CN102912431B - 增加一次投料晶锭厚度的碳化硅晶体生长方法 - Google Patents

增加一次投料晶锭厚度的碳化硅晶体生长方法 Download PDF

Info

Publication number
CN102912431B
CN102912431B CN201210411420.XA CN201210411420A CN102912431B CN 102912431 B CN102912431 B CN 102912431B CN 201210411420 A CN201210411420 A CN 201210411420A CN 102912431 B CN102912431 B CN 102912431B
Authority
CN
China
Prior art keywords
crucible
powder source
silicon carbide
carborundum powder
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210411420.XA
Other languages
English (en)
Other versions
CN102912431A (zh
Inventor
封先锋
陈治明
蒲红斌
马剑平
臧源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201210411420.XA priority Critical patent/CN102912431B/zh
Publication of CN102912431A publication Critical patent/CN102912431A/zh
Application granted granted Critical
Publication of CN102912431B publication Critical patent/CN102912431B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种增加一次投料晶锭厚度的碳化硅晶体生长方法,具体步骤包括:选定所使用的坩埚,根据实验结果和温场模拟确定该坩埚内腔填粉区域的高温区域;分别确定两种不同粒径的碳化硅粉的数量,并将其区分为大粒径碳化硅粉源和小粒径碳化硅粉源;在坩埚内腔填装碳化硅粉源,将小粒径碳化硅粉源装入高温区域中,将大粒径碳化硅粉源置于非高温区域,并在碳化硅粉源中设置石墨柱;将坩埚装入晶体生长设备中进行粉源烧结和除杂;从坩埚中取出石墨柱;进行晶体生长操作。本发明解决了现有技术中源-衬距逐渐减小影响所制备晶锭厚度的问题。

Description

增加一次投料晶锭厚度的碳化硅晶体生长方法
技术领域
本发明属于人工晶体生长技术领域,具体涉及一种增加一次投料晶锭厚度的碳化硅晶体生长方法。
背景技术
第三代半导体材料碳化硅(SiC)具有禁带宽、临界雪崩击穿电场强度高、电子饱和漂移速度高、热导率高以及耐高温、抗辐照和耐腐蚀等特点,是制造高性能电力电子器件、大功率固体微波器件和固体传感器等新型器件以及耐高温集成电路的优选材料,从而广泛应用于石油、化学、汽车、航空、航天、通信、武器等行业。
碳化硅在正常的工程条件下无液相存在,低压下1800°C左右开始升华为气体,因而不能象锗、硅、砷化镓那样用籽晶从熔体中生长,也不能用区熔法进行提纯,并且存在一定条件下极易相互转变的不同结晶形态(即同质异晶型或同质多型体,Polytype),故碳化硅是当今世界人工晶体生长的难点之一。
目前制备碳化硅体单晶体主要采用物理气相输运法(即籽晶升华法)。现有技术中物理气相输运法将作为生长源的碳化硅粉(或硅、碳固态混合物)置于温度较高的坩埚底部,籽晶固定在温度较低的坩埚顶部,生长源在低压高温下升华分解产生气态物质。在由生长源与籽晶之间存在的温度梯度而形成的压力梯度的驱动下,这些气态物质自然输运到低温的籽晶位置,并由于超饱和度的产生而结晶生长,形成晶态的碳化硅。
生长粉源与籽晶之间的距离(以下简称“源-衬距”)是物理气相输运法制备碳化硅晶体的一个重要工艺参数。源-衬距不但影响坩埚中轴向温度梯度和晶体生长速率的大小,而且还影响着晶体的厚度、品质,故碳化硅晶体制备过程中需要建立合适的源-衬距并在生长过程中保持。然而在实际晶体生长过程中,生长初期所建立的源-衬距将随着晶体生长的持续和晶体厚度的增加而逐步减小。进一步,随着晶体生长的持续,晶体生长面越来越靠近粉源,生长面温度逐渐升高并接近粉源表面温度,这种情况一方面会导致晶体生长速率越来越低,甚至晶体生长停止,另一方面也限制了一次投料所生长的晶锭的厚度。
究其原因,碳化硅粉源升华、分解时,粒径达数百微米甚至毫米级的单个碳化硅颗粒并不是一次全部分解、消失,而是从外向内逐步完成的。颗粒表面分解产生的以碳化硅赝晶形式存在的泡沫状碳将形成一个碳壳层,完全包裹住未分解的颗粒里层(以下简称为碳化硅核),而碳壳层的形成降低了粉源的有效热导率,并对碳化硅核分解产生的气态物质输运形成阻力,致使碳化硅核的分解速度降低。此外,靠近坩埚壁的碳化硅粉由于温度相对较高先升华、分解,然后随着晶体生长的持续,升华区域逐步向温度相对较低的粉源中心扩展,而粉源边缘升华、分解产生的碳降低了热量从坩埚壁向粉源中心传递的效率,致使粉源中心区域的碳化硅颗粒在生长结束时仍未完全升华分解,颗粒中心存在碳化硅核,这些未完全升华的碳化硅颗粒形成支撑作用,阻碍了粉源高度的下降,使得源-衬距越来越小。
再者,在升华法制备碳化硅晶体过程中,因温场分布问题,碳化硅粉源内部存在轴向和径向温度梯度,而粉源之间也有空隙,这样靠近坩埚壁的系统高温区分解产生的反应气体不仅从坩埚壁与粉源之间输运至籽晶生长面,而且同时也向粉源的内部和下部输运,并在温度相对较低的粉源内部和下部以原有的碳化硅颗粒为晶核结晶生长,使得该两处的碳化硅粉的粒径增大,密度增加,空隙率减小。进一步,随着晶体生长的持续,碳化硅粉源将出现分层现象,其中粉源中致密区和枝晶生长区的出现使得原来松散的相互独立的SiC颗粒紧密连接在一起,相对成为一个整体。粉源中的结晶和分层现象形成支撑作用,是阻碍了粉源表面下降、源-衬距逐渐减小的另外一个原因。
由于温场分布导致的碳化硅粉源分层和单个碳化硅颗粒的逐步分解使升华法制备碳化硅晶体过程中,随着晶体生长的持续,源-衬距逐渐减小,一方面降低了晶体生长速率,另一方面限制了所制备晶锭的厚度。
发明内容
本发明的目的是提供一种增加一次投料晶锭厚度的碳化硅晶体生长方法,解决了现有技术中源-衬距逐渐减小影响所制备晶锭厚度的问题。
本发明所采用的技术方案是,一种增加一次投料晶锭厚度的碳化硅晶体生长方法,其特征在于,依次进行如下步骤:
步骤1、选定所使用的坩埚,根据实验结果和温场模拟确定该坩埚内腔填粉区域的高温区域;
步骤2、分别确定两种不同粒径的碳化硅粉的数量,并将其区分为大粒径碳化硅粉源和小粒径碳化硅粉源;
步骤3、在坩埚内腔填装碳化硅粉源,将小粒径碳化硅粉源装入步骤1确定的高温区域中,将大粒径碳化硅粉源置于非高温区域,并在碳化硅粉源中设置石墨柱;
步骤4、将坩埚装入晶体生长设备中进行粉源烧结和除杂;
步骤5、从坩埚中取出石墨柱;
步骤6、进行晶体生长操作。
步骤1中坩埚内腔填粉区域的高温区域的具体方法为:通过计算机模拟坩埚系统温场分布图确定该高温区域,或者在实际晶体生长结束后依据剩余粉料的形状确定升华分解线以内的区域为高温区域。
步骤2中大粒径碳化硅粉源的粒径范围为200~1500微米,大粒径碳化硅粉源的粒径范围为1~10微米。
步骤3中,先在坩埚内装入小粒径碳化硅粉源和大粒径碳化硅粉源,再插入石墨柱。
或者,步骤3中,石墨柱底部表面设置有外螺纹,坩埚的底部设置有螺纹孔,石墨柱通过螺纹连接在坩埚上;先将石墨柱以螺纹方式固定在坩埚底,再将小粒径碳化硅粉源和大粒径碳化硅粉源装入坩埚中。
石墨柱的直径为5~15mm,所使用石墨柱的底面积之和占其所在坩埚内腔底面积的20%~40%。
石墨柱均伸入到坩埚底部,且石墨柱顶部高于碳化硅粉源表面10~20mm。
本发明的有益效果是:本发明方法在装填碳化硅粉源时,采用不同粒度的碳化硅粉源混装方式,其中小粒径的碳化硅粉装在粉源中的高温区,大粒径的粉源装在剩余区域,解决了现有技术中因源-衬距逐渐减小影响所制备晶锭厚度的问题。另外,在装填碳化硅粉源时,在碳化硅粉源中置入石墨柱,粉源烧结后取出石墨柱,从而在粉源中形成了升华产生的气相物质的输运通道,进而增加了气相物质输运至晶体生长面的途径,减弱了粉源中的结晶现象,降低了粉源的致密化程度和强度,增大了生长所需气相物质的供应量,提高了晶体生长速率,有利于增加一次投料所制备晶锭的厚度。
具体实施方式
本发明增加一次投料晶锭厚度的碳化硅晶体生长方法,依次进行如下步骤:
步骤1、选定所使用的坩埚,根据实验结果和温场模拟确定该坩埚内腔填粉区域的高温区域。坩埚内腔填粉区域的高温区域的具体方法为:通过计算机模拟坩埚系统温场分布图确定该高温区域,或者在实际晶体生长结束后依据剩余粉料的形状确定升华分解线以内的区域为高温区域。
步骤2、分别确定两种不同粒径的碳化硅粉的数量,并将其区分为大粒径碳化硅粉源和小粒径碳化硅粉源。大粒径碳化硅粉源的粒径范围为200~1500微米,大粒径碳化硅粉源的粒径范围为1~10微米。
步骤3、在坩埚内腔填装碳化硅粉源,将小粒径碳化硅粉源装入步骤1确定的高温区域中,将大粒径碳化硅粉源置于非高温区域,并在碳化硅粉源中设置石墨柱。具体步骤为:先在坩埚内装入小粒径碳化硅粉源和大粒径碳化硅粉源,再插入石墨柱。或者,石墨柱底部表面设置有外螺纹,坩埚的底部设置有螺纹孔,石墨柱通过螺纹连接在坩埚上;先将石墨柱以螺纹方式固定在坩埚底,再将小粒径碳化硅粉源和大粒径碳化硅粉源装入坩埚中。
本发明中根据需要选用的石墨柱均伸入到坩埚底部,且石墨柱顶部高于碳化硅粉源表面10~20mm,以便于操作。石墨柱的直径5~15mm,直径太小会强度不够,直径大则影响添装的碳化硅粉源的数量。石墨柱的数量根据坩埚内径的大小确定,使用石墨柱的底面积之和占其所在坩埚内腔底面积的20%~40%为宜,实验数据表明,此时生长速率高,粉源利用率高。当其余生产工艺参数均相同时,与生长时间60小时、且未采用石墨柱的晶体生长实验相比较,本发明石墨柱的底面积之和占坩埚内粉源分装部分底面积之和的约23%时,粉源的利用率提高了19%,晶体生长速率提高了32%;当本发明石墨柱的底面积之和占坩埚内粉源分装部分底面积之和的约36%时,粉源的利用率提高了31%,晶体生长速率提高了56%。
步骤4、将坩埚装入晶体生长设备中进行粉源烧结和除杂:
先将该晶体生长设备抽取真空;当真空度达到5x10-3Pa以上时加热至800℃,进行氩气循环;将碳化硅粉源温度加热至不低于2300℃,恒温约10分钟;降至室温;抽取真空至真空度达到5x10-3Pa;加热至800℃,进行氩气循环;加热至1350℃,充氩气至生长室压力为0.8x105Pa;加热至源温为2000℃,恒温不低于60分钟;逐步降至室温。
步骤5、从坩埚中取出石墨柱。
步骤6、进行晶体生长操作:抽取真空至真空度达到5x10-3Pa;加热至1000℃,进行氩气循环;加热至1250℃,充氩气至生长室压力为0.8x105Pa;加热至设定的目标温度,维持恒定;以合适的速率降低生长室压力至目标值,并维持恒定一段时间,晶体生长至预定时间后,生长室压力升至0.8x105Pa并维持;逐步降温至室温后关闭加热电源,晶体生长结束。
本发明采用不同粒度的碳化硅粉源混装方式后,高温区的小粒径碳化硅粉源装可在短时间内完全升华分解,仅留下部分碳,大粒径碳化硅粉源在重力的作用下将逐步移至系统高温区,从而降低了粉源的高度,抑制了源-衬距的减小,为厚晶锭制备提供了生长空间。而通过在粉源中置入石墨柱而形成的升华产生的气相物质的输运通道,能扩展气相物质输运至晶体生长面的途径,减弱了粉源中的结晶现象,降低了粉源的致密化程度,增大了生长所需气相物质的供应量,提高了晶体生长速率,有利于一次投料厚晶锭的制备。

Claims (4)

1.一种增加一次投料晶锭厚度的碳化硅晶体生长方法,其特征在于,依次进行如下步骤:
步骤1、选定所使用的坩埚,根据实验结果或温场模拟确定该坩埚内腔填粉区域的高温区域,具体方法为:通过计算机模拟坩埚系统温场分布图确定该高温区域,或者在实际晶体生长结束后依据剩余粉料的形状确定升华分解线以内的区域为高温区域;
步骤2、分别确定两种不同粒径的碳化硅粉的数量,并将其区分为大粒径碳化硅粉源和小粒径碳化硅粉源,大粒径碳化硅粉源的粒径范围为200~1500微米,小粒径碳化硅粉源的粒径范围为1~10微米;
步骤3、在坩埚内腔填装碳化硅粉源,将小粒径碳化硅粉源装入步骤1确定的高温区域中,将大粒径碳化硅粉源置于非高温区域,并在碳化硅粉源中设置石墨柱,石墨柱的直径为5~15mm,所使用石墨柱的底面积之和占其所在坩埚内腔底面积的20%~40%;
步骤4、将坩埚装入晶体生长设备中进行粉源烧结和除杂;
步骤5、从坩埚中取出石墨柱;
步骤6、进行晶体生长操作。
2.按照权利要求1所述的增加一次投料晶锭厚度的碳化硅晶体生长方法,其特征在于,所述步骤3中,先在坩埚内装入小粒径碳化硅粉源和大粒径碳化硅粉源,再插入石墨柱。
3.按照权利要求1所述的增加一次投料晶锭厚度的碳化硅晶体生长方法,其特征在于,所述步骤3中,所述石墨柱底部表面设置有外螺纹,坩埚的底部设置有螺纹孔,所述石墨柱通过螺纹连接在坩埚上;先将石墨柱以螺纹方式固定在坩埚底,再将小粒径碳化硅粉源和大粒径碳化硅粉源装入坩埚中。
4.按照权利要求1、2或3所述的增加一次投料晶锭厚度的碳化硅晶体生长方法,其特征在于,所述石墨柱均伸入到坩埚底部,且石墨柱顶部高于碳化硅粉源表面10~20mm。
CN201210411420.XA 2012-10-25 2012-10-25 增加一次投料晶锭厚度的碳化硅晶体生长方法 Active CN102912431B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210411420.XA CN102912431B (zh) 2012-10-25 2012-10-25 增加一次投料晶锭厚度的碳化硅晶体生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210411420.XA CN102912431B (zh) 2012-10-25 2012-10-25 增加一次投料晶锭厚度的碳化硅晶体生长方法

Publications (2)

Publication Number Publication Date
CN102912431A CN102912431A (zh) 2013-02-06
CN102912431B true CN102912431B (zh) 2015-06-03

Family

ID=47610994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210411420.XA Active CN102912431B (zh) 2012-10-25 2012-10-25 增加一次投料晶锭厚度的碳化硅晶体生长方法

Country Status (1)

Country Link
CN (1) CN102912431B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040104A (zh) * 2015-06-25 2015-11-11 江苏艾科勒科技有限公司 一种制备厚碳化硅单晶晶锭的方法
CN108179470B (zh) * 2017-12-29 2021-04-27 北京华进创威电子有限公司 一种低成本的氮化铝晶体生长方法
CN113026095A (zh) * 2021-03-15 2021-06-25 哈尔滨科友半导体产业装备与技术研究院有限公司 一种提升pvt法制备碳化硅晶体生长速率的方法
CN113089087B (zh) * 2021-04-13 2022-10-28 哈尔滨科友半导体产业装备与技术研究院有限公司 一种提高碳化硅晶体质量的方法
CN113215655B (zh) * 2021-05-12 2023-01-31 中国电子科技集团公司第四十六研究所 一种提升氮化铝单晶生长中块体材料挥发量的填充方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580964A (zh) * 2008-05-12 2009-11-18 中国科学院物理研究所 一种用于生长高质量碳化硅晶体的籽晶托
CN101812723A (zh) * 2010-04-20 2010-08-25 中国科学院上海硅酸盐研究所 基于物理气相传输技术生长碳化硅体单晶方法及其装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580964A (zh) * 2008-05-12 2009-11-18 中国科学院物理研究所 一种用于生长高质量碳化硅晶体的籽晶托
CN101812723A (zh) * 2010-04-20 2010-08-25 中国科学院上海硅酸盐研究所 基于物理气相传输技术生长碳化硅体单晶方法及其装置

Also Published As

Publication number Publication date
CN102912431A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
CN102899718B (zh) 用于提高晶体生长速率的碳化硅晶体生长方法
CN102912431B (zh) 增加一次投料晶锭厚度的碳化硅晶体生长方法
CN210974929U (zh) 碳化硅晶体生长用坩埚和碳化硅晶体生长装置
CN206624942U (zh) 一种物理气相输运法生长碳化硅晶体的装置
CN102732953B (zh) 双籽晶辅助气相传输方法生长碳化硅单晶的技术和装置
CN202440568U (zh) 一种用于生长碳化硅晶棒的石墨坩埚
US20120295112A1 (en) Silicon carbide powder and method for producing silicon carbide powder
CN114990690B (zh) 一种用于气相升华法制备碳化硅单晶的坩埚装置
CN106868584B (zh) 一种单晶炉用电阻加热器及使用该电阻加热器制备硅单晶的方法
CN113120909B (zh) 一种高纯半绝缘碳化硅粉料的制备方法
CN110438565A (zh) 掺镓硅锭的制备方法、掺镓硅锭和硅片
CN102912444B (zh) 用于提高粉源利用率的碳化硅晶体生长坩埚
CN112160020B (zh) 掺杂剂加料器、掺杂半导体材料的制备系统及方法
CN101698960A (zh) 直拉单晶的补料方法及补料装置
CN101597788B (zh) 在氮气下融化多晶硅制备掺氮铸造单晶硅的方法
CN103343385A (zh) 一种异形尺寸的直拉单晶硅及其生长方法
CN203159742U (zh) 一种多晶铸锭用高效坩埚
CN202430332U (zh) 一种物理气相沉积法生长大尺寸碳化硅单晶的石墨坩埚
CN102140689A (zh) 一种生长蓝宝石晶体的方法
CN103114215B (zh) 一种含Ga笼状化合物的制备方法
CN103757703B (zh) 一种高纯度大尺寸碳化硅单晶及其制备工艺
CN113355743A (zh) 一种对碳化硅晶体生长后的剩余烧结原料的再利用方法
CN203834048U (zh) 一种新型pbn坩埚
CN206052208U (zh) 一种可调节碳化硅生长温度梯度的籽晶轴
CN106012021A (zh) 一种液相生长碳化硅的籽晶轴及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant