CN102925362A - 一种尖孢镰刀菌的筛选方法及其应用 - Google Patents

一种尖孢镰刀菌的筛选方法及其应用 Download PDF

Info

Publication number
CN102925362A
CN102925362A CN2012103425860A CN201210342586A CN102925362A CN 102925362 A CN102925362 A CN 102925362A CN 2012103425860 A CN2012103425860 A CN 2012103425860A CN 201210342586 A CN201210342586 A CN 201210342586A CN 102925362 A CN102925362 A CN 102925362A
Authority
CN
China
Prior art keywords
fusarium oxysporum
arsenic
substratum
mycoplasma
pgp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012103425860A
Other languages
English (en)
Inventor
曾西柏
苏世鸣
蒋细良
白玲玉
李莲芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Environment and Sustainable Development in Agriculturem of CAAS
Original Assignee
Institute of Environment and Sustainable Development in Agriculturem of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Environment and Sustainable Development in Agriculturem of CAAS filed Critical Institute of Environment and Sustainable Development in Agriculturem of CAAS
Priority to CN2012103425860A priority Critical patent/CN102925362A/zh
Publication of CN102925362A publication Critical patent/CN102925362A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明披露了一种尖孢镰刀菌的筛选方法及其应用,其中方法包括:采集砷污染土壤样品,在实验室内从所述土壤样品中分离出真菌,将真菌纯化后转接于尖孢镰刀菌的选择性培养基上;以该选择性培养基上生长状况最好的真菌菌株为对象,在固态PGP培养基上将该真菌菌株与浸有不同浓度砷的滤纸片作用,观察该真菌在不同浓度砷胁迫下的菌落生长状况,由此筛选出尖孢镰刀菌。

Description

一种尖孢镰刀菌的筛选方法及其应用
技术领域
本发明涉及真菌的筛选方法及其应用,尤其涉及尖孢镰刀菌(Fusariumoxysporum)的筛选方法及其应用。
背景技术
砷是一种在自然界广泛存在的有毒并且致癌的非金属元素,砷污染已成为全球危害十分严重的环境问题之一。据报道,全球至少5000多万人口正面临着地方性砷中毒的威胁,其中大多数为亚洲国家,中国是受砷中毒危害最为严重的国家之一,在1956-1984年二十多年间,中国曾发生过30余起地砷中毒事件。我国是砷矿大国,砷矿广泛分布在我国的中南和西南的湖南、云南、广西、广东等省区,砷矿开采或冶炼,含砷农药、化肥等农资产品的过量投入等,可造土壤砷的累积,进而影响着植物、动物的生长和发育,且可以通过食物链进入人体,对人类的生存和健康构成威胁。
目前常用的砷污染土壤修复方法包括土壤改良剂法、溶土法、排土法、化学冲洗法以及生物修复技术。
生物修复技术是利用生物(主要是微生物、植物)作用来消减、净化土壤中的砷或改变砷的形态,被普遍认为是砷污染治理中最具应用前景的技术。其中利用超积累植物去除土壤砷的植物修复技术在最近的几年中取得了突破性的进展,蜈蚣草(Brakefern,Pteris vitta)和大叶井口边草(Pteris nervosa)等超积累砷的植物相继被发现,并用于砷污染地区的土壤修复。在金属污染土壤的生物修复技术中,除了应用超积累植物吸收富集金属外,利用植物、微生物将金属转化为沸点较低的有机化合物挥发到大气中从而去除土壤中的金属也逐渐引起了人们的重视。如Terry等利用微生物和植物的作用,将环境中的硒(Se)转化为生物毒性较低的气态形式(二甲基硒和二甲基二硒),直接或通过植物的组织挥发到大气中。Meagher等将细菌体内的汞(Hg)还原酶基因转入芥子科植物Arabidopsis后,得到的转基因植物能耐受、吸收土壤环境中的Hg,并将Hg2+还原成Hg0后挥发进入大气。土壤中的砷化合物也可以转变为气态的甲基砷等物质,在多个圈层中迁移和转化。因此,利用某些微生物的对砷的富集、利用和转化、挥发等功能,将As累积到生物体内或将其形成易挥发态砷化合物,已成为潜在的土壤As污染修复技术之一。
目前国内报道的对砷具有生物累积与挥发能力的真菌还没有,国外报道也屈指可数,且大多还只是局限于理论上的研究。
发明内容
本发明所要解决的技术问题是提供一种尖孢镰刀菌的筛选方法,将尖孢镰刀菌应用于治理砷污染土壤以及降低砷在作物及农产品中的累积。
为了解决上述技术问题,本发明提供了一种尖孢镰刀菌的筛选方法,包括:
采集砷污染土壤样品,在实验室内从所述土壤样品中分离出真菌,将所述真菌纯化后转接于尖孢镰刀菌的选择性培养基上;以该选择性培养基上生长状况最好的真菌菌株为对象,在固态PGP培养基上将该真菌菌株与浸有不同浓度砷的滤纸片作用,观察该真菌在不同浓度砷胁迫下的菌落生长状况,由此筛选出尖孢镰刀菌。
该尖孢镰刀菌Fusarium oxysporum已在中国微生物菌种保藏管理委员会普通微生物中心(地址标注在后)保存,保存编号为CGMCC No.3185,保存日期为2009年7月09日。
优选地,该方法具体包括:
将土壤样品经梯度稀释后涂布于砷含量为400~600mg/L的马丁培养基上分离出真菌;
将分离出的真菌经反复纯化后,分别挑取少量菌丝,接种于配好的尖孢镰刀菌的选择性培养基上,于24~26℃下培养5-7天后,以生长状况最好的真菌菌株作为接种目标,取直径为5~7mm的圆形菌块或边长为5~7mm的方形菌块放于PGP培养基上,在距菌块为1~3cm处分别放置浸有不同浓度砷溶液的直径为2~4mm的圆形滤纸片,砷浓度的范围设置为1000~30000mg/L;将PGP培养基于24~26℃下培养5天后,通过观察菌株的生长情况筛选出尖孢镰刀菌。
优选地,
马丁培养基的成分包括:葡萄糖、蛋白胨、KH2PO4、MgSO4·7H2O、琼脂以及水,各成分的重量比为5∶10∶2∶1∶80∶4000;
尖孢镰刀菌的选择性培养基的成分包括:四硼酸钠、磷酸氢二钾、氯化钾、硫酸镁、EDTA铁纳盐、D-半乳糖、L-天门冬酰胺、琼脂、75%的五氯硝基苯、牛胆盐、硫酸链霉素以及蒸馏水,各个成分的重量百分比为:100∶100∶50∶50∶1∶2000∶200∶1500∶100∶50∶30∶100000;用10%盐酸或10%的氢氧化钠将培养基的pH值调整到3.8~4.0;
PGP培养基的成分包括:马铃薯、葡萄糖、蛋白胨以及水,各成分的重量比为40∶4∶1∶400。
为了解决上述技术问题,本发明提供了一种尖孢镰刀菌对砷的抗性的鉴定方法,包括:
在室内培养条件下测定尖孢镰刀菌对砷的生物累积与挥发能力,以及在含有不同浓度砷的溶液的培养条件下尖孢镰刀菌生物量的变化,由此鉴定尖孢镰刀菌对砷的抗性。
优选地,在室内培养条件下测定尖孢镰刀菌对砷的生物累积与挥发能力,具体包括:
配制总砷含量为50mg/L的PGP培养基,在120~125℃下灭菌13~17分钟后,接入0.1mL尖孢镰刀菌生物量为104cfu/mL的菌悬液,培养温度为23~27℃,转速为138~142rmp,振荡培养5天后,以3800~4200rmp进行离心处理8~12分钟,用超纯水反复清洗菌质4次,洗掉残留的培养基,将该菌质于48~52℃下烘干至恒重,然后对该菌质称重,用11~13mL体积比为4~6∶1的HNO3、HClO4混合液在158~162℃条件下将菌质消煮10小时,采用原子荧光测定所述菌质中的总砷含量;将离心出的培养液及清洗该菌质的超纯水混合后作为上清液采用原子荧光测定总砷含量;
该菌质中的总砷含量作为尖孢镰刀菌对砷的生物累积量,尖孢镰刀菌对砷的挥发量=配置的总砷含量-该菌质中的总砷含量-该上清液中的总砷含量。
优选地,
参照在总砷含量为50mg/L的PGP培养基中接入尖孢镰刀菌的处理,分别以在总砷含量为50mg/L的PGP培养基中不接入尖孢镰刀菌处理以及在PGP培养基中接入尖孢镰刀菌而不配置砷含量的处理作为对照,对每项处理均重复多次。
优选地,在室内条件下测定在含有不同浓度砷的溶液的培养条件下尖孢镰刀菌生物量的变化,具体包括:
配制总砷含量范围为0~200mg/L的PGP培养基,在120~122℃下灭菌14~16分钟后,将相同厚度且生长速率相同的直径为5~7mm的尖孢镰刀菌菌饼分别加入培养基中,于摇床上温度为23~27℃、转速为138~142rmp振荡培养;培养5天后,培养液以3800~4200rmp离心10分钟,并采用稀释梯度法计数菌悬液中尖孢镰刀菌的孢子数目,即表达尖孢镰刀菌生物量;
用超纯水反复清洗菌质4次,洗掉残留的培养基后,将该菌质于48~52℃下烘干至恒重,然后称量该菌质重量,即尖孢镰刀菌生物量重量。
优选地,不同的总砷含量的相应的处理均重复多次。
优选地,该方法还包括:
观察随着培养溶液中总砷含量的增加,尖孢镰刀菌的生物量的变化趋势,并观察尖孢镰刀菌的生物量最高的总砷含量,由此确定尖孢镰刀菌表现出较强的对砷的抗性的总砷含量范围。
为了解决上述技术问题,本发明提供了一种尖孢镰刀菌在砷污染土壤治理以及降低砷在作物及农产品中累积方面的应用。
通过本发明对尖孢镰刀菌的筛选,可以制成相应的微生物修复制剂,将制得的微生物修复制剂应用在污染土壤或环境中后,通过该真菌(尖孢镰刀菌)的富集和挥发作用,在一定程度上降低土壤中砷的含量,特别是降低有效砷的含量,从而保证作物正常生长,并使作物及农产品中砷的含量达到无公害农产品要求。
附图说明
图1为用本发明的方法筛选和培养出的尖孢镰刀菌在浸有不同浓度砷的滤纸片作用下的菌落生长情况;
图2为尖孢镰刀菌的电子显微图片;
图3为尖孢镰刀菌在不同砷浓度水平下的生物量曲线图。
具体实施方式
本发明提供的尖孢镰刀菌的筛选和培养方法,包括:从砷污染的土壤中分离真菌,经纯化后,于尖孢镰刀菌的选择性培养基上转接培养,然后观察分离出的真菌在不同浓度砷胁迫下的菌落生长状况,由此筛选出耐砷能力强的尖孢镰刀菌;在室内培养条件下观察分离出的尖孢镰刀菌对砷的生物累积与挥发能力,以及在含有不同浓度砷的溶液培养条件下尖孢镰刀菌生物量的变化。
对培养、筛选出的尖孢镰刀菌接种于含有不同浓度砷的液态PGP培养基中,观察尖孢镰刀菌生物量的变化,结果表明该镰刀菌在0-50mg/L的砷浓度范围内表现出较强的对砷的抗性,且当含砷浓度为50mg/L时显著性地刺激了该菌株的生长;随后进行的尖孢镰刀菌对砷的生物累积量与挥发量测定实验表明,当对该尖孢镰刀菌培养时间为5天,且在培养基中加入的砷浓度为50mg/L时,该尖孢镰刀菌对砷的生物累积量为12.442μg,生物挥发量为181.025μg。实验说明该尖孢镰刀菌对砷具有一定的生物累积与挥发能力,能应用于砷污染土壤的生物修复过程中,从而减少砷在作物及农产品中的累积。
以下结合附图和优选实施例对本发明的技术方案进行详细地阐述。以下实施例仅仅用于说明和解释本发明,而不构成对本发明技术方案的限制。
以下所有实施列中的砷均以Na3AsO4·12H2O的形式加入培养基中。
实施例1尖孢镰刀菌的分离、筛选和培养
从砷污染区采集砷污染土壤样品,在实验室内从该土壤样品中分离出真菌,经纯化后,转接于尖孢镰刀菌的选择性培养基上。以该培养基上生长状况最好的菌株为对象,在固态PGP培养基(土豆-葡萄糖-蛋白胨培养基)上将该真菌与浸有不同浓度砷的滤纸片作用,观察在不同浓度砷胁迫下的菌落生长状况,由此筛选出具有强耐砷能力的尖孢镰刀菌。
具体包括步骤:
该土壤样品来自湖南石门地区雄黄矿附近的矿渣堆积处,将该土壤样品经梯度稀释后涂布于砷含量为400~600mg/L的马丁培养基上分离出真菌,该马丁培养基的成分包括:葡萄糖、蛋白胨、KH2PO4、MgSO4·7H2O、琼脂以及水,其重量比为5∶10∶2∶1∶80∶4000。
将分离出的真菌经反复纯化后,分别挑取少量菌丝,接种于配好的尖孢镰刀菌的选择性培养基上,于24~26℃下培养5-7天后,以生长状况最好的菌株作为接种目标,取直径为5~7mm的圆形菌块或边长为5~7mm的方形菌块放于PGP培养基上,在距该菌块为1~3cm处分别放置浸有不同浓度砷溶液的直径为2~4mm的圆形滤纸片,砷浓度分别设置为:1000、3000、5000、10000、20000、30000mg/L。将PGP培养基于24~26℃下培养5天后,观察菌株的生长情况。
尖孢镰刀菌的选择性培养基:四硼酸钠1g,磷酸氢二钾1g,氯化钾0.5g,硫酸镁0.5g,EDTA铁纳盐0.01g,D-半乳糖20g,L-天门冬酰胺2g,琼脂15g,五氯硝基苯(PCNB)(75%)1g,牛胆盐0.5g,硫酸链霉素0.3g,蒸馏水1000mL,用10%盐酸或10%的氢氧化钠调整pH值到3.8~4.0,无需灭菌。
PGP培养基成分包括:马铃薯、葡萄糖、蛋白胨以及水,各成分的重量比为重量比为40∶4∶1∶400。
将尖孢镰刀菌与分离的其它真菌相比,在砷含量为30000mg/L的条件下仍然具有很好的生长状况。如图1所示,在图1中A为分离出的尖孢镰刀菌,其菌丝将浸有浓度为30000mg/L砷的滤纸片完全覆盖;B、C、D分别为编号为SM-5F7、SM-5F9、SM-5F1的对照真菌在浸有不同浓度砷的滤纸片作用下的菌落生长状况。
图2为分离出的尖孢镰刀菌的显微图片。
该尖孢镰刀菌Fusarium oxysporum已在中国微生物菌种保藏管理委员会普通微生物中心保存,保存编号为CGMCC No.3185,保存日期为2009年7月09日。
中国微生物菌种保藏管理委员会普通微生物中心地址为:
北京市朝阳区大屯路,中国科学院微生物研究所,邮政编码为100101,电话为010-64807355,电子邮件:E-mail为cgmcc@sun.im.ac.cn
实施例2尖孢镰刀菌对砷的生物累积与挥发功能的测定实验
配制总砷含量为50mg/L的PGP培养基,在120~125℃下灭菌13~17分钟后,接入0.1mL尖孢镰刀菌含量为104cfu/mL的菌悬液,培养温度为23~27℃,转速为138~142rmp,振荡培养5天后,以3800~4200rmp进行离心处理8~12分钟,用超纯水反复清洗菌质4次,洗掉残留的培养基,将所述菌质于48~52℃下烘干至恒重,然后对所述菌质称重,用11~13mL体积比为4~6∶1的HNO3、HClO4混合液在158~162℃条件下将所述菌质消煮10小时,采用原子荧光测定所述菌质中的总砷含量;将离心出的培养液及清洗所述菌质的超纯水混合后作为上清液也采用原子荧光测定其内总砷含量;
菌质中的总砷含量作为尖孢镰刀菌对砷的生物累积量,尖孢镰刀菌对砷的挥发量=配置的总砷含量-菌质中的总砷含量-上清液中的总砷含量。
本实验以加入50mg/L砷不加尖孢镰刀菌以及加尖孢镰刀菌不加砷的处理作对照,对照上述加入50mg/L砷且加尖孢镰刀菌的处理均重复3次。
当培养时间为5天时,尖孢镰刀菌对砷的生物累积量为12.442μg,对砷的生物挥发量为181.025μg,如表1所示。
表1培养5天后尖孢镰刀菌对砷的生物累积与生物挥发量
目前国内还没有关于对砷具有生物累积与挥发能力的真菌的报道,国外有一些这方面的报道,但大多是基于理论上的研究,现将本发明分离、筛选出的尖孢镰刀菌与国外报道的抗砷真菌相比较,如表2所示。
表2本发明与国外报道的抗砷真菌的情况比较
Figure BSA00000778202000082
实施例3含有不同浓度砷的溶液培养条件下尖孢镰刀菌生物量的变化
配制含砷量分别为0,10,30,50,80,100,200mg/L的PGP培养基,在120~122℃下灭菌14~16分钟后,将相同厚度且生长速率相同的直径为5~7mm的尖孢镰刀菌菌饼分别加入上述培养基中,于摇床上温度为23~27℃、转速为138~142rmp振荡培养;培养5天后,培养液以3800~4200rmp离心10分钟,并采用稀释梯度法对菌悬液中的孢子进行计数;用超纯水反复清洗菌质4次,洗掉残留的培养基后,将该菌质于48~52℃下烘干至恒重,然后称量该菌质重量。
不同浓度砷的各处理重复3次。
如图3所示,随着培养溶液中总砷含量的增加,该尖孢镰刀菌的生物量表现出一定的增加趋势,当砷含量为50mg/L时,其生物量最高;之后则随总砷含量的增加表现出降低的趋势。结果表明,该尖孢镰刀菌在0-50mg/L的含砷范围内表现出较强的对砷的抗性,且当含砷浓度为50mg/L时明显地刺激了该菌株的生长。
砷对尖孢镰刀菌孢子产生的影响如表3所示。
表3数据说明,随着砷浓度的增加并没能影响该尖孢镰刀菌的孢子产生,相反在一定程度上还会促进尖孢镰刀菌孢子的产生,该结果表明尖孢镰刀菌对砷具有较强的抗性。
表3.砷对尖孢镰刀菌孢子产生的影响
Figure BSA00000778202000091
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的包含范围。凡在本发明的精神和原则之内所作的任何修改、等同替代、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种尖孢镰刀菌的筛选方法,包括:
采集砷污染土壤样品,在实验室内从所述土壤样品中分离出真菌,将所述真菌纯化后转接于尖孢镰刀菌的选择性培养基上;以该选择性培养基上生长状况最好的真菌菌株为对象,在固态PGP培养基上将所述真菌菌株与浸有不同浓度砷的滤纸片作用,观察所述真菌在不同浓度砷胁迫下的菌落生长状况,由此筛选出尖孢镰刀菌。
2.按照权利要求1所述的方法,其特征在于,具体包括:
将所述土壤样品经梯度稀释后涂布于砷含量为400~600mg/L的马丁培养基上分离出真菌;
将分离出的所述真菌经反复纯化后,分别挑取少量菌丝,接种于配好的所述尖孢镰刀菌的选择性培养基上,于24~26℃下培养5-7天后,以生长状况最好的真菌菌株作为接种目标,取直径为5~7mm的圆形菌块或边长为5~7mm的方形菌块放于所述PGP培养基上,在距所述菌块为1~3cm处分别放置浸有不同浓度砷溶液的直径为2~4mm的圆形滤纸片,所述砷浓度的范围设置为1000~30000mg/L;将所述PGP培养基于24~26℃下培养5天后,通过观察菌株的生长情况筛选出所述尖孢镰刀菌。
3.按照权利要求2所述的方法,其特征在于,
所述马丁培养基的成分包括:葡萄糖、蛋白胨、KH2PO4、MgSO4·7H2O、琼脂以及水,各成分的重量比为5∶10∶2∶1∶80∶4000;
所述尖孢镰刀菌的选择性培养基的成分包括:四硼酸钠、磷酸氢二钾、氯化钾、硫酸镁、EDTA铁纳盐、D-半乳糖、L-天门冬酰胺、琼脂、75%的五氯硝基苯、牛胆盐、硫酸链霉素以及蒸馏水,各个成分的重量百分比为:100∶100∶50∶50∶1∶2000∶200∶1500∶100∶50∶30∶100000;用10%盐酸或10%的氢氧化钠将所述培养基的pH值调整到3.8~4.0;
所述PGP培养基的成分包括:马铃薯、葡萄糖、蛋白胨以及水,各成分的重量比为40∶4∶1∶400。
4.一种尖孢镰刀菌对砷的抗性的鉴定方法,包括:
在室内培养条件下测定尖孢镰刀菌对砷的生物累积与挥发能力,以及在含有不同浓度砷的溶液的培养条件下尖孢镰刀菌生物量的变化,由此鉴定所述尖孢镰刀菌对砷的抗性。
5.按照权利要求4所述的方法,其特征在于,所述在室内培养条件下测定尖孢镰刀菌对砷的生物累积与挥发能力,具体包括:
配制总砷含量为50mg/L的PGP培养基,在120~125℃下灭菌13~17分钟后,接入0.1mL尖孢镰刀菌生物量为104cfu/mL的菌悬液,培养温度为23~27℃,转速为138~142rmp,振荡培养5天后,以3800~4200rmp进行离心处理8~12分钟,用超纯水反复清洗菌质4次,洗掉残留的培养基,将所述菌质于48~52℃下烘干至恒重,然后对所述菌质称重,用11~13mL体积比为4~6∶1的HNO3、HClO4混合液在158~162℃条件下将所述菌质消煮10小时,采用原子荧光测定所述菌质中的总砷含量;将离心出的培养液及清洗所述菌质的超纯水混合后作为上清液采用所述原子荧光测定总砷含量;
所述菌质中的总砷含量作为尖孢镰刀菌对砷的生物累积量,尖孢镰刀菌对砷的挥发量=配置的总砷含量-所述菌质中的总砷含量-所述上清液中的总砷含量。
6.按照权利要求5所述的方法,其特征在于,
参照在所述总砷含量为50mg/L的PGP培养基中接入尖孢镰刀菌的处理,分别以在所述总砷含量为50mg/L的PGP培养基中不接入尖孢镰刀菌处理以及在PGP培养基中接入尖孢镰刀菌而不配置砷含量的处理作为对照,对每项处理均重复多次。
7.按照权利要求4所述的方法,其特征在于,在室内条件下测定在含有不同浓度砷的溶液的培养条件下尖孢镰刀菌生物量的变化,具体包括:
配制总砷含量范围为0~200mg/L的PGP培养基,在120~122℃下灭菌14~16分钟后,将相同厚度且生长速率相同的直径为5~7mm的尖孢镰刀菌菌饼分别加入所述培养基中,于摇床上温度为23~27℃、转速为138~142rmp振荡培养;培养5天后,培养液以3800~4200rmp离心10分钟,并采用稀释梯度法计数菌悬液中尖孢镰刀菌的孢子数目,即表达所述尖孢镰刀菌生物量;
用超纯水反复清洗菌质4次,洗掉残留的培养基后,将所述菌质于48~52℃下烘干至恒重,然后称量所述菌质重量,即所述尖孢镰刀菌生物量重量。
8.按照权利要求7所述的方法,其特征在于,
不同的总砷含量的相应的处理均重复多次。
9.按照权利要求8所述的方法,其特征在于,还包括:
观察随着培养溶液中总砷含量的增加,所述尖孢镰刀菌的生物量的变化趋势,并观察所述尖孢镰刀菌的生物量最高的总砷含量,由此确定所述尖孢镰刀菌表现出较强的对砷的抗性的总砷含量范围。
10.一种用权利要求1所述尖孢镰刀菌的筛选方法筛选的尖孢镰刀菌在砷污染土壤治理以及降低砷在作物及农产品中累积方面的应用。
CN2012103425860A 2012-09-17 2012-09-17 一种尖孢镰刀菌的筛选方法及其应用 Pending CN102925362A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012103425860A CN102925362A (zh) 2012-09-17 2012-09-17 一种尖孢镰刀菌的筛选方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012103425860A CN102925362A (zh) 2012-09-17 2012-09-17 一种尖孢镰刀菌的筛选方法及其应用

Publications (1)

Publication Number Publication Date
CN102925362A true CN102925362A (zh) 2013-02-13

Family

ID=47640294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012103425860A Pending CN102925362A (zh) 2012-09-17 2012-09-17 一种尖孢镰刀菌的筛选方法及其应用

Country Status (1)

Country Link
CN (1) CN102925362A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107641599A (zh) * 2017-09-29 2018-01-30 华南农业大学 一种香蕉枯萎病菌培养基及其应用
CN107794051A (zh) * 2017-10-27 2018-03-13 范瑶飞 一种净化砷污染土壤的生物制剂
CN109097435A (zh) * 2018-09-01 2018-12-28 长沙理工大学 一种从空气中筛选产葡萄糖氧化酶菌种的方法
CN114854803A (zh) * 2022-04-21 2022-08-05 山东农业大学 镰刀菌对3,6-二氯咔唑生物降解的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苏世鸣: ""耐砷真菌的分离鉴定及其砷累积与挥发机理"", 《中国博士学位论文全文数据库(电子期刊)农业科技辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107641599A (zh) * 2017-09-29 2018-01-30 华南农业大学 一种香蕉枯萎病菌培养基及其应用
CN107641599B (zh) * 2017-09-29 2021-04-23 华南农业大学 一种香蕉枯萎病菌培养基及其应用
CN107794051A (zh) * 2017-10-27 2018-03-13 范瑶飞 一种净化砷污染土壤的生物制剂
CN107794051B (zh) * 2017-10-27 2019-02-12 迦百农生态农业发展股份有限公司 一种净化砷污染土壤的生物制剂
CN109097435A (zh) * 2018-09-01 2018-12-28 长沙理工大学 一种从空气中筛选产葡萄糖氧化酶菌种的方法
CN114854803A (zh) * 2022-04-21 2022-08-05 山东农业大学 镰刀菌对3,6-二氯咔唑生物降解的方法

Similar Documents

Publication Publication Date Title
Singh et al. Soil fungi for mycoremediation of arsenic pollution in agriculture soils
He et al. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus
Wiangkham et al. Potential of Napier grass with cadmium-resistant bacterial inoculation on cadmium phytoremediation and its possibility to use as biomass fuel
CN106119170B (zh) 修复重金属污染土壤的微生物菌株及其应用
CN105670980B (zh) 一种修复重金属污染土壤的微生物菌株的应用
CN106493167B (zh) 地衣芽孢杆菌和菌剂及它们的应用和钝化重金属的方法
CN104450569B (zh) 一种矿区土壤中超高浓度耐镉菌株及其分离筛选方法
CN102337229A (zh) 一种耐重金属细菌的分离及其在煤矸石复垦中的应用
CN106520588B (zh) 一株铜绿假单胞菌和其菌剂以及它们在钝化铅中的应用
CN108893420A (zh) 处理重金属污染土壤用微生物菌株及其筛选方法与应用
CN106591156A (zh) 一株黑附球菌fxz2及其应用
CN105936884A (zh) 一株能耐受高砷锑污染并氧化As(Ⅲ)的包西氏菌AS-1菌株及其用途
CN102876586A (zh) 一种棘孢木霉菌的筛选方法及其应用
CN102191180A (zh) 一种棘孢木霉菌的筛选方法及其应用
CN102925362A (zh) 一种尖孢镰刀菌的筛选方法及其应用
CN111117909B (zh) 一种耐多重重金属促植物生长的菌株及其应用
CN103451105B (zh) 一种高吸附镉的丝状真菌产黄青霉j-5及制备方法和应用
CN101063097A (zh) 净化砷污染的木糖氧化无色杆菌sy8及用途
Zhu et al. Isolation of Mucor circinelloides Z4 and Mucor racemosus Z8 from heavy metal-contaminated soil and their potential in promoting phytoextraction with Guizhou oilseed rap
CN104805033A (zh) 一株可降解多种邻苯二甲酸酯的微杆菌(Microbacterium sp.)J-1
CN110257272A (zh) 丛毛单胞菌和肠杆菌的复合菌剂高效固定镉及在镉污染修复的应用
CN102051402A (zh) 一种尖孢镰刀菌的筛选方法及其应用
CN104805036A (zh) 微杆菌(Microbacterium sp.)J-1在降解多种邻苯二甲酸酯中的应用
CN102191181A (zh) 一种微紫青霉菌的筛选方法及其应用
CN107164239B (zh) 淡紫紫孢菌及其协同生物质修复污染水体重金属的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130213