd 窒化物半導体電界効果トランジスタ構造
JP2007294769A (ja) * 2006-04-26 2007-11-08 Toshiba Corp 窒化物半導体素子
JP2009164158A (ja) * 2007-12-28 2009-07-23 Panasonic Corp 半導体装置及びその製造方法
JPWO2010001607A1 (ja) * 2008-07-03 2011-12-15 パナソニック株式会社 窒化物半導体装置
JP5524462B2 (ja) * 2008-08-06 2014-06-18 シャープ株式会社 半導体装置
WO2011024367A1 (ja) * 2009-08-27 2011-03-03 パナソニック株式会社 窒化物半導体装置
CN102299071A (zh) * 2010-06-23 2011-12-28 中国科学院微电子研究所 一种提高AlGaN/GaN HEMT频率特性的方法
US8513703B2 (en) * 2010-10-20 2013-08-20 National Semiconductor Corporation Group III-nitride HEMT with multi-layered substrate having a second layer of one conductivity type touching a top surface of a first layers of different conductivity type and a method for forming the same
US8502273B2 (en) * 2010-10-20 2013-08-06 National Semiconductor Corporation Group III-nitride HEMT having a well region formed on the surface of substrate and contacted the buffer layer to increase breakdown voltage and the method for forming the same
JP5758132B2 (ja) * 2011-01-26 2015-08-05 株式会社東芝 半導体素子
JP2012231003A (ja) * 2011-04-26 2012-11-22 Advanced Power Device Research Association 半導体装置
CN103117303B (zh) * 2013-02-07 2016-08-17 苏州晶湛半导体有限公司 一种氮化物功率器件及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060030A (en) * 1990-07-18 1991-10-22 Raytheon Company Pseudomorphic HEMT having strained compensation layer
CN102306659A (zh) * 2011-09-08 2012-01-04 浙江大学 一种基于体电场调制的ldmos器件
CN102903738A (zh) * 2012-09-06 2013-01-30 程凯 Ⅲ族氮化物半导体器件及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
具有n+浮空层的体电场降低LDMOS结构耐压分析;张波等;《半导体学报》;20060430;第27卷(第4期);第730页左栏倒数第7行至第733页右栏第13行,图1 *

Also Published As

Publication number Publication date
CN103117303A (zh) 2013-05-22
JP2016510514A (ja) 2016-04-07
EP2955757A4 (en) 2017-01-11
WO2014121710A1 (zh) 2014-08-14
DK2955757T3 (da) 2019-12-02
EP2955757A1 (en) 2015-12-16
JP6588340B2 (ja) 2019-10-09
EP2955757B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
CN103117303B (zh) 一种氮化物功率器件及其制造方法
US10985270B2 (en) Nitride power transistor and manufacturing method thereof
CN102184956B (zh) 纵向导通的GaN增强型MISFET器件及其制作方法
CN102916046B (zh) 硅衬底上氮化物高压器件及其制造方法
KR101167530B1 (ko) 수퍼 헤테로 접합 반도체소자 및 그 제작방법
JP2006024770A (ja) 半導体装置
JP2008258443A (ja) 電力用半導体素子及びその製造方法
US11888022B2 (en) SOI lateral homogenization field high voltage power semiconductor device, manufacturing method and application thereof
CN102420251A (zh) 一种具有非均匀浮岛结构的vdmos器件
CN105428412A (zh) AlGaN/GaN异质结场效应晶体管及其制备方法
CN107256864A (zh) 一种碳化硅TrenchMOS器件及其制作方法
CN104218087A (zh) 半导体器件及其制造方法
CN110504310A (zh) 一种具有自偏置pmos的ret igbt及其制作方法
US9263560B2 (en) Power semiconductor device having reduced gate-collector capacitance
CN107221561A (zh) 一种叠层电场调制高压mosfet结构及其制作方法
CN104851915A (zh) 槽栅型化合物半导体功率vdmos器件及提高其击穿电压的方法
WO2019114201A1 (zh) 一种低导通电阻的碳化硅功率半导体器件
CN110504313B (zh) 一种横向沟槽型绝缘栅双极晶体管及其制备方法
CN106298943A (zh) 一种具有体电场调制的横向双扩散金属氧化物半导体场效应管
US20220246744A1 (en) Transistor device and method of manufacturing
CN106601792A (zh) 一种氮化镓高电子迁移率晶体管及其制备方法
CN104347403A (zh) 一种绝缘栅双极性晶体管的制造方法
CN110473905B (zh) 一种具有自偏置pmos的分离栅tigbt及其制作方法
CN113594243A (zh) 一种渐变极化掺杂的增强型GaN纵向场效应晶体管
JP6930113B2 (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant