CN102893387B - 基于石墨烯沟道的器件及其制造方法 - Google Patents
基于石墨烯沟道的器件及其制造方法 Download PDFInfo
- Publication number
- CN102893387B CN102893387B CN201180024337.0A CN201180024337A CN102893387B CN 102893387 B CN102893387 B CN 102893387B CN 201180024337 A CN201180024337 A CN 201180024337A CN 102893387 B CN102893387 B CN 102893387B
- Authority
- CN
- China
- Prior art keywords
- graphene
- contact
- wafer
- channel
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 139
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 134
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 88
- 239000004065 semiconductor Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims description 126
- 239000002184 metal Substances 0.000 claims description 126
- 239000011248 coating agent Substances 0.000 claims description 43
- 238000000576 coating method Methods 0.000 claims description 43
- 238000005530 etching Methods 0.000 claims description 31
- 239000002019 doping agent Substances 0.000 claims description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- FHIVAFMUCKRCQO-UHFFFAOYSA-N diazinon Chemical compound CCOP(=S)(OCC)OC1=CC(C)=NC(C(C)C)=N1 FHIVAFMUCKRCQO-UHFFFAOYSA-N 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 4
- 239000012212 insulator Substances 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 238000004821 distillation Methods 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims 4
- 235000012431 wafers Nutrition 0.000 abstract description 86
- 239000010410 layer Substances 0.000 description 86
- 238000005516 engineering process Methods 0.000 description 29
- 238000000151 deposition Methods 0.000 description 14
- 230000003071 parasitic effect Effects 0.000 description 13
- 230000008021 deposition Effects 0.000 description 10
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 9
- 239000004926 polymethyl methacrylate Substances 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 7
- 239000011435 rock Substances 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000001465 metallisation Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 230000005669 field effect Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000006701 autoxidation reaction Methods 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229920003209 poly(hydridosilsesquioxane) Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- -1 graphite alkene Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8221—Three dimensional integrated circuits stacked in different levels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0688—Integrated circuits having a three-dimensional layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
- H01L27/1207—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1606—Graphene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/775—Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7781—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
- H01L29/78618—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78684—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Claims (22)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/783,676 | 2010-05-20 | ||
US12/783,676 US8445320B2 (en) | 2010-05-20 | 2010-05-20 | Graphene channel-based devices and methods for fabrication thereof |
PCT/EP2011/056581 WO2011144423A1 (en) | 2010-05-20 | 2011-04-26 | Graphene channel-based devices and methods for fabrication thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102893387A CN102893387A (zh) | 2013-01-23 |
CN102893387B true CN102893387B (zh) | 2015-02-25 |
Family
ID=44243209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180024337.0A Active CN102893387B (zh) | 2010-05-20 | 2011-04-26 | 基于石墨烯沟道的器件及其制造方法 |
Country Status (9)
Country | Link |
---|---|
US (4) | US8445320B2 (zh) |
JP (1) | JP5719430B2 (zh) |
KR (1) | KR101419631B1 (zh) |
CN (1) | CN102893387B (zh) |
DE (1) | DE112011100907B4 (zh) |
GB (2) | GB2493238B (zh) |
SG (1) | SG184823A1 (zh) |
TW (1) | TWI497644B (zh) |
WO (1) | WO2011144423A1 (zh) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8796668B2 (en) * | 2009-11-09 | 2014-08-05 | International Business Machines Corporation | Metal-free integrated circuits comprising graphene and carbon nanotubes |
KR20110098441A (ko) * | 2010-02-26 | 2011-09-01 | 삼성전자주식회사 | 그라핀 전자 소자 및 제조방법 |
EP2655246B1 (en) * | 2010-12-23 | 2014-10-22 | Clean Energy Labs, LLC | Methods for making graphene windows |
US8748871B2 (en) | 2011-01-19 | 2014-06-10 | International Business Machines Corporation | Graphene devices and semiconductor field effect transistors in 3D hybrid integrated circuits |
US8409957B2 (en) | 2011-01-19 | 2013-04-02 | International Business Machines Corporation | Graphene devices and silicon field effect transistors in 3D hybrid integrated circuits |
US8716863B2 (en) * | 2011-07-13 | 2014-05-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for high performance interconnect |
US8772910B2 (en) | 2011-11-29 | 2014-07-08 | International Business Machines Corporation | Doping carbon nanotubes and graphene for improving electronic mobility |
US8895417B2 (en) * | 2011-11-29 | 2014-11-25 | International Business Machines Corporation | Reducing contact resistance for field-effect transistor devices |
US8633055B2 (en) | 2011-12-13 | 2014-01-21 | International Business Machines Corporation | Graphene field effect transistor |
KR101946005B1 (ko) * | 2012-01-26 | 2019-02-08 | 삼성전자주식회사 | 그래핀 소자 및 그 제조방법 |
US8680511B2 (en) | 2012-02-09 | 2014-03-25 | International Business Machines Corporation | Bilayer gate dielectric with low equivalent oxide thickness for graphene devices |
US9368581B2 (en) | 2012-02-20 | 2016-06-14 | Micron Technology, Inc. | Integrated circuitry components, switches, and memory cells |
US8809153B2 (en) | 2012-05-10 | 2014-08-19 | International Business Machines Corporation | Graphene transistors with self-aligned gates |
US20140113416A1 (en) * | 2012-06-28 | 2014-04-24 | International Business Machines Corporation | Dielectric for carbon-based nano-devices |
US8816787B2 (en) | 2012-07-18 | 2014-08-26 | International Business Machines Corporation | High frequency oscillator circuit and method to operate same |
US9276524B2 (en) * | 2012-07-18 | 2016-03-01 | International Business Machines Corporation | High frequency oscillator circuit |
KR101919426B1 (ko) * | 2013-01-08 | 2018-11-19 | 삼성전자주식회사 | 그래핀 전자 소자 및 그 제조 방법 |
US9490201B2 (en) * | 2013-03-13 | 2016-11-08 | Intel Corporation | Methods of forming under device interconnect structures |
KR20140118285A (ko) * | 2013-03-28 | 2014-10-08 | 인텔렉추얼디스커버리 주식회사 | 환원된 그래핀 산화물을 이용한 변형 감지 소자 및 그 제조 방법 |
US8889475B1 (en) | 2013-05-30 | 2014-11-18 | International Business Machines Corporation | Self-aligned bottom-gated graphene devices |
KR101424603B1 (ko) | 2013-09-10 | 2014-08-04 | 한국과학기술연구원 | 박막 트랜지스터의 제조 방법 |
KR102116978B1 (ko) * | 2013-10-07 | 2020-05-29 | 삼성전자 주식회사 | 그래핀 소자 및 그 제조 방법 |
CN103840003B (zh) * | 2014-02-21 | 2016-06-29 | 西安电子科技大学 | 以三氧化二铝为栅介质的双栅石墨烯晶体管及其制备方法 |
KR20150121590A (ko) * | 2014-04-21 | 2015-10-29 | 이윤택 | 그래핀의 제조방법 및 그래핀 원자층이 식각되는 그래핀 제조방법 및 웨이퍼결합방법을 구비하는 그래핀 굽힘 트랜지스터, 및 그래핀 굽힘 트랜지스터 |
US9859394B2 (en) | 2014-12-18 | 2018-01-02 | Agilome, Inc. | Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids |
US10020300B2 (en) | 2014-12-18 | 2018-07-10 | Agilome, Inc. | Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids |
US9618474B2 (en) | 2014-12-18 | 2017-04-11 | Edico Genome, Inc. | Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids |
US9857328B2 (en) | 2014-12-18 | 2018-01-02 | Agilome, Inc. | Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same |
US10006910B2 (en) | 2014-12-18 | 2018-06-26 | Agilome, Inc. | Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same |
WO2016100049A1 (en) | 2014-12-18 | 2016-06-23 | Edico Genome Corporation | Chemically-sensitive field effect transistor |
CN104538453B (zh) * | 2014-12-29 | 2018-10-19 | 京东方科技集团股份有限公司 | 薄膜晶体管、阵列基板及其制造方法和显示器件 |
EP3054486B1 (en) | 2015-02-04 | 2021-07-07 | Nokia Technologies Oy | A field-effect apparatus, associated apparatus and methods |
EP3076436A1 (en) * | 2015-03-30 | 2016-10-05 | Nokia Technologies OY | A method and apparatus for providing a transistor |
KR102409390B1 (ko) * | 2015-10-07 | 2022-06-15 | 삼성전자주식회사 | 그래핀 소자 및 그 동작 방법 |
US9882008B2 (en) | 2015-11-05 | 2018-01-30 | Texas Instruments Incorporated | Graphene FET with graphitic interface layer at contacts |
US9881896B2 (en) | 2015-12-17 | 2018-01-30 | International Business Machines Corporation | Advanced chip to wafer stacking |
EP3206235B1 (en) * | 2016-02-12 | 2021-04-28 | Nokia Technologies Oy | Method of forming an apparatus comprising a two dimensional material |
EP3206232A1 (en) * | 2016-02-12 | 2017-08-16 | Centre National de la Recherche Scientifique - CNRS - | Method for obtaining a graphene-based fet, in particular a memory fet, equipped with an embedded dielectric element made by fluorination |
JP6714390B2 (ja) * | 2016-02-26 | 2020-06-24 | 住友電気工業株式会社 | 電子装置およびその製造方法 |
WO2017201081A1 (en) | 2016-05-16 | 2017-11-23 | Agilome, Inc. | Graphene fet devices, systems, and methods of using the same for sequencing nucleic acids |
US10032750B2 (en) * | 2016-06-29 | 2018-07-24 | International Business Machines Corporation | Integrated DC-DC power converters through face-to-face bonding |
JP6675945B2 (ja) * | 2016-07-19 | 2020-04-08 | 住友電気工業株式会社 | グラフェントランジスタおよびその製造方法 |
US10170702B2 (en) * | 2017-01-12 | 2019-01-01 | International Business Machines Corporation | Intermetallic contact for carbon nanotube FETs |
US10121743B2 (en) * | 2017-03-29 | 2018-11-06 | Qualcomm Incorporated | Power distribution networks for a three-dimensional (3D) integrated circuit (IC) (3DIC) |
JP7484674B2 (ja) | 2020-11-18 | 2024-05-16 | 住友電気工業株式会社 | トランジスタ |
CN116569319A (zh) * | 2020-12-10 | 2023-08-08 | 加利福尼亚大学董事会 | Cmos兼容性石墨烯结构、互连体和制造方法 |
EP4391028A1 (en) | 2022-12-23 | 2024-06-26 | Graphenea Semiconductor S.L.U. | Graphene device and method of fabricating a graphene device |
GB2627306A (en) | 2023-02-20 | 2024-08-21 | Paragraf Ltd | A method for the manufacture of a graphene-containing laminate |
CN115985888B (zh) * | 2023-02-23 | 2024-07-05 | 天津大学 | 一种由电容耦合互联得到的集成垂直器件及其制备方法 |
GB2628126A (en) | 2023-03-14 | 2024-09-18 | Paragraf Ltd | Methods for the provision of a coated graphene layer structure on a silicon-containing wafer |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6197663B1 (en) * | 1999-12-07 | 2001-03-06 | Lucent Technologies Inc. | Process for fabricating integrated circuit devices having thin film transistors |
EP1636829B1 (en) * | 2003-06-12 | 2016-11-23 | Georgia Tech Research Corporation | Patterned thin film graphite devices |
WO2005019104A2 (en) | 2003-08-18 | 2005-03-03 | President And Fellows Of Harvard College | Controlled nanotube fabrication and uses |
US6821826B1 (en) * | 2003-09-30 | 2004-11-23 | International Business Machines Corporation | Three dimensional CMOS integrated circuits having device layers built on different crystal oriented wafers |
JP2005285822A (ja) | 2004-03-26 | 2005-10-13 | Fujitsu Ltd | 半導体装置および半導体センサ |
US7180107B2 (en) * | 2004-05-25 | 2007-02-20 | International Business Machines Corporation | Method of fabricating a tunneling nanotube field effect transistor |
JP2005342937A (ja) | 2004-06-01 | 2005-12-15 | National Printing Bureau | 印刷機用ローラ及びその製造方法 |
JP3963393B2 (ja) * | 2005-03-01 | 2007-08-22 | インターナショナル・ビジネス・マシーンズ・コーポレーション | カーボンナノチューブ電界効果トランジスタ及びこれの製造方法 |
US7547917B2 (en) * | 2005-04-06 | 2009-06-16 | International Business Machines Corporation | Inverted multilayer semiconductor device assembly |
WO2007002297A2 (en) | 2005-06-24 | 2007-01-04 | Crafts Douglas E | Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures |
US20060292823A1 (en) * | 2005-06-28 | 2006-12-28 | Shriram Ramanathan | Method and apparatus for bonding wafers |
US7619257B2 (en) * | 2006-02-16 | 2009-11-17 | Alcatel-Lucent Usa Inc. | Devices including graphene layers epitaxially grown on single crystal substrates |
JP5167479B2 (ja) | 2006-06-13 | 2013-03-21 | 国立大学法人北海道大学 | グラフェン集積回路の製造方法 |
JP4669957B2 (ja) | 2007-03-02 | 2011-04-13 | 日本電気株式会社 | グラフェンを用いる半導体装置及びその製造方法 |
KR20100051595A (ko) | 2007-05-25 | 2010-05-17 | 알에프 나노 코포레이션 | 시스템-온-칩 애플리케이션용 집적형 나노튜브 및 cmos 소자 및 제작 방법 |
FR2916902B1 (fr) * | 2007-05-31 | 2009-07-17 | Commissariat Energie Atomique | Transistor a effet de champ a nanotubes de carbone |
KR101443215B1 (ko) | 2007-06-13 | 2014-09-24 | 삼성전자주식회사 | 앰비폴라 물질을 이용한 전계효과 트랜지스터 및 논리회로 |
US7732859B2 (en) | 2007-07-16 | 2010-06-08 | International Business Machines Corporation | Graphene-based transistor |
US8659009B2 (en) | 2007-11-02 | 2014-02-25 | The Trustees Of Columbia University In The City Of New York | Locally gated graphene nanostructures and methods of making and using |
JP2009182173A (ja) * | 2008-01-31 | 2009-08-13 | Fujitsu Ltd | グラフェントランジスタ及び電子機器 |
JP2009277803A (ja) * | 2008-05-13 | 2009-11-26 | Fujitsu Ltd | 半導体装置、半導体装置の製造方法およびトランジスタ |
US7897428B2 (en) | 2008-06-03 | 2011-03-01 | International Business Machines Corporation | Three-dimensional integrated circuits and techniques for fabrication thereof |
US8716805B2 (en) * | 2008-06-10 | 2014-05-06 | Toshiba America Research, Inc. | CMOS integrated circuits with bonded layers containing functional electronic devices |
US7952088B2 (en) | 2008-07-11 | 2011-05-31 | International Business Machines Corporation | Semiconducting device having graphene channel |
US8298914B2 (en) * | 2008-08-19 | 2012-10-30 | International Business Machines Corporation | 3D integrated circuit device fabrication using interface wafer as permanent carrier |
US7858990B2 (en) | 2008-08-29 | 2010-12-28 | Advanced Micro Devices, Inc. | Device and process of forming device with pre-patterned trench and graphene-based device structure formed therein |
US7858989B2 (en) * | 2008-08-29 | 2010-12-28 | Globalfoundries Inc. | Device and process of forming device with device structure formed in trench and graphene layer formed thereover |
US8198707B2 (en) * | 2009-01-22 | 2012-06-12 | Board Of Regents, The University Of Texas System | Establishing a uniformly thin dielectric layer on graphene in a semiconductor device without affecting the properties of graphene |
KR101156620B1 (ko) * | 2009-04-08 | 2012-06-14 | 한국전자통신연구원 | 그라핀 채널층을 가지는 전계 효과 트랜지스터 |
US8895352B2 (en) * | 2009-06-02 | 2014-11-25 | International Business Machines Corporation | Method to improve nucleation of materials on graphene and carbon nanotubes |
US8106383B2 (en) * | 2009-11-13 | 2012-01-31 | International Business Machines Corporation | Self-aligned graphene transistor |
US8278643B2 (en) * | 2010-02-02 | 2012-10-02 | Searete Llc | Doped graphene electronic materials |
KR101813176B1 (ko) * | 2011-04-07 | 2017-12-29 | 삼성전자주식회사 | 그래핀 전자 소자 및 제조방법 |
US8772910B2 (en) * | 2011-11-29 | 2014-07-08 | International Business Machines Corporation | Doping carbon nanotubes and graphene for improving electronic mobility |
KR101919424B1 (ko) * | 2012-07-23 | 2018-11-19 | 삼성전자주식회사 | 트랜지스터 및 그 제조방법 |
-
2010
- 2010-05-20 US US12/783,676 patent/US8445320B2/en active Active
-
2011
- 2011-04-26 WO PCT/EP2011/056581 patent/WO2011144423A1/en active Application Filing
- 2011-04-26 JP JP2013510543A patent/JP5719430B2/ja not_active Expired - Fee Related
- 2011-04-26 GB GB1208558.5A patent/GB2493238B/en not_active Expired - Fee Related
- 2011-04-26 GB GB1402301.4A patent/GB2507686B/en not_active Expired - Fee Related
- 2011-04-26 DE DE112011100907.0T patent/DE112011100907B4/de not_active Expired - Fee Related
- 2011-04-26 CN CN201180024337.0A patent/CN102893387B/zh active Active
- 2011-04-26 SG SG2012075578A patent/SG184823A1/en unknown
- 2011-04-26 KR KR1020127025653A patent/KR101419631B1/ko not_active IP Right Cessation
- 2011-05-20 TW TW100117872A patent/TWI497644B/zh not_active IP Right Cessation
-
2013
- 2013-05-02 US US13/875,675 patent/US8900918B2/en active Active
- 2013-05-02 US US13/875,642 patent/US8698165B2/en active Active
- 2013-05-02 US US13/875,715 patent/US8878193B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
GB2493238A (en) | 2013-01-30 |
US20110284818A1 (en) | 2011-11-24 |
CN102893387A (zh) | 2013-01-23 |
US8445320B2 (en) | 2013-05-21 |
KR20130018735A (ko) | 2013-02-25 |
JP5719430B2 (ja) | 2015-05-20 |
DE112011100907B4 (de) | 2017-11-23 |
SG184823A1 (en) | 2012-11-29 |
US20130302940A1 (en) | 2013-11-14 |
GB2493238B (en) | 2014-04-16 |
US8900918B2 (en) | 2014-12-02 |
GB201402301D0 (en) | 2014-03-26 |
GB201208558D0 (en) | 2012-06-27 |
US8698165B2 (en) | 2014-04-15 |
DE112011100907T5 (de) | 2013-01-03 |
US20130234114A1 (en) | 2013-09-12 |
US20130240839A1 (en) | 2013-09-19 |
WO2011144423A1 (en) | 2011-11-24 |
TW201207994A (en) | 2012-02-16 |
GB2507686B (en) | 2014-07-16 |
US8878193B2 (en) | 2014-11-04 |
KR101419631B1 (ko) | 2014-07-15 |
TWI497644B (zh) | 2015-08-21 |
GB2507686A (en) | 2014-05-07 |
JP2013531878A (ja) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102893387B (zh) | 基于石墨烯沟道的器件及其制造方法 | |
US8466054B2 (en) | Thermal conduction paths for semiconductor structures | |
KR101758852B1 (ko) | 후면 방열 기능을 갖는 반도체-온-절연체 | |
JP5048230B2 (ja) | 半導体装置およびその製造方法 | |
TWI280661B (en) | CMOS fabricated on different crystallographic orientation substrates | |
JP2013522873A (ja) | グラフェン・ベースの三次元集積回路デバイス | |
US20220130762A1 (en) | Semiconductor structure and manufacture method thereof | |
CN107342258B (zh) | 多个背栅极晶体管 | |
US10083880B2 (en) | Hybrid ETSOI structure to minimize noise coupling from TSV | |
US20150325495A1 (en) | Electronic device and method for manufacturing the same, and substrate structure and method for manufacturing the same | |
US11545556B2 (en) | Semiconductor device with air gap between gate-all-around transistors and method for forming the same | |
JP2017523614A (ja) | 自己整合裏面特徴部を有する半導体デバイス | |
TWI692039B (zh) | 半導體裝置的製作方法 | |
CN102725850B (zh) | 具有减小的寄生电容的体接触晶体管 | |
US11894304B2 (en) | Semiconductor device with air gap below landing pad and method for forming the same | |
US20240274485A1 (en) | Heat dissipation in semiconductor devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20171106 Address after: Grand Cayman, Cayman Islands Patentee after: GLOBALFOUNDRIES INC. Address before: American New York Patentee before: Core USA second LLC Effective date of registration: 20171106 Address after: American New York Patentee after: Core USA second LLC Address before: American New York Patentee before: International Business Machines Corp. |
|
TR01 | Transfer of patent right |