CN103084573B - 通过SLM生产由γ'沉淀强化镍基超合金制成的物品的过程 - Google Patents

通过SLM生产由γ'沉淀强化镍基超合金制成的物品的过程 Download PDF

Info

Publication number
CN103084573B
CN103084573B CN201210435168.6A CN201210435168A CN103084573B CN 103084573 B CN103084573 B CN 103084573B CN 201210435168 A CN201210435168 A CN 201210435168A CN 103084573 B CN103084573 B CN 103084573B
Authority
CN
China
Prior art keywords
slm
powder bed
article
powder
underboarding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210435168.6A
Other languages
English (en)
Other versions
CN103084573A (zh
Inventor
L.E.里肯巴歇尔
A.B.施皮林格斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47071192&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN103084573(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of CN103084573A publication Critical patent/CN103084573A/zh
Application granted granted Critical
Publication of CN103084573B publication Critical patent/CN103084573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本公开涉及通过SLM生产由γ'沉淀强化镍基超合金制成的物品的过程。该过程包括:a)提供具有SLM控制单元的SLM设备;b)提供具有计算的横截面的物品的三维切片模型,其被传到且存储在SLM控制单元中;c)准备γ'沉淀强化镍基合金材料的粉末;d)在SLM设备的衬底板上或在之前处理的粉末层上准备具有规则且均匀厚度的粉末层;e)根据三维切片模型,通过用聚焦激光束扫描对应于物品的横截面的区域而熔融准备的粉末层;f)将衬底板下降一个层厚度;g)重复步骤d)至f)直到达到最后的横截面;其中对于熔融步骤e),调整聚焦激光束的扫描速度、激光功率以及焦斑的聚焦直径来获得热耗散焊接。

