CN103045886B - 一种稀土钨电极材料的制备方法 - Google Patents

一种稀土钨电极材料的制备方法 Download PDF

Info

Publication number
CN103045886B
CN103045886B CN201210576414.XA CN201210576414A CN103045886B CN 103045886 B CN103045886 B CN 103045886B CN 201210576414 A CN201210576414 A CN 201210576414A CN 103045886 B CN103045886 B CN 103045886B
Authority
CN
China
Prior art keywords
tungsten
rare
earth
powder
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210576414.XA
Other languages
English (en)
Other versions
CN103045886A (zh
Inventor
谭毅
石爽
游小刚
姜大川
石小磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201210576414.XA priority Critical patent/CN103045886B/zh
Publication of CN103045886A publication Critical patent/CN103045886A/zh
Application granted granted Critical
Publication of CN103045886B publication Critical patent/CN103045886B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明属于冶金熔炼技术领域,特别涉及一种熔炼制备钨电极材料的方法。该方法首先将钨粉和稀土氧化物粉充分混合得到混合粉,再通过热压成型对混合粉进行处理得到钨基块状混合物;然后采用电子束真空高温熔炼钨基块状混合物,凝固冷却后得到稀土钨合金锭;最后将稀土钨合金锭在真空下进行热处理,得到稀土钨电极材料。本发明利用电子束提供极高密度的能量熔炼稀土钨材料,熔炼后得到的稀土钨电极材料致密度较高,与热压烧结相比,电子束熔炼技术在制备难熔金属方面,具有明显的优势,取得的组织更优良,通过掺入一定量的稀土氧化物提高电极材料的性能,通过分析显微硬度的变化,可判定稀土氧化物的添加对电极的硬度会有一定程度的提高。

Description

一种稀土钨电极材料的制备方法
技术领域
本发明属于冶金熔炼技术领域,特别涉及一种熔炼制备钨电极材料的方法。
背景技术
钨电极材料作为机械、造船、航空航天、建筑、核电、冶金等行业不可或缺的功能材料,主要应用于惰性气体保护焊、等离子切割、喷涂和熔炼等工艺技术。同时,钨电极材料的另一个重要应用就是在焊接过程中充当热阴极电子发射源。
纯金属钨极的发射效率很低,且在高温下再结晶形成等轴状晶粒组织而使钨丝下垂、断裂。为克服上述缺点,适应现代工业新技术、新工艺的发展,各国材料工作者正致力于研究和开发各种新型电极材料。以钨为基掺杂一些电子逸出功低的稀土氧化物,既能提高再结晶温度,又能激活电子发射。稀土金属氧化物具有优良的热电子发射能力,与钨结合形成的钨-稀土合金具有功函数低、熔点高和蒸气压力低等特点,被用于放电电极材料。
到目前为止,国内对钨基电极材料的研究仍很少,虽有个别厂家进行了生产,但生产工艺尚不成熟,没有大规模开发和推广应用。对复合稀土钨电极材料的研究少,钨电极产品也没有系列化和标准化,难以满足工业发展和人们生活进步的需求。
致密钨的制备方法主要有粉末冶金方法和熔炼法。因为钨的熔点很高,早期制备钨的方法主要局限于粉末冶金方法。1909年Coolidge为钨的近代粉末冶金奠定了基础,其方法是在800~900℃用氢气还原钨酸,然后对钨粉末进行压制、1000℃预烧结和垂熔。尽管人们一个世纪对粉末冶金方法进行了各种各样的改进,但这种方法迄今为止仍然是制备致密钨金属的主要方法。
粉末冶金法制备钨材料常见的缺陷是:
(1)粉末烧结工艺不稳定,烧结温度和时间不均衡出现某些区域烧结不足,没有达到完全、均匀的烧结状态。
(2)在粉末烧结坯料中存在大量聚集的孔洞。
发明内容
本发明为克服以上不足,提供一种稀土钨电极材料的制备方法,该方法采用球磨混粉、热压成型、电子束真空高温熔炼和热处理的方式,最终得到致密度较高、塑性较好的稀土钨电极材料。
本发明为实现上述目的所采用的技术方案是:一种稀土钨电极材料的制备方法,其特征是:首先将钨粉和稀土氧化物粉充分混合得到混合粉,再通过热压成型对混合粉进行处理得到钨基块状混合物;然后采用电子束真空高温熔炼钨基块状混合物,凝固冷却后得到稀土钨合金锭;最后将稀土钨合金锭在真空下进行热处理,得到稀土钨电极材料。
所述方法具体步骤如下:
第一步混粉:将平均粒度为0.5-3μm的钨粉和平均粒度为2-6μm的稀土氧化物粉混合,球磨1-4h使其充分均匀混合得到混合粉;
第二步热压成型:将混合粉在温度为1700-1900℃,压力为25-35MPa的条件下热压成型0.5-3h得到钨基块状混合物;
第三步电子束熔炼:将钨基块状混合物置于电子束熔炼炉内坩埚中,抽真空至0.005Pa以下,开启电子枪高压为28-32kV,束流为400-700mA进行熔炼,熔炼10-30min,凝固冷却后将稀土钨合金锭翻转,在高压为28-32kV,束流为400-700mA再熔炼10-30min,凝固冷却后得到稀土钨合金锭;
第四步真空热处理:将稀土钨合金锭置于真空碳管炉中,在真空度为1-20Pa的条件下加热到1600-1900℃,真空退火1-4h,得到稀土钨电极材料。
所述钨粉的纯度为质量分数大于99.0%。
所述稀土氧化物粉为氧化钇、氧化铈、氧化镧或氧化锆中的一种或几种,其纯度为质量分数大于99.0%。
所述混合粉中稀土氧化物的含量为1%-7%。
所述稀土钨电极材料的致密度为96.0-98.2%、显微硬度为950-1250MPa。
本发明的显著效果是利用电子束提供极高密度的能量熔化并熔炼稀土钨材料,电子束真空熔炼后得到的稀土钨电极材料致密度较高,与热压烧结相比,电子束熔炼技术在制备难熔金属方面,具有明显的优势,并且电子束熔炼取得的组织更优良。通过掺入一定量的稀土氧化物提高电极材料的性能,通过分析显微硬度的变化,可判定稀土氧化物的添加对电极的硬度会有一定程度的提高。
附图说明
图1 为一种稀土钨电极材料的制备方法的流程图
图2为真空热处理后得到的钨-氧化钇电极材料的SEM照片
具体实施方式
下面结合具体实施例和附图详细说明本发明,但本发明并不局限于具体实施例。
实施例1
如图1所示,一种稀土钨电极材料的制备方法的简要流程为:
第一步混粉:将平均粒度为0.5μm、纯度为99.1%的的钨粉和平均粒度为2μm、纯度为99.2%的的氧化钇粉混合,球磨4h使其充分均匀混合得到混合粉,氧化钇粉的质量占混合粉总质量的4%;
第二步热压成型:将混合粉在温度为1700℃,压力为25MPa的条件下热压成型3h得到钨基-氧化钇块状混合物;
第三步电子束熔炼:将钨基-氧化钇块状混合物置于电子束熔炼炉内坩埚中,抽真空至0.0045Pa以下,开启电子枪高压为32kV,束流为400mA进行熔炼,熔炼30min,凝固冷却后将钨-氧化钇合金锭翻转,在高压为32kV,束流为400mA再熔炼30min,凝固冷却后得到钨-氧化钇合金锭;
第四步真空热处理:真空热处理具有无氧化、无脱碳、无元素贫化的特点,可以实现光亮热处理,可以使零件脱脂、脱气,避免表面污染和氢脆;同时可以实现控制加热和冷却,减少热处理变形,提高材料性能;还具有便于自动化、柔性化和清洁热处理等优点,将钨-氧化钇合金锭置于真空碳管炉中,在真空度为1Pa的条件下加热到1600℃,真空退火4h,得到钨-氧化钇电极材料,如图2所示为其SEM照片,经检测,该钨-氧化钇电极材料的致密度为98.2%、显微硬度为1250MPa。
实施例2
如图1所示,一种稀土钨电极材料的制备方法的简要流程为:
第一步混粉:将平均粒度为1μm、纯度为99.2%的的钨粉和平均粒度为4μm、纯度为99.3%的的氧化锆粉混合,球磨1h使其充分均匀混合得到混合粉,氧化锆粉的质量占混合粉总质量的1%;
第二步热压成型:将混合粉在温度为1800℃,压力为30MPa的条件下热压成型1h得到钨基-氧化锆块状混合物;
第三步电子束熔炼:将钨基-氧化锆块状混合物置于电子束熔炼炉内坩埚中,抽真空至0.0042Pa以下,开启电子枪高压为30kV,束流为600mA进行熔炼,熔炼20min,凝固冷却后将钨-氧化锆合金锭翻转,在高压为30kV,束流为400mA再熔炼20min,凝固冷却后得到钨-氧化锆合金锭;
第四步真空热处理:真空热处理具有无氧化、无脱碳、无元素贫化的特点,可以实现光亮热处理,可以使零件脱脂、脱气,避免表面污染和氢脆;同时可以实现控制加热和冷却,减少热处理变形,提高材料性能;还具有便于自动化、柔性化和清洁热处理等优点,将钨-氧化锆合金锭置于真空碳管炉中,在真空度为8Pa的条件下加热到1800℃,真空退火2h,得到钨-氧化钇电极材料,经检测,该钨-氧化钇电极材料致密度为96.8%、显微硬度为1023MPa。
实施例3
第一步混粉:将平均粒度为3μm、纯度为99.1%的的钨粉和平均粒度为6μm、纯度为99.2%的的氧化镧粉混合,球磨2h使其充分均匀混合得到混合粉,氧化锆粉的质量占混合粉总质量的7%;
第二步热压成型:将混合粉在温度为1900℃,压力为35MPa的条件下热压成型4h得到钨基-氧化锆块状混合物;
第三步电子束熔炼:将钨基-氧化锆块状混合物置于电子束熔炼炉内坩埚中,抽真空至0.0038Pa以下,开启电子枪高压为28kV,束流为700mA进行熔炼,熔炼10min,凝固冷却后将钨-氧化锆合金锭翻转,在高压为28kV,束流为700mA再熔炼10min,凝固冷却后得到钨-氧化锆合金锭;
第四步真空热处理:真空热处理具有无氧化、无脱碳、无元素贫化的特点,可以实现光亮热处理,可以使零件脱脂、脱气,避免表面污染和氢脆;同时可以实现控制加热和冷却,减少热处理变形,提高材料性能;还具有便于自动化、柔性化和清洁热处理等优点,将钨-氧化锆合金锭置于真空碳管炉中,在真空度为20Pa的条件下加热到1900℃,真空退火1h,得到钨-氧化钇电极材料,经检测,该钨-氧化钇电极材料致密度为96.0%、显微硬度为950MPa。

Claims (5)

1.一种稀土钨电极材料的制备方法,其特征是:首先将钨粉和稀土氧化物粉充分混合得到混合粉,再通过热压成型对混合粉进行处理得到钨基块状混合物;然后采用电子束真空高温熔炼钨基块状混合物,凝固冷却后得到稀土钨合金锭;最后将稀土钨合金锭在真空下进行热处理,得到稀土钨电极材料;所述方法具体步骤如下:
第一步混粉:将平均粒度为0.5-3μm的钨粉和平均粒度为2-6μm的稀土氧化物粉混合,球磨1-4h使其充分均匀混合得到混合粉;
第二步热压成型:将混合粉在温度为1700-1900℃,压力为25-35MPa的条件下热压成型0.5-3h得到钨基块状混合物;
第三步电子束熔炼:将钨基块状混合物置于电子束熔炼炉内坩埚中,抽真空至0.005Pa以下,开启电子枪高压为28-32KV,束流为400-700mA进行熔炼,熔炼10-30min,凝固冷却后将稀土钨合金锭翻转,在高压为28-32KV,束流为400-700mA再熔炼10-30min,凝固冷却后得到稀土钨合金锭;
第四步真空热处理:将稀土钨合金锭置于真空碳管炉中,在真空度为1-20Pa的条件下加热到1600-1900℃,真空退火1-4h,得到稀土钨电极材料。
2.根据权利要求1所述的一种稀土钨电极材料的制备方法,其特征是:所述钨粉的纯度为质量分数大于99.0%。
3.根据权利要求1所述的一种稀土钨电极材料的制备方法,其特征是:所述稀土氧化物粉为氧化钇、氧化铈、氧化镧或氧化锆中的一种或几种,其纯度为质量分数大于99.0%。
4.根据权利要求1所述的一种稀土钨电极材料的制备方法,其特征是:所述混合粉中稀土氧化物的含量为1%-7%。
5.根据权利要求1所述的一种稀土钨电极材料的制备方法,其特征是:所述稀土钨电极材料的致密度为96.0-98.2%、显微硬度为950-1250MPa。
CN201210576414.XA 2012-12-27 2012-12-27 一种稀土钨电极材料的制备方法 Expired - Fee Related CN103045886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210576414.XA CN103045886B (zh) 2012-12-27 2012-12-27 一种稀土钨电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210576414.XA CN103045886B (zh) 2012-12-27 2012-12-27 一种稀土钨电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN103045886A CN103045886A (zh) 2013-04-17
CN103045886B true CN103045886B (zh) 2015-02-11

Family

ID=48058745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210576414.XA Expired - Fee Related CN103045886B (zh) 2012-12-27 2012-12-27 一种稀土钨电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN103045886B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178675B (zh) * 2013-05-28 2016-08-10 海洋王照明科技股份有限公司 陶瓷金卤灯的发射材料、其制备方法及应用
CN104178674A (zh) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 陶瓷金卤灯的发射材料、其制备方法及应用
CN104465307B (zh) * 2013-09-25 2018-07-27 海洋王照明科技股份有限公司 金卤灯电极和陶瓷金卤灯
CN104465310B (zh) * 2013-09-25 2018-07-27 海洋王照明科技股份有限公司 金卤灯电极和陶瓷金卤灯
CN103921014B (zh) * 2014-04-09 2015-03-18 赣州虹飞钨钼材料有限公司 一种稀土钨电极材料的制备方法
CN106077653B (zh) * 2016-07-20 2018-04-10 大连理工大学 一种新型W‑Mo‑Cr合金抛光盘的制备方法
CN106834780B (zh) * 2017-01-20 2018-09-25 赣州有色冶金研究所 一种稀土钨合金及其制备方法
CN107988539A (zh) * 2017-11-28 2018-05-04 北京工业大学 一种快速制备高致密度细晶组织脉冲氙灯用电极的方法
CN109226748B (zh) * 2018-08-15 2020-07-31 赣州虹飞钨钼材料有限公司 一种复合钨电极材料的制备方法
CN110512107B (zh) * 2019-09-09 2021-11-09 合肥工业大学 一种微量元素和稀土氧化物复合强化钨基复合材料的制备方法
CN110788318B (zh) * 2019-10-29 2022-08-12 安泰天龙(宝鸡)钨钼科技有限公司 一种高致密度稀土钨电极的制备方法
CN111041315A (zh) * 2019-11-27 2020-04-21 洛阳爱科麦钨钼科技股份有限公司 一种四元复合稀土钨合金电极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914233B2 (ja) * 1978-01-18 1984-04-03 株式会社東芝 ガラス溶融用モリブデン電極棒
CN1013379B (zh) * 1988-10-04 1991-07-31 冶金工业部包头稀土研究院 稀土钨电极材料及其生产方法
CN1057569C (zh) * 1998-07-14 2000-10-18 北京矿冶研究总院 一种稀土钨电极材料
CN1287947C (zh) * 2004-09-30 2006-12-06 北京工业大学 高含量多元复合稀土钨电极材料及其制备方法
CN101885067A (zh) * 2009-05-13 2010-11-17 周高超 含有稀土元素的钨电极及其制备方法

Also Published As

Publication number Publication date
CN103045886A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
CN103045886B (zh) 一种稀土钨电极材料的制备方法
CN106756434B (zh) 氧化物弥散强化低活化铁素体/马氏体钢及其冶炼方法
CN108103381A (zh) 一种高强度FeCoNiCrMn高熵合金及其制备方法
CN108436074B (zh) 钽钨合金箔材制备方法及钽钨合金箔材
CN103740994A (zh) 纳米结构钨合金及其制备方法
CN104911434B (zh) 一种碳化物增强Mo2NiB2金属陶瓷及其制备方法
CN109930052B (zh) 一种安全核反应堆包壳高熵合金材料及其制备方法
CN101660066A (zh) 一种含镧的钨或钼复合材料的制造方法
CN103921014B (zh) 一种稀土钨电极材料的制备方法
CN110280923B (zh) 800H合金焊接用Fe-Ni基合金焊丝及其制备方法、800H合金的焊接方法
CN102127712A (zh) 一种微合金化氧化物弥散强化铁素体钢及制备方法
CN115044794B (zh) 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法
CN113523273B (zh) 多场耦合下快速制备超细晶纯钨材料的粉末冶金方法
CN101530917B (zh) 由粉冶纯钨材料构成的不规则零件结构的制造方法
CN107236868A (zh) 一种多级深度还原制备高熔点金属粉的方法
CN105925846A (zh) 一种Zr-Sn-Nb-Hf合金棒材及其制备方法
CN107723554B (zh) 一种铀铌钼合金的制备方法
CN107081517B (zh) 一种TZM和WRe异种合金的低温连接方法
CN103045924B (zh) 一种电子束熔炼制备钨电极材料的方法
CN103192203A (zh) 一种制备银钎料的工艺方法
CN110747417A (zh) 一种镍基合金gh4169的时效强化热处理方法
CN114231855A (zh) 一种ods钢的电弧熔丝制备方法
CN106086513B (zh) 一种电真空用铜钼合金及其制备方法
CN108213763A (zh) 一种用于核用SiC陶瓷连接的Zr基钎料及钎焊工艺
CN101624663A (zh) 一种微波烧结制备W-Ni-Fe高密度合金的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150211

Termination date: 20181227

CF01 Termination of patent right due to non-payment of annual fee