CN103094106B - 交替排列的p型和n型半导体薄层的制备方法 - Google Patents

交替排列的p型和n型半导体薄层的制备方法 Download PDF

Info

Publication number
CN103094106B
CN103094106B CN201110332535.5A CN201110332535A CN103094106B CN 103094106 B CN103094106 B CN 103094106B CN 201110332535 A CN201110332535 A CN 201110332535A CN 103094106 B CN103094106 B CN 103094106B
Authority
CN
China
Prior art keywords
type
doped dielectric
semiconductor layer
alternately arranged
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110332535.5A
Other languages
English (en)
Other versions
CN103094106A (zh
Inventor
刘继全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201110332535.5A priority Critical patent/CN103094106B/zh
Publication of CN103094106A publication Critical patent/CN103094106A/zh
Application granted granted Critical
Publication of CN103094106B publication Critical patent/CN103094106B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures

Abstract

本发明公开了一种交替排列的P型和N型半导体薄层的制备方法,包括步骤:1)在硅衬底上形成半导体层;2)打开预定窗口,并在同一窗口上对所述半导体层进行P型和N型掺杂介质注入;3)重复步骤1)和2),直至半导体层的总厚度达到预定厚度;4)对所述P型和N型掺杂介质进行扩散。本发明通过在同一位置进行P型和N型掺杂介质的注入,提高了超级结耗尽区结构制备工艺的稳定性,并同时降低了制造成本。