Description

通过SLM生产由γ'沉淀强化镍基超合金制成的物品的过程
技术领域
本发明涉及借助选择性激光熔融(SLM)生产三维物品的技术。它指通过选择性激光熔融(SLM)生产由γ'沉淀强化镍基超合金制成的无裂纹且致密的三维物品的过程。
背景技术
具有超过约5wt.-%组合分数的Al和Ti的Gamma-prime(γ')沉淀强化镍基超合金因为它们的微裂纹敏感性而已知为非常难以焊接。
在下列文件中:B. Geddes, H. Leon, X. Huang:Superalloys, Alloying and performance,ASM International 2010,71-72页,作者将超合金的可焊性线近似描述为[两倍的Al浓度(wt.-%)+Ti浓度(wt.%)]<6.0 ,这意味着具有超过6wt.-% 的[2Al(wt.-%)+Ti(wt.-%)]的Ni基超合金限定为难以焊接材料。凝固和晶界液化开裂在焊接过程期间发生,而焊后热处理通常在γ'Ni3(Al,Ti)沉淀强化合金中导致应变时效裂纹。因此,至今,主要是固溶强化(例如IN625)或具有低量的Al和Ti(例如ln718)的γ'强化的镍基超合金可以由SLM处理。
在难以焊接γ'沉淀强化镍基超合金的常见过程方法中,粉末床被加热到升高温度来降低由焊接过程产生的残余应力。但是,在可以从粉末床中移走成品零件之前,它必须冷却到环境温度。由于粉末床的低导热性,粉末床的加热和冷却需要许多时间,这导致SLM过程的生产率明显降低。此外,需要昂贵的加热设备和隔离以及过程室的改造。
下列文献涉及这些技术和问题:
此外,文件US 6,215,093 B1公开了用于根据模塑体的模型的三维CAD数据通过沉积采用粉末形式的金属材料层而制造模塑体的方法。若干粉末层相继沉积在彼此的顶部上,由此每个粉末层在下一层沉积之前借助施加于给定区域(其对应于模塑体的模型的选择的横截面区域)的聚焦激光束而加热到特定温度。根据模型的选择的横截面区域的CAD横截面数据,采用每个粉末层固定到其下面的层这样的方式在每个粉末层上引导激光束。特别地,采用粉末形式的金属材料以没有粘合剂和助熔剂的金属粉末的形式施加,其中它由激光束加热到熔融温度,其中采用金属粉末层始终在所述激光束的冲击点处被完全熔融这样的方式选择激光束的能量,其中采用激光束的每个行程与之前的行程部分重叠这样的方式在若干行程中跨规定的粉末区域引导激光束,并且其中保护气体气氛维持在激光束和金属粉末的交互带上方。
文件DE 10 10 4732 C1讲授了用于金属材料的选择性激光熔融的装置(其包括设置在平台上的具有侧壁的加热板)。该加热板被构造使得绝缘层与平台热绝缘使得可以在操作期间实现500摄氏度的温度。优选地,该加热板形成为衬底板并且具有集成的加热丝。提供感应单元,用于感应地加热该加热板。
文件US 6,621,039 B2公开了计算机控制的设备和用于通过激光熔融目标区域处选择的金属粉末层区域而生产金属零件的方法。该系统包括用于预热金属粉末并且维持其相对高的温度(例如400℃)以便以相对低的激光功率(例如200W CO2激光器)使金属粉末结合在一起的装置。在调配缸或目标区域处通过热传导预热金属粉末和/或还由安置在平台上方的加热板通过辐射加热金属粉末。
发明内容
本发明的目的是提供用于通过选择性激光熔融(SLM)生产由γ'沉淀强化镍基超合金制成的无裂纹且致密的三维物品的过程。
该目的通过根据权利要求1的过程获得:
根据本发明,用于通过选择性激光熔融(SLM)生产由γ'沉淀强化镍基超合金(其包括超过6wt.-%的 [2Al(wt.-%)+Ti(wt.-%)])制成的无裂纹且致密的三维物品的过程包括以下步骤:
a)提供具有SLM控制单元的SLM设备;
b)提供具有计算的横截面的所述物品的三维切片模型,其被传到并且存储在所述SLM控制单元中;
c)准备对于所述SLM过程所需要的所述γ'沉淀强化镍基合金材料的粉末;
d)在所述SLM设备的衬底板上或在之前处理的粉末层上准备具有规则且均匀厚度的粉末层;
e)根据存储在所述控制单元中的三维切片模型,通过用聚焦激光束扫描对应于所述物品的横截面的区域而熔融所述准备的粉末层;
f)将衬底板下降一个层厚度;
g)重复步骤d)至f)直到根据三维切片模型达到最后的横截面;
其中对于所述熔融步骤e),调整所述聚焦激光束的扫描速度、激光功率以及焦斑的聚焦直径来获得热耗散焊接。
根据本发明的实施例,对于所述熔融步骤e),使用采用脉冲模式的激光源并且调整脉冲频率来获得热耗散焊接。
根据本发明的另一个实施例,调整所述聚焦激光束的脉冲频率(如适用的话)、激光功率、焦斑的聚焦直径以及扫描速度使得所述热耗散焊接导致小于0.5(优选地在0.3和0.1之间)的深度对宽度的焊缝纵横比。
根据本发明的另外的实施例,所述聚焦直径的所述调整通过使用特定聚焦设备而进行。
根据本发明的另一个实施例,所述聚焦直径的所述调整通过使所述衬底板移位而进行。
另一个实施例的特征在于,关于粉末层的厚度调整粉末的颗粒大小分布,使得它导致用于准备具有规则且均匀厚度的粉末层所必需的良好的流动性和>60%的堆密度并且减少收缩效应。
特别地,精确的颗粒大小分布通过筛选和/或风选(空气分离)而获得。
根据本发明的另一个实施例,通过气体雾化或等离子体旋转电极过程获得粉末。
本发明的另外的实施例的特征在于,所述γ'沉淀强化镍基超合金由以下组成:
余下Ni和无法避免的杂质。
根据本发明的再另一个实施例,所述步骤d)至g)在保护气体气氛中进行。
优选地,所述保护气体气氛包括氮气或氩气,或用于建立还原气氛的另一个适合的气体。
根据本发明的另一个实施例,冷却所述衬底板来将过程热传导走并且由此减少了焊缝凝固所需要的时间。
根据本发明的另一个实施例,在所述熔融步骤e)之前,进行预熔融步骤来使所述粉末层的粉末松散地熔融或预烧结在一起并且所述熔融步骤e)随后将使粉末层致密来获得致密的三维物品。
本发明的另一个实施例的特征在于,后热处理应用于所述物品以在三维物品建立之后进一步优化微观结构。
特别地,所述热处理是热等静压(HIP)。
附图说明
现在将借助不同的实施例并且参考附图更仔细地解释本发明。
图1示出用于实施本发明的过程的SLM设备的示意图;
图2采用详细的视图示出在根据本发明的过程中使用的激光束的参数;
图3相应地示出由根据本发明的过程引起的无裂纹的、具有适合的横截面或深宽比的清晰可见的焊缝的微观结构的示例;
图4、5示出与图3相比具有不利的横截面比的焊缝,其导致具有凝固裂纹的微观结构;以及
图6示出具有良好的流动性和堆密度的粉末的可能的颗粒大小分布。
具体实施方式
为了克服上文描述的限制,关于γ'沉淀强化超合金的独特材料行为调整SLM过程参数,从而允许通过选择性激光熔融而不加热粉末床或要建立的零件来制造无裂纹且致密的三维物品。此外,发现使用特定过程设备进一步提高了这些材料的可加工性。
本发明公开涉及用于使用选择性激光熔融技术(SLM)生产由γ'沉淀强化镍基超合金(其具有超过6wt.-% 的[2Al+Ti]的组合分数)制成的三维物品的过程设备和特别调整的过程参数。这些超合金通过产生Ni3(Al,Ti)沉淀物(已知为gamma-prime(γ'))或Ni3Nb(已知为gamma-double-prime(γ''))的受控的热处理而强化。与先前生成的镍基合金相比,这些沉淀导致较好的蠕变、应力断裂和抗拉强度。
本发明提供过程参数并且描述用于选择性激光熔融γ'沉淀强化超合金的适合的过程设备,该超合金包含至少约5wt.-%(优选地,6-12 wt.-%)的组合量的钛和铝,并且包含高达约20 wt.-%(优选地,7-17 wt.-%)的量的铬,从而导致至少约25%的γ'含量。
这些超合金还可包含例如钨、钼、钴和钽等金属并且可包含例如碳、硼、锆和铪等其他元素。这些γ'沉淀强化镍基超合金的典型的示例是:Mar-M247、IN100、IN738、IN792、Mar-M200、B1900、RENE 80、合金713和其他衍生物。
沉淀硬化现象和关联的体积变化促进开裂并且使这些超合金的焊接非常困难。特别在焊接时,先前处理的层(热影响带HAZ)的一部分被加热到沉淀硬化温度范围内并且经历体积收缩,这导致凝固时焊件中的残余应力,伴随着延展性丧失。自焊接温度的快速加热和冷却(其是SLM过程的特性)产生复杂的热膨胀和收缩,从而导致额外的残余应力。这些热应力,当与先前由沉淀引起的应力结合时,可以在焊接过程期间导致开裂。
由于在晶界处的局部熔融而在HAZ内发生开裂(晶界液化开裂)或在焊缝自身中发生开裂(凝固开裂)。引起体积收缩的焊后固溶退火和/或时效热处理可以进一步提高开裂(应变时效开裂)易感性。焊接的难度大体上随着铝和钛含量增加而增加。
已经发现,SLM过程导致具有很少的偏析物和小的晶粒的非常均匀的微观结构。这就晶界液化开裂而言是有益的,因为开裂敏感性随着晶粒大小的增加以及偏析物含量的增加而增加。此外已经发现,由于在激光材料交互处出现的特有的高的热梯度,在SLM过程后仅非常小的γ'含量存在,从而防止金属间相的扩散控制沉淀。因此,在由SLM建立期间的应变时效开裂可以被忽略并且因而对于SLM过程关注的是主要是凝固开裂。
合金的广泛的凝固范围、在焊缝中心线处的低熔融杂质的分凝以及残余应力是凝固开裂的主要原因。为了最小化分凝的影响,高凝固率以及因此高的温度梯度是有益的。这可以通过调整SLM参数而最佳地实现,从而导致具有低的深宽比的焊缝。但高的温度梯度导致高的残余应力并且因此必须找到最佳焊缝几何形状,而深宽比应该尽可能地低,从而允许通过SLM制造无裂纹且致密的物品。
根据本发明,过程包括以下步骤:
a)提供具有SLM控制单元(19)的SLM设备(10);
b)提供具有计算的横截面的所述物品的三维切片模型(SM),其被传到并且存储在所述SLM控制单元(19)中;
c)准备对于所述SLM过程所需要的所述γ'沉淀强化镍基合金材料的粉末;
d)在所述SLM设备(10)的衬底板(13)上或在之前处理的粉末层(14)上准备具有规则且均匀厚度的粉末层(18);
e)根据存储在所述控制单元(19)中的三维切片模型(SM),通过用聚焦激光束(17)扫描对应于所述物品的横截面的区域而熔融所述准备的粉末层(18);
f)将衬底板(13)下降一个层厚度;
g)重复步骤d)至f)直到根据三维切片模型(SM)达到最后的横截面;
其中对于所述熔融步骤e),调整所述聚焦激光束(17)的扫描速度、激光功率以及焦斑(20)的聚焦直径(d)来获得热耗散焊接。
图1示出用于实施本发明的过程的SLM设备的示意图。图1的SLM设备10包括封闭隔间11,其可以用保护气体气氛填充,例如氮气或氩气。在隔间11内设置衬底板移位单元12,其使水平衬底板13能够在垂直方向移位。该衬底板移位单元12由中央控制单元19控制。
衬底板13用于根据切片模型SM借助在预定区域上的各种粉末层14、18的连续熔融而建立三维物品,该切片模型SM从要产生的该物品生成并且存储在控制单元19中。衬底板13可以由冷却介质冷却,该冷却介质通过冷却介质入口22引入并且通过冷却介质出口23离开衬底板13。
最上面的粉末层18借助聚焦的激光束17而熔融,该聚焦激光束17从激光源15发射并且借助激光束聚焦和移位单元16而聚焦和移位。该激光源15以及激光束聚焦和移位单元16由中央控制单元19控制。
首先,要使用的粉末的颗粒大小分布被调整到粉末层14、18的层厚度,使得它导致良好的流动性和高的堆密度(优选地>60%)(这对于准备具有规则且均匀厚度的粉末层是需要的)并且减少收缩效应。优选地,粉末颗粒巧妙地具有球形形状。精确的颗粒大小分布通过筛选和/或风选(即空气分离)而获得。通过气体雾化或等离子体旋转电极过程获得粉末,这是有利的。图6示出对于本申请的过程的具有良好的流动性和堆密度的粉末的可能和示范性颗粒大小分布。
采用连续波或脉冲模式的激光器用作熔融步骤的激光源15。对于所述熔融步骤,关于特定γ'沉淀强化材料调整激光功率、脉冲频率、聚焦直径、扫描速度、扫描向量长度、开口距离和扫描岛重叠来允许制造无裂纹且致密的三维物品。优选地,所述激光源具有低强度或低的光束参数积(BPP)。
特别地,调整激光功率、脉冲频率、聚焦直径(图2中的d)和扫描速度来获得热耗散焊接。所述热耗散焊接优选地导致小于0.5、优选地在0.3和0.1之间(参见图2)的焊缝21的纵横比(深度h/宽度w)。焦斑20的所述聚焦直径调整可以通过使用激光聚焦和移位单元16或通过用衬底板移位单元12使粉末层从聚焦平面移位而进行。
有利的焊缝几何形状可以通过使用下列示范性过程参数而实现:
激光功率: 50-150W
激光模式: 连续波(cw)
扫描速度: 80-700mm/s
开口距离: 0.01-0.5mm
聚焦直径: 0.1-0.5mm
图3相应地示出由根据本发明的过程引起的无裂纹、具有适合的横截面或深宽比的清晰可见的焊缝的微观结构的示例,而图4和5示出与图3相比具有不利的横截面比的焊缝,其导致具有凝固裂纹的微观结构。
在所述熔融步骤之前进行预熔融步骤来使粉末层18的粉末松散地熔融或预烧结在一起,这是有利的,并且所述熔融步骤随后将使粉末层致密来获得致密的三维物品。
优选地在隔间11内的保护气体气氛中进行过程步骤d)至g)。所述保护气体气氛的可能示例由氢气或其他适合的气体组成,以由此产生还原气氛。
优选地,冷却所述衬底板13来将过程热传导走并且由此减少了焊缝21凝固所需要的时间。
该过程可以在应用后热处理以在三维物品建立后进一步优化微观结构时改进。特别地,这样的热处理是热等静压(HIP)。因此,对于特定γ'沉淀强化材料,调整热等静压的过程参数,例如温度、压强、保持时间、加热和冷却速率。
作为示例,要处理的γ'沉淀强化镍基超合金由以下组成:
余下Ni和无法避免的杂质。

Claims (16)

1.一种用于通过选择性激光熔融SLM生产由γ'沉淀强化镍基超合金制成的无裂纹且致密的三维物品的过程,所述超合金包括超过6wt.-%的 [2Al(wt.-%)+Ti(wt.-%)],所述过程包括以下步骤:
a)提供具有SLM控制单元(19)的SLM设备(10);
b)提供具有计算的横截面的所述物品的三维切片模型(SM),所述三维切片模型(SM)被传到并且存储在所述SLM控制单元(19)中;
c)准备所述SLM过程所需要的所述γ'沉淀强化镍基合金材料的粉末;
d)在所述SLM设备(10)的衬底板(13)上或在之前处理的粉末层(14)上准备具有规则且均匀厚度的粉末层(18);
e)根据存储在所述控制单元(19)中的所述三维切片模型(SM),通过用聚焦激光束(17)扫描对应于所述物品的横截面的区域而熔融所述准备的粉末层(18);
f)将所述衬底板(13)下降一个层厚度;
g)重复步骤d)至f)直到根据三维切片模型(SM)达到最后的横截面;
其中对于所述步骤e),调整所述聚焦激光束(17)的扫描速度、激光功率以及焦斑(20)的聚焦直径(d)来获得热耗散焊接。
2.如权利要求1所述的过程,其特征在于,采用脉冲模式的激光源(15)用于所述步骤e)并且调整脉冲频率来获得热耗散焊接。
3.如权利要求1或2所述的过程,其特征在于,调整所述激光功率、所述焦斑(20)的聚焦直径(d)、扫描速度以及所述聚焦激光束(17)的脉冲频率,使得所述热耗散焊接导致小于0.5的深度(h)对宽度(w)的焊缝(21)纵横比。
4.如权利要求1或2所述的过程,其特征在于,调整所述激光功率、所述焦斑(20)的聚焦直径(d)、扫描速度以及所述聚焦激光束(17)的脉冲频率,使得所述热耗散焊接导致在0.3和0.1之间的深度(h)对宽度(w)的焊缝(21)纵横比。
5.如权利要求1或2所述的过程,其特征在于,所述聚焦直径(d)的所述调整通过使用特定聚焦设备(16)而进行。
6.如权利要求1或2所述的过程,其特征在于,所述聚焦直径(d)的所述调整通过使所述衬底板(13)移位而进行。
7.如权利要求1或2所述的过程,其特征在于,关于所述粉末层(18)的厚度调整所述粉末的颗粒大小分布,使得它导致准备具有规则且均匀厚度的粉末层所必需的良好的流动性和>60%的堆密度并且减少收缩效应。
8.如权利要求7所述的过程,其特征在于,精确的颗粒大小分布通过筛选和/或风选(空气分离)而获得。
9.如权利要求1或2所述的过程,其特征在于,所述粉末通过气体雾化或等离子体旋转电极过程而获得。
10.如权利要求1或2所述的过程,其特征在于,所述γ'沉淀强化镍基超合金由以下组成:
余下的Ni和无法避免的杂质。
11.如权利要求1或2所述的过程,其特征在于,在保护气体气氛中进行所述步骤d)至g)。
12.如权利要求11所述的过程,其特征在于,所述保护气体气氛包括氮气或氩气,或用于建立还原气氛的另一个适合的气体。
13.如权利要求1或2所述的过程,其特征在于,冷却所述衬底板(13)来将过程热传导走并且由此减少所述焊缝(21)凝固所需要的时间。
14.如权利要求1或2所述的过程,其特征在于,在所述步骤e)之前,进行预熔融步骤来使所述粉末层(18)的粉末松散地熔融或预烧结在一起并且所述步骤e)随后将使所述粉末层(18)致密来获得致密的三维物品。
15.如权利要求1或2所述的过程,其特征在于,后热处理应用于所述物品以在所述三维物品建立后进一步优化微观结构。
16.如权利要求15所述的过程,其特征在于,所述热处理是热等静压(HIP)。
CN201210435168.6A 2011-11-04 2012-11-05 通过SLM生产由γ'沉淀强化镍基超合金制成的物品的过程 Active CN103084573B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01776/11 2011-11-04
CH01776/11A CH705662A1 (de) 2011-11-04 2011-11-04 Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM).

Publications (2)

Publication Number Publication Date
CN103084573A CN103084573A (zh) 2013-05-08
CN103084573B true CN103084573B (zh) 2015-10-21

Family

ID=47071192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210435168.6A Active CN103084573B (zh) 2011-11-04 2012-11-05 通过SLM生产由γ'沉淀强化镍基超合金制成的物品的过程

Country Status (7)

Country Link
US (1) US9844812B2 (zh)
EP (1) EP2589449B2 (zh)
CN (1) CN103084573B (zh)
CA (1) CA2794015C (zh)
CH (1) CH705662A1 (zh)
ES (1) ES2525453T3 (zh)
MX (1) MX2012012796A (zh)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2700459B1 (en) * 2012-08-21 2019-10-02 Ansaldo Energia IP UK Limited Method for manufacturing a three-dimensional article
JP6200969B2 (ja) * 2013-02-27 2017-09-20 エスエルエム ソルーションズ グループ アーゲー 調整された微細構造を備えるワークピースの製造装置及び製造方法
EP2815841B1 (en) * 2013-06-18 2016-02-10 Alstom Technology Ltd Method for post-weld heat treatment of welded components made of gamma prime strengthened superalloys
EP2815823A1 (en) * 2013-06-18 2014-12-24 Alstom Technology Ltd Method for producing a three-dimensional article and article produced with such a method
US10130993B2 (en) * 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
EP2886225B1 (en) 2013-12-23 2017-06-07 Ansaldo Energia IP UK Limited Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
US10562288B2 (en) * 2014-01-17 2020-02-18 United Technologies Corporation Additive manufacturing system with ultrasonic inspection and method of operation
US9932841B2 (en) 2014-01-17 2018-04-03 United Technologies Corporation Workpiece manufactured from an additive manufacturing system having a particle separator and method of operation
US9555612B2 (en) * 2014-02-19 2017-01-31 General Electric Company Treated component and methods of forming a treated component
JP5931948B2 (ja) * 2014-03-18 2016-06-08 株式会社東芝 ノズル、積層造形装置、および積層造形物の製造方法
GB2526262B (en) * 2014-05-02 2021-04-28 Mbda Uk Ltd Composite reactive material for use in a munition
CN103949637A (zh) * 2014-05-09 2014-07-30 张百成 一种基于选择性激光熔化技术的钛镍记忆合金加工方法
EP2944402B1 (en) * 2014-05-12 2019-04-03 Ansaldo Energia IP UK Limited Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys
EP2949768B1 (en) * 2014-05-28 2019-07-17 Ansaldo Energia IP UK Limited Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
DE102014007867A1 (de) * 2014-06-03 2015-12-03 Airbus Defence and Space GmbH Verfahren zur Wärmebehandlung eines Werkstücks aus einer Nickelbasislegierung
GB2546016B (en) 2014-06-20 2018-11-28 Velo3D Inc Apparatuses, systems and methods for three-dimensional printing
AT14301U1 (de) * 2014-07-09 2015-07-15 Plansee Se Verfahren zur Herstellung eines Bauteils
KR102383340B1 (ko) * 2014-07-21 2022-04-07 누보 피그노네 에스알엘 적층 가공에 의한 기계 구성요소 제조 방법
EP3034203A1 (en) * 2014-12-19 2016-06-22 Alstom Technology Ltd Method for producing a metallic component
US11434766B2 (en) 2015-03-05 2022-09-06 General Electric Company Process for producing a near net shape component with consolidation of a metallic powder
DE102015205787A1 (de) * 2015-03-31 2016-10-06 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Bauteils aus MAX-Phasen
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
CN104841937A (zh) * 2015-05-07 2015-08-19 湖南华曙高科技有限责任公司 用于制造三维物体的激光扫描方法
WO2016209652A1 (en) * 2015-06-15 2016-12-29 Northrop Grumman Systems Corporation Additively manufactured high-strength aluminum via powder bed laser processes
CN104985182B (zh) * 2015-08-05 2017-04-19 黑龙江科技大学 一种gh4169合金激光熔化成形沉淀强化方法
US10449624B2 (en) * 2015-10-02 2019-10-22 Board Of Regents, The University Of Texas System Method of fabrication for the repair and augmentation of part functionality of metallic components
US10843266B2 (en) * 2015-10-30 2020-11-24 Seurat Technologies, Inc. Chamber systems for additive manufacturing
WO2017079091A1 (en) 2015-11-06 2017-05-11 Velo3D, Inc. Adept three-dimensional printing
US10378087B2 (en) 2015-12-09 2019-08-13 General Electric Company Nickel base super alloys and methods of making the same
CN108698126A (zh) 2015-12-10 2018-10-23 维洛3D公司 精湛的三维打印
CN105773072A (zh) * 2015-12-30 2016-07-20 北京航科精机科技有限公司 一种片层叠加增材制造复杂金属零件的方法
CN105562694B (zh) * 2015-12-31 2018-12-21 中国钢研科技集团有限公司 一种适用于增材制造零部件的热等静压三控方法
FR3046559B1 (fr) 2016-01-12 2018-02-16 Inetyx Procede et installation de fabrication d'un objet tridimensionnel
WO2017143077A1 (en) 2016-02-18 2017-08-24 Velo3D, Inc. Accurate three-dimensional printing
CN105624474A (zh) * 2016-04-11 2016-06-01 西安欧中材料科技有限公司 一种超细高等级球形ep741np合金粉末的制备方法
EP3445880A4 (en) * 2016-04-20 2019-09-04 Arconic Inc. FCC MATERIALS OF ALUMINUM, COBALT, CHROME AND NICKEL, AND PRODUCTS MANUFACTURED THEREOF
JP6600278B2 (ja) * 2016-06-07 2019-10-30 三菱重工業株式会社 選択型ビーム積層造形装置及び選択型ビーム積層造形方法
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
EP3492244A1 (en) 2016-06-29 2019-06-05 VELO3D, Inc. Three-dimensional printing system and method for three-dimensional printing
US10184166B2 (en) 2016-06-30 2019-01-22 General Electric Company Methods for preparing superalloy articles and related articles
US10640858B2 (en) 2016-06-30 2020-05-05 General Electric Company Methods for preparing superalloy articles and related articles
CN105945284B (zh) * 2016-07-14 2019-07-23 英诺激光科技股份有限公司 激光3d打印金属工件的方法及装置
DE102016216859A1 (de) 2016-09-06 2018-03-08 Siemens Aktiengesellschaft Verfahren zum Erzeugen eines Bauteils mit einem pulverbettbasierten additiven Fertigungsverfahren und Pulver zur Verwendung in einem solchen Verfahren
EP3305444A1 (en) 2016-10-08 2018-04-11 Ansaldo Energia IP UK Limited Method for manufacturing a mechanical component
KR102016384B1 (ko) * 2016-10-24 2019-08-30 다이도 토쿠슈코 카부시키가이샤 석출 경화형 고 Ni 내열합금
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
EP3323531A1 (en) * 2016-11-18 2018-05-23 Ansaldo Energia IP UK Limited Method for manufacturing a mechanical component
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
CN106584849A (zh) * 2017-01-24 2017-04-26 上海普睿玛智能科技有限公司 一种可自动调焦的3d激光打印加工头
US10369629B2 (en) 2017-03-02 2019-08-06 Veo3D, Inc. Three-dimensional printing of three-dimensional objects
US20180281237A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
CN109079143B (zh) * 2017-06-13 2020-12-29 中国航发商用航空发动机有限责任公司 去除选区激光熔化成形零件内腔表面裂纹的方法
EP3501695A1 (de) * 2017-12-22 2019-06-26 Evonik Degussa GmbH Vorrichtung zur schichtweisen herstellung von dreidimensionalen objekten sowie herstellungsverfahren dazu
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
CN110405204B (zh) * 2018-04-28 2021-09-10 深圳市裕展精密科技有限公司 异质金属件的制备方法
CN109439962B (zh) * 2018-07-27 2020-05-15 中南大学 一种选区激光熔化成形镍基高温合金的方法
EP3604571A1 (en) 2018-08-02 2020-02-05 Siemens Aktiengesellschaft Metal composition
CN109351971B (zh) * 2018-11-23 2021-07-06 湖北三江航天江北机械工程有限公司 高温合金阀体结构件的slm成型方法
US10577679B1 (en) 2018-12-04 2020-03-03 General Electric Company Gamma prime strengthened nickel superalloy for additive manufacturing
CN109371275A (zh) * 2018-12-20 2019-02-22 哈尔滨工业大学 一种柔性颗粒增强金属基复合材料的制备方法
DE102018251722A1 (de) * 2018-12-27 2020-07-02 Siemens Aktiengesellschaft Nickelbasislegierung für additive Fertigung und Verfahren
CN109708783B (zh) * 2019-02-22 2023-09-01 无锡昆仑富士仪表有限公司 一种耐腐蚀金属薄膜片组件的激光焊接方法
JP7141966B2 (ja) * 2019-03-12 2022-09-26 川崎重工業株式会社 造形体製造方法および造形体
CN109865836B (zh) * 2019-04-04 2021-06-04 西安建筑科技大学 一种3D打印增强体/Ti2AlNb基复合材料及其制备方法
CN110116207A (zh) * 2019-05-14 2019-08-13 中国航发北京航空材料研究院 激光选区熔化增材制造构件的强化装置和方法
CN110125405A (zh) * 2019-06-21 2019-08-16 武汉轻工大学 Gh625合金性能强化方法
DE102020116868A1 (de) 2019-07-05 2021-01-07 Vdm Metals International Gmbh Pulver aus einer Nickel-Kobaltlegierung, sowie Verfahren zur Herstellung des Pulvers
DE102019213214A1 (de) * 2019-09-02 2021-03-04 Siemens Aktiengesellschaft Nickelbasissuperlegierung, geeignet auch zur additiven Fertigung, Verfahren und Produkt
CN110438495A (zh) * 2019-09-12 2019-11-12 广东海洋大学 一种用于激光熔覆的铺粉方法及装置
EP3834962A1 (en) * 2019-12-09 2021-06-16 Linde GmbH Method and system for generating a three-dimensional workpiece
CN111207985B (zh) * 2020-04-22 2020-08-07 中国航发上海商用航空发动机制造有限责任公司 裂纹缺陷的无损检测方法、检测标准件及其制造方法
CN115867422A (zh) * 2020-05-07 2023-03-28 朗姆研究公司 硅部件的增材制造
CN113909478B (zh) * 2020-07-08 2023-05-05 辽宁增材制造产业技术研究院有限公司 一种航空发动机中异种高温合金的激光熔化沉积连接方法
CN111957960B (zh) * 2020-08-12 2023-01-03 南方科技大学 一种无热裂纹沉淀强化高温合金的选区激光熔化成形方法
CN112024877B (zh) * 2020-09-08 2022-05-03 常州英诺激光科技有限公司 一种提高3d打印微流道零件表面质量的方法
CN112342477A (zh) * 2020-11-04 2021-02-09 江苏翔能科技发展有限公司 一种表层晶粒度的控制方法
CN112719582A (zh) * 2020-12-04 2021-04-30 上海航天设备制造总厂有限公司 具有预热功能的激光焊接装置及预热焊接方法
CN112828289A (zh) * 2020-12-30 2021-05-25 南方科技大学 一种减少热裂的沉淀强化镍基高温合金激光粉床熔融成形方法
CN112828307A (zh) * 2020-12-30 2021-05-25 南方科技大学 一种粗化沉淀强化镍基高温合金晶粒的激光粉床熔融成形方法
CN112828306A (zh) * 2020-12-30 2021-05-25 南方科技大学 一种减少沉淀强化镍基高温合金热裂的激光粉床熔融成形方法
CN114713841A (zh) * 2021-01-04 2022-07-08 北京星驰恒动科技发展有限公司 一种Ni-Cr-W系高温合金的激光选区熔化成形方法
DE102021201067A1 (de) * 2021-02-05 2022-08-11 Siemens Energy Global GmbH & Co. KG Legierung, insbesondere für additive Fertigung, Pulver, Verfahren und Produkt
CN113182644B (zh) * 2021-03-16 2022-09-23 北京工业大学 一种缓解电弧增材制造构件变形的卡具及工艺方法
CN114012093A (zh) * 2021-08-24 2022-02-08 苏州翰微材料科技有限公司 基于激光选区融化技术制备涡轮导向叶片用导流管的方法
CN114054775B (zh) * 2021-11-22 2022-12-06 北京钢研高纳科技股份有限公司 时效强化型镍基高温合金3d打印工艺及制得的3d打印件
CN114833142B (zh) * 2022-04-21 2023-10-31 惠州锂威新能源科技有限公司 一种极片激光清洗功率调节方法
CN115627390A (zh) * 2022-11-14 2023-01-20 上海大学 一种纳米氧化物弥散强化镍基高温合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135731A (zh) * 1993-10-20 1996-11-13 联合技术公司 多束激光烧结
EP1466718A2 (en) * 2003-04-09 2004-10-13 3D Systems, Inc. Sintering using thermal image feedback
CN2761319Y (zh) * 2004-12-15 2006-03-01 华中科技大学 一种直接制造金属零件的快速成形系统
CN1803348A (zh) * 2006-01-24 2006-07-19 华中科技大学 一种快速制造功能梯度材料的制备方法
CN1861296A (zh) * 2006-06-14 2006-11-15 华中科技大学 一种近净成形零件的方法
EP2246145A1 (en) * 2009-04-28 2010-11-03 BAE Systems PLC Additive layer fabrication method

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212900A (en) * 1978-08-14 1980-07-15 Serlin Richard A Surface alloying method and apparatus using high energy beam
US4336312A (en) * 1980-01-30 1982-06-22 The Garrett Corporation Weldable nickel base cast alloy for high temperature applications and method
US4750947A (en) * 1985-02-01 1988-06-14 Nippon Steel Corporation Method for surface-alloying metal with a high-density energy beam and an alloy metal
US4762553A (en) * 1987-04-24 1988-08-09 The United States Of America As Represented By The Secretary Of The Air Force Method for making rapidly solidified powder
US4851188A (en) * 1987-12-21 1989-07-25 United Technologies Corporation Method for making a turbine blade having a wear resistant layer sintered to the blade tip surface
US5053090A (en) * 1989-09-05 1991-10-01 Board Of Regents, The University Of Texas System Selective laser sintering with assisted powder handling
US5182170A (en) * 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
US5106010A (en) * 1990-09-28 1992-04-21 Chromalloy Gas Turbine Corporation Welding high-strength nickel base superalloys
DE4210395A1 (de) * 1992-03-30 1993-10-07 Krupp Polysius Ag Walzenmühle
US5554837A (en) * 1993-09-03 1996-09-10 Chromalloy Gas Turbine Corporation Interactive laser welding at elevated temperatures of superalloy articles
US5914059A (en) * 1995-05-01 1999-06-22 United Technologies Corporation Method of repairing metallic articles by energy beam deposition with reduced power density
US5961861A (en) * 1996-01-15 1999-10-05 The University Of Tennessee Research Corporation Apparatus for laser alloying induced improvement of surfaces
US5817206A (en) * 1996-02-07 1998-10-06 Dtm Corporation Selective laser sintering of polymer powder of controlled particle size distribution
US6046426A (en) * 1996-07-08 2000-04-04 Sandia Corporation Method and system for producing complex-shape objects
DE19649865C1 (de) 1996-12-02 1998-02-12 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Formkörpers
US5980812A (en) * 1997-04-30 1999-11-09 Lawton; John A. Solid imaging process using component homogenization
WO1999014387A1 (en) * 1997-09-12 1999-03-25 Engelhard-Clal Uk Ltd. Process for manufacturing precious metal artefacts
US6054672A (en) * 1998-09-15 2000-04-25 Chromalloy Gas Turbine Corporation Laser welding superalloy articles
US6269540B1 (en) 1998-10-05 2001-08-07 National Research Council Of Canada Process for manufacturing or repairing turbine engine or compressor components
US6127644A (en) * 1999-04-27 2000-10-03 Stoody Company Electroslag surfacing using wire electrodes
DE19935274C1 (de) * 1999-07-27 2001-01-25 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Herstellung von Bauteilen aus einer Werkstoffkombination
WO2002042023A1 (en) * 2000-11-27 2002-05-30 National University Of Singapore Method and apparatus for creating a three-dimensional metal part using high-temperature direct laser melting
DE10104732C1 (de) 2001-02-02 2002-06-27 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum selektiven Laser-Schmelzen von metallischen Werkstoffen
EP1234625A1 (de) * 2001-02-21 2002-08-28 Trumpf Werkzeugmaschinen GmbH + Co. KG Verfahren und Vorrichtung zur Herstellung eines Formkörpers durch selektives Laserschmelzen
ATE323569T1 (de) * 2001-03-22 2006-05-15 Xsil Technology Ltd Ein laserbearbeitungssystem und -verfahren
US6495793B2 (en) * 2001-04-12 2002-12-17 General Electric Company Laser repair method for nickel base superalloys with high gamma prime content
EP1312437A1 (en) * 2001-11-19 2003-05-21 ALSTOM (Switzerland) Ltd Crack repair method
SE524421C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
SE524439C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
US7009137B2 (en) * 2003-03-27 2006-03-07 Honeywell International, Inc. Laser powder fusion repair of Z-notches with nickel based superalloy powder
DE10342880A1 (de) 2003-09-15 2005-04-14 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Substratplatte
US6872912B1 (en) * 2004-07-12 2005-03-29 Chromalloy Gas Turbine Corporation Welding single crystal articles
DE102005027311B3 (de) * 2005-06-13 2006-11-02 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Herstellung eines dreidimensionalen Formkörpers
US8141769B2 (en) * 2005-07-22 2012-03-27 Siemens Aktiengesellschaft Process for repairing a component comprising a directional microstructure by setting a temperature gradient during the laser heat action, and a component produced by such a process
WO2007032429A1 (ja) * 2005-09-15 2007-03-22 Senju Metal Industry Co., Ltd. フォームはんだとその製造方法
EP1790745A1 (de) * 2005-11-28 2007-05-30 Siemens Aktiengesellschaft Verfahren zum Reparieren von Rissen in Bauteilen und Lotmaterial zum Löten von Bauteilen
EP1835040A1 (de) * 2006-03-17 2007-09-19 Siemens Aktiengesellschaft Schweisszusatzwekstoff, Verwendung des Schweisszusatzwekstoffes, Verfahren zum Schweissen und Bauteil
SE530323C2 (sv) * 2006-09-26 2008-05-06 Foersvarets Materielverk Sätt att framställa föremål av amorf metall
US20080182017A1 (en) * 2007-01-31 2008-07-31 General Electric Company Laser net shape manufacturing and repair using a medial axis toolpath deposition method
US8561298B2 (en) * 2007-03-01 2013-10-22 Siemens Energy, Inc. Superalloy component welding at ambient temperature
GB2449862B (en) * 2007-06-05 2009-09-16 Rolls Royce Plc Method for producing abrasive tips for gas turbine blades
US20090220814A1 (en) * 2007-10-23 2009-09-03 Toshimasa Nishiyama Metal matrix composite material
US20090183850A1 (en) * 2008-01-23 2009-07-23 Siemens Power Generation, Inc. Method of Making a Combustion Turbine Component from Metallic Combustion Turbine Subcomponent Greenbodies
US9347318B2 (en) * 2008-05-29 2016-05-24 Siemens Aktiengesellschaft Method and device for welding workpieces made of high-temperature resistant super alloys
US20120000072A9 (en) * 2008-09-26 2012-01-05 Morrison Jay A Method of Making a Combustion Turbine Component Having a Plurality of Surface Cooling Features and Associated Components
US9278483B2 (en) 2009-04-28 2016-03-08 Bae Systems Plc Additive layer fabrication method
US20110062220A1 (en) * 2009-09-15 2011-03-17 General Electric Company Superalloy composition and method of forming a turbine engine component
DE102009049518A1 (de) * 2009-10-15 2011-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Schweißen von Werkstücken aus hochwarmfesten Superlegierungen
EP2319641B1 (en) * 2009-10-30 2017-07-19 Ansaldo Energia IP UK Limited Method to apply multiple materials with selective laser melting on a 3D article
EP2322313A1 (de) * 2009-11-13 2011-05-18 Siemens Aktiengesellschaft Verfahren zum Schweissen von Werkstücken aus hochwarmfesten Superlegierungen mit besonderer Massenzufuhrrate des Schweisszusatzwerkstoffes
JP5022428B2 (ja) * 2009-11-17 2012-09-12 株式会社神戸製鋼所 硬化肉盛用migアーク溶接ワイヤおよび硬化肉盛用migアーク溶接方法
GB0921078D0 (en) * 2009-12-01 2010-01-13 Saipem Spa Pipeline welding method and apparatus
US8728388B2 (en) 2009-12-04 2014-05-20 Honeywell International Inc. Method of fabricating turbine components for engines
US8974614B2 (en) 2010-01-04 2015-03-10 General Electric Company Powder metallurgical article and process
US8618434B2 (en) * 2010-03-22 2013-12-31 Siemens Energy, Inc. Superalloy repair welding using multiple alloy powders
US8986604B2 (en) * 2010-10-20 2015-03-24 Materials Solutions Heat treatments of ALM formed metal mixes to form super alloys
GB201213940D0 (en) * 2012-08-06 2012-09-19 Materials Solutions Additive manufacturing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135731A (zh) * 1993-10-20 1996-11-13 联合技术公司 多束激光烧结
EP1466718A2 (en) * 2003-04-09 2004-10-13 3D Systems, Inc. Sintering using thermal image feedback
CN2761319Y (zh) * 2004-12-15 2006-03-01 华中科技大学 一种直接制造金属零件的快速成形系统
CN1803348A (zh) * 2006-01-24 2006-07-19 华中科技大学 一种快速制造功能梯度材料的制备方法
CN1861296A (zh) * 2006-06-14 2006-11-15 华中科技大学 一种近净成形零件的方法
EP2246145A1 (en) * 2009-04-28 2010-11-03 BAE Systems PLC Additive layer fabrication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Flexible manufacturing of metallic products by selective laser melting of powder;Kozo Osakada et al;《International Journal of Machine Tools & Manufacture》;20060930;第46卷(第11期);第1188-1193页 *
Manufacturing of fine-structured 3D porous filter elements by selective laser melting;I. Yadroitsev et al;《Applied Surface Science》;20090301;第255卷(第10期);第5523-5527页 *

Also Published As

Publication number Publication date
CA2794015C (en) 2016-10-11
CN103084573A (zh) 2013-05-08
CH705662A1 (de) 2013-05-15
US9844812B2 (en) 2017-12-19
ES2525453T3 (es) 2014-12-23
EP2589449B1 (en) 2014-10-01
EP2589449B2 (en) 2020-02-19
EP2589449A1 (en) 2013-05-08
CA2794015A1 (en) 2013-05-04
US20130228302A1 (en) 2013-09-05
MX2012012796A (es) 2013-05-13

Similar Documents

Publication Publication Date Title
CN103084573B (zh) 通过SLM生产由γ'沉淀强化镍基超合金制成的物品的过程
EP3596242B1 (en) Method for fusion processing aluminum alloy and aluminum alloy precursor material
Saboori et al. An investigation on the effect of powder recycling on the microstructure and mechanical properties of AISI 316L produced by Directed Energy Deposition
EP2886225B1 (en) Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
CN106077647B (zh) 一种激光增材制造镍基高温合金过程中控制脆性Laves相的方法
KR101791113B1 (ko) 분말형 용제 및 금속을 사용하는 초합금의 적층
WO2017184778A1 (en) Fcc materials of aluminum, cobalt and nickel, and products made therefrom
GB2538652A (en) Additive manufacturing
Horn et al. Additive manufacturing of copper and copper alloys
US20200391286A1 (en) Stainless Steel Powder for Producing a Shaped Article
CA2872312C (en) Laser additive repairing of nickel base superalloy components
EP3354378B1 (en) Manufacturing method and apparatus
Kulkarni Additive manufacturing of nickel based superalloy
EP2846958B1 (en) Laser additive repairing of nickel base superalloy components
Vinoth et al. Investigations on the Mechanical Characteristics of the Stainless Steel 316L Alloy Fabricated by Directed Energy Deposition for Repairing Application
Groh et al. Review of laser deposited superalloys using powder as an additive
JP7361332B2 (ja) 金属積層造形物の製造方法及び金属積層造形物
WO2023074613A1 (ja) 積層造形に適したNi系合金粉末及び該粉末を用いて得られた積層造形体
CN110573287B (zh) 用于利用振荡束焊接析出硬化的超合金的技术
DeNonno et al. Solidification behavior and texture of 316 L austenitic stainless steel by laser wire directed energy deposition
JP2022148950A (ja) Fe基合金粉末を用いた造形物の製造方法
CN116887934A (zh) 激光粉末床熔合增材制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: Swiss Baden 5400 Bulangbo Fairui Street No. 7

Patentee after: ALSTOM TECHNOLOGY LTD

Address before: Baden, Switzerland

Patentee before: Alstom Technology Ltd.

TR01 Transfer of patent right

Effective date of registration: 20171123

Address after: London, England

Patentee after: Security energy UK Intellectual Property Ltd

Address before: Swiss Baden 5400 Bulangbo Fairui Street No. 7

Patentee before: ALSTOM TECHNOLOGY LTD

TR01 Transfer of patent right