Description

交替排列的P型和N型半导体薄层的制备方法
技术领域
本发明涉及半导体制造工艺,特别是涉及超级结MOSFEFT耗尽区的交替排列的P型和N型半导体薄层的制备方法。
背景技术
超级结MOSFET的耗尽区为交替排列的P型和N型半导体层,相对于传统的MOSFET,其击穿电压受外延层掺杂浓度的影响较小,利用P型和N型半导体薄层在截至状态下的相互耗尽,可以获得较高的击穿电压。但交替排列的P型和N型半导体薄层的制造比较困难,目前基本上分为两大类:一是多层外延加注入扩散;二是厚外延生长加深沟槽刻蚀与填充。第二类制造工艺比第一类更困难,但成本比第一类工艺低。
对于第一类制造工艺,又可以细分为两种:
第一种如图1所示,其第一半导体层2的掺杂介质由硅外延原位掺杂形成,第二掺杂介质3则通过注入和扩散形成。具体工艺步骤包括:步骤1,在半导体衬底1上生长第一半导体层2,图1(1);步骤2,在预定窗口上进行第二掺杂介质3注入,图1(2);步骤3,重复步骤1和步骤2,直至半导体层的总厚度达到预定厚度,图1(3)~(n-1);步骤4,最后进行第二掺杂介质3扩散,图1(n)。
第二种如图2所示,其P型和N型柱层都由掺杂介质注入和扩散来形成。具体工艺步骤包括:步骤1,第三半导体层6生长,图2(1),但此第三半导体层6非掺杂或具有较低的掺杂浓度;步骤2,在第一预定窗口上进行第一掺杂介质7注入,在第二预定窗口上进行第二掺杂介质8注入,图2(2);步骤3,重复步骤1和2,直至半导体层的总厚度达到预定厚度,图2(n-1);步骤4,最后进行掺杂介质扩散,图2(n)。
对比这两种制造工艺,第一种成本较第二种低,但工艺控制比较难,因为硅外延原位掺杂而形成的杂质浓度的精度很难满足工艺的需求,从而导致生长的不稳定性;而第二种掺杂介质浓度都是由注入来完成,故精度比较高,但成本也高,所以寻找工艺稳定性好且成本不高的工艺仍有意义。
发明内容
本发明要解决的技术问题是提供一种交替排列的P型和N型半导体薄层的制备方法,它工艺稳定性好,且制造成本低。
为解决上述技术问题,本发明的交替排列的P型和N型半导体薄层的制备方法,包括以下步骤:
1)在硅衬底上形成半导体层;
2)打开预定窗口,并在同一窗口上对所述半导体层进行P型和N型掺杂介质注入;
3)重复步骤1)和2),直至半导体层的总厚度达到预定厚度;
4)对P型和N型掺杂介质进行扩散。
步骤1)中,所述半导体层非掺杂或具有较低的掺杂浓度(即该半导体层中的P型或N型杂质的浓度与后续注入并扩散的P型或N型掺杂介质的浓度相比很低,因此可以忽略)。
所述P型掺杂介质为硼;所述N型掺杂介质为磷、砷、锑中的至少一种。
本发明通过在同一位置进行P型和N型掺杂介质的注入,提高了超级结耗尽区结构的工艺稳定性,解决了外延工艺填充深沟槽后所产生的空洞缺陷问题;同时还降低了制造成本。
附图说明
图1是现有的交替排列的P型和N型半导体薄层的一种制造方法示意图;
图2是现有的交替排列的P型和N型半导体薄层的另一种制造方法示意图;
图3是本发明的交替排列的P型和N型半导体薄层的制造方法示意图。
图中附图标记说明如下:
1:衬底
2:第一半导体层
3:第二掺杂介质
4:第一半导体柱层
5:第二半导体柱层
6:第三半导体层
7:第一掺杂介质
8:第二掺杂介质
9:外延层
10:N型掺杂介质
11:P型掺杂介质
12:N型半导体柱层
13:P型半导体柱层
具体实施方式
为对本发明的技术内容、特点与功效有更具体的了解,现结合图示的实施方式,详述如下:
1)在高掺杂的N型(本实施例掺杂As)硅衬底1上生长本征硅外延层9,如图3(1)所示。该硅外延层9的电阻率在30欧姆·厘米以上,厚度为2~15微米(本实施例中,厚度在7微米左右)。
2)以光刻胶为掩模,打开预定窗口,窗口大小为0.5微米;然后,在同一预定窗口上同时进行N型和P型掺杂介质注入(即P型和N型杂质的注入位置相同),如图3(2)所示。其中,P型掺杂介质11为B(硼);N型掺杂介质10为P(磷)、As(砷)、Sb(锑)中的至少一种,本实施例中,N型掺杂介质10为As。
3)重复步骤1)和2),直至外延层9的总厚度达到预定厚度,如图3(3)~(n-1)所示。本实施例中,外延层9的总厚度在1~100微米之间,优选50微米。
4)在800~1200℃、0.1托~1个大气压条件下,对P型和N型掺杂介质进行扩散。由于在一定的温度和压力等条件下,P型和N型掺杂杂质在半导体层中的扩散系数不同(As扩散速度快,B扩散速度慢),因此,在相同的注入位置扩散后,得到的两个半导体柱层的宽度不相等,从而形成交替排列的P型和N型半导体薄层,见图3(n)所示。例如,As横向扩散后的总宽度为5微米,B横向扩散后的总宽度为3微米,则可以形成P柱宽3微米、N柱宽4微米的交替排列的超级结的耗尽区。

Claims (7)

1.交替排列的P型和N型半导体薄层的制备方法,其特征在于,包括以下步骤:
1)在硅衬底上形成半导体层;
2)打开预定窗口,并在同一窗口上对所述半导体层进行P型和N型掺杂介质的垂直注入;
3)重复步骤1)和2),直至半导体层的总厚度达到预定厚度;
4)对P型和N型掺杂介质进行扩散。
2.根据权利要求1所述的方法,其特征在于,步骤1)中,所述硅衬底为高掺杂的N型硅衬底。
3.根据权利要求2所述的方法,其特征在于,步骤1)中,所述半导体层为硅外延层。
4.根据权利要求3所述的方法,其特征在于,所述硅外延层的电阻率为30欧姆·厘米以上,厚度为2~15微米。
5.根据权利要求1所述的方法,其特征在于,步骤2)中,所述窗口大小为0.5微米。
6.根据权利要求1所述的方法,其特征在于,步骤2)中,所述P型掺杂介质为硼;所述N型掺杂介质为磷、砷、锑中的至少一种。
7.根据权利要求1所述的方法,其特征在于,步骤3)中,所述半导体层的总厚度为1~100微米。
CN201110332535.5A 2011-10-28 2011-10-28 交替排列的p型和n型半导体薄层的制备方法 Active CN103094106B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110332535.5A CN103094106B (zh) 2011-10-28 2011-10-28 交替排列的p型和n型半导体薄层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110332535.5A CN103094106B (zh) 2011-10-28 2011-10-28 交替排列的p型和n型半导体薄层的制备方法

Publications (2)

Publication Number Publication Date
CN103094106A CN103094106A (zh) 2013-05-08
CN103094106B true CN103094106B (zh) 2015-12-02

Family

ID=48206534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110332535.5A Active CN103094106B (zh) 2011-10-28 2011-10-28 交替排列的p型和n型半导体薄层的制备方法

Country Status (1)

Country Link
CN (1) CN103094106B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1557022A (zh) * 2001-09-19 2004-12-22 株式会社东芝 半导体装置及其制造方法
CN101996868A (zh) * 2009-08-27 2011-03-30 上海华虹Nec电子有限公司 交替排列的p型和n型半导体薄层的形成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476689B2 (ja) * 2008-08-01 2014-04-23 富士電機株式会社 半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1557022A (zh) * 2001-09-19 2004-12-22 株式会社东芝 半导体装置及其制造方法
CN101996868A (zh) * 2009-08-27 2011-03-30 上海华虹Nec电子有限公司 交替排列的p型和n型半导体薄层的形成方法

Also Published As

Publication number Publication date
CN103094106A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
CN102856208B (zh) 具有电压补偿结构的半导体器件
CN206758440U (zh) Pnp型双极晶体管
CN103531615A (zh) 氮化物功率晶体管及其制造方法
CN103022006B (zh) 一种基于外延技术的三维集成功率半导体及其制作方法
CN103730372A (zh) 一种可提高器件耐压的超结制造方法
CN101958283A (zh) 获得交替排列的p型和n型半导体薄层结构的方法及结构
KR101049797B1 (ko) 고성능 과도전압 방호소자 및 그 제조방법
CN103094106B (zh) 交替排列的p型和n型半导体薄层的制备方法
CN102347329A (zh) 半导体元件及其制法
CN102456715B (zh) 一种半导体器件结构及其制作方法
CN105206516A (zh) 一种在半导体器件中形成场截止层的方法
CN105655385A (zh) 沟槽型超级结器件的制造方法
CN103579296B (zh) 半导体装置及其制造方法
CN110212015A (zh) 超结器件结构及其制备方法
CN104979214B (zh) 一种超结结构的制备方法
CN103187272B (zh) 一种鳍型pin二极管的制造方法
CN102214561A (zh) 超级结半导体器件及其制造方法
CN105529355B (zh) 沟槽型超级结外延填充方法
CN103943471B (zh) 外延层形成方法及半导体结构
CN107507857A (zh) 自对准超结结构及其制备方法
CN105529272A (zh) 一种半导体器件制造方法及由该方法制得的半导体器件
CN106158924A (zh) 一种稳压二极管及其制作方法
CN102610657B (zh) 钳位二极管结构及其制备方法
CN103022087A (zh) 一种半导体晶片及其制造方法
CN104576498A (zh) 一种掩埋层的制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING

Free format text: FORMER OWNER: HUAHONG NEC ELECTRONICS CO LTD, SHANGHAI

Effective date: 20140107

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 201206 PUDONG NEW AREA, SHANGHAI TO: 201203 PUDONG NEW AREA, SHANGHAI

TA01 Transfer of patent application right

Effective date of registration: 20140107

Address after: 201203 Shanghai city Zuchongzhi road Pudong New Area Zhangjiang hi tech Park No. 1399

Applicant after: Shanghai Huahong Grace Semiconductor Manufacturing Corporation

Address before: 201206, Shanghai, Pudong New Area, Sichuan Road, No. 1188 Bridge

Applicant before: Shanghai Huahong NEC Electronics Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant