CN102811811B - 通过溶胶凝胶封装法将Ni纳米畴植入难熔金属氧化物载体——一种有效地解决天然气部分氧化中生焦的方案 - Google Patents

通过溶胶凝胶封装法将Ni纳米畴植入难熔金属氧化物载体——一种有效地解决天然气部分氧化中生焦的方案 Download PDF

Info

Publication number
CN102811811B
CN102811811B CN201180012988.8A CN201180012988A CN102811811B CN 102811811 B CN102811811 B CN 102811811B CN 201180012988 A CN201180012988 A CN 201180012988A CN 102811811 B CN102811811 B CN 102811811B
Authority
CN
China
Prior art keywords
metal oxide
catalyst
nickel
farmland
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180012988.8A
Other languages
English (en)
Other versions
CN102811811A (zh
Inventor
洪亮
殷雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Singapore
Original Assignee
National University of Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Singapore filed Critical National University of Singapore
Publication of CN102811811A publication Critical patent/CN102811811A/zh
Application granted granted Critical
Publication of CN102811811B publication Critical patent/CN102811811B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

金属氧化物负载的镍催化剂包含基体和催化位点,所述基体包含金属氧化物,所述催化位点分布在整个所述基体并与所述基体具有复杂界面,其中所述催化位点选自纳米镍(0)畴和纳米镍(0)-A(0)合金畴。还公开了一种用于制备该催化剂的方法和使用所述催化剂通过C1至C5烃部分氧化而产生一氧化碳和氢的方法。

Description

通过溶胶凝胶封装法将Ni纳米畴植入难熔金属氧化物载体——一种有效地解决天然气部分氧化中生焦的方案
发明背景
甲烷的催化部分氧化(或干重整)(POM)、存在于天然气中的其它轻烷化合物(例如,C2至C5烷)和醇产生合成气(CO+2H2)可组合为阳极反应(CH4+O2-→CO+2H2+2e-)和阴极反应(空气的电化学分离(1/2O2+2e-→O2-)),从而形成催化膜反应器。这种组合在节约能源以及产生H2、N2和一系列有用的化学中间体方面有着最重要的商业价值。当前,工业重整轻烃气体的障碍仍然是由于在Ni(0)催化位点上沉积碳导致金属氧化物负载的Ni(0)催化剂的失活。
本发明通过开发一种制备催化剂的新型合成途径从而提供了解决这个困难的方案。
发明内容
在一个方面中,本发明的特征在于包含基体(含有金属氧化物)和催化位点(其分布在整个所述基体并与所述基体具有复杂界面)的金属氧化物负载的镍催化剂,其中所述金属氧化物可以是Al2O3、SiO2、CaO、MgO、ZrO2、CeO2、TiO2或Y2O3(例如,Al2O3、SiO2、CaO或ZrO2);以及所述催化位点可以是纳米镍(0)畴(domain)或纳米镍(0)-A(0)合金畴,A是Rh、Pd、Pt、Ru、Cu或Co(例如,Rh),假设当催化位点是纳米镍(0)-A(0)合金畴时,镍(0)构成所述合金畴中的至少95%。基于所述催化剂的总重量,包含金属氧化物的基体的重量百分比为70%至85%和催化位点的重量百分比为15%至30%(例如,18%至22%)。
这些催化剂位点中的每个均与基体具有复杂(即,复合物相互渗透的)界面。换言之,在催化位点和基体之间没有清晰的界面边界。特定的界面是由催化位点和基体之间在它们的界面边界上混合(amalgamation)而造成的。
在另一个方面中,本发明的特征在于制备金属氧化物负载的镍催化剂的方法。所述方法包括至少5个步骤:(i)在水介质中产生(NixOy)(OH)2(x-y)颗粒和任选地选自(AnOm)(OH)3(n-2/3m)颗粒和(AnOm)(OH)2(n-m)颗粒的包含另一金属的颗粒,从而形成胶态悬浮体,其中1≤x≤100,y<x,1≤n≤100,m<n,A是选自Rh、Pd、Pt、Ru、Cu和Co的金属并通过表面活性剂稳定所述颗粒;(ii)将式Mp(OR)q的化合物添加至胶态悬浮体,从而形成溶胶,其中p是1;q可以是2、3或4;M可以是Al、Si、Ca、Mg、Zr、Ce、Ti或Y;并且R可以是H或CgH2g+1,g是1至4的整数;(iii)在足够的温度(例如,60℃至100℃)下加热所述溶胶以形成凝胶;(iv)在正好足够高至烧尽有机化合物的温度(例如,580℃至620℃)下煅烧所述凝胶,从而形成金属氧化物负载的氧化镍催化剂,其包含NiO和任选AnOm;和(v)还原所述金属氧化物负载的氧化镍催化剂以形成包含分别选自纳米镍(0)畴和纳米镍(0)-A(0)合金畴的催化位点的金属氧化物负载的镍催化剂。所述还原步骤可在氢或甲烷中进行。
将(NixOy)(OH)2(x-y)颗粒、(AnOm)(OH)3(n-2/3m)颗粒和(AnOm)(OH)2(n-m)颗粒通过使用任何导致稳定水包油乳液的表面活性剂进行稳定。尤其,可使用其亲水亲油平衡值为8至16的表面活性剂或表面活性剂的共混物。例如,可使用正十六烷基三甲基溴化铵。
通过上述方法制备的金属氧化物负载的镍催化剂也在本发明的范围内。
在又一个方面中,本发明的特征在于通过C1至C5烃部分氧化生产一氧化碳和氢的方法。在该方法中,将包含C1至C5烃和氧气的气态流注入反应器,其中放置了上述金属氧化物负载的镍催化剂用以在700℃至900℃产生一氧化碳和氢。如上述,在该方法中所使用的金属氧化物负载的镍催化剂包含催化位点,所述催化位点可以是纳米镍(0)畴或纳米镍(0)-A(0)合金畴并且与基体具有特定的界面。该界面可有效地防止Ni畴在典型的催化干重整温度(800℃至900℃)下发生融合。结果,所述催化剂成为对焦化高度免疫。例如,它可以在长时间的(例如,6小时)甲烷部分氧化期间保持高甲烷转化(XCH4>90%)和合成气选择性(SCO>85%)。
本发明一个或更多个实施方案的细节在以下陈述。本发明其它的特征、目的和优势从下列附图、数个实施方案的详细描述以及还从所附权利要求中显而易见。
详细说明
本发明部分基于出乎意料的发现,即某个制备方法导致金属氧化物负载的镍催化剂在长时间甲烷部分氧化时保持高甲烷转化(XCH4>90%)和合成气选择性(SCO>85%)。
合成气是一种重要的工业气体混合物,其具有在氢、甲醇、醋酸生产和费托(Fischer-Tropsch(FT))合成法方面的应用,用以制备合成燃料。合成气在VIII族金属(例如,Rh、Ru、Pt、Ir、Pd、Ni)催化剂存在的情况下在高温(850℃至1000℃)加压(10atm至40atm)下通过天然气的蒸汽重整(CH4+H2O→CO+3H2)而进行商业生产。然而,这是一个高度吸热过程。与此相反,催化甲烷部分氧化(POM)生产合成气是温和的放热过程(-35.7kJ.mol-1),因此已经广泛地研究了很多年(CH4+1/2O2→CO+2H2)。与传统蒸汽重整过程相比,部分氧化在少量热释放、低压和较小的反应器方面具有优势。
负载的镍催化剂,尤其是在耐火材料(例如,Al2O3、SiO2、ZrO2、CeO2、TiO2、MgO、CaO、La2O3、Y2O3、HfO2、Si3N4、Sm2O3)上负载的镍,已被开发用于进行POM。迄今,由于缺乏合格的催化剂,轻烃气体的催化部分氧化还没有在工业规模上进行。工业上竞争性重整催化剂必须是经济的、展现高原料转化和针对合成气的高选择性,以及在指定的操作时期确保稳定的性能。总之,Ni催化剂系统的主要优势在于低成本和通常高活性及选择性。然而,它们遭受低稳定性,这是由于在重整温度(800℃至900℃)下纯Ni金属催化剂的烧结和在Ni位点上生焦(碳沉积)。
因此,进行了大量的工作以改进镍催化剂系统的稳定性。已经理解生焦可通过还原Ni晶体而被显著减轻;然而,减小活性镍颗粒大小削弱了它们对烧结的抗性。因此,为了实现基于高性能的催化稳定性,期望的催化剂结构必须能够同时抑制生焦和烧结二者。在近十年,针对这个目的的努力产生了3个代表性的进步,如下述。
Ruckenstein等(“MethanePartialOxidationOverNiO/MgOSolidSolutionCatalysts,”Appl.Catal.A183:85-92(1999))公开了用于以高空速部分氧化甲烷产生合成气的NiO/MgO固溶体催化剂。NiO(35mol%)/MgO催化剂在850℃下显示了良好的稳定性达50小时;然而,NiO/MgO催化剂的活性和稳定性对NiO浓度敏感,即改变该固溶体组成将引起最初优势的丧失。
Takenaka等(“SpecificPerformanceofSilica-coatedNiCatalystsforthePartialOxidationofMethanetoSynthesisGas,”J.Catalysis245:392-400(2007))公开了用于制备用10nm二氧化硅层覆盖的纳米尺寸镍金属颗粒(5nm)的油包水微乳液的方法。事实上,该催化剂制造工艺比传统的浸渍法带来了负载的Ni催化剂的催化稳定性的很大改进。然而,通过这种方式,在催化剂中活性镍浓度很低(<5wt%)。用此类低负载水平的催化组分,高温(~850℃)成为实现高原料转化和合成气选择性的必需。然而,在高重整温度下,为了在长时间下保持POM的稳定输出,Ni负载水平应该足够的高(>10wt%)以忍受镍物质的蒸发。
将贵金属(如Rh和Pt)结合到负载的Ni催化剂是另一个有效措施以改进负载的Ni重整催化剂系统[Choudhary等“BeneficialEffectsofNobleMetalAdditiontoNi/Al2O3CatalystforOxidativeMethane-to-SyngasConversion,”J.Catalysis157(1995)752-754]。但是,这个方法显然增加了材料成本。
总之,就负载的Ni催化剂而言,仍然是一个相当有挑战的任务以保持反应气体的高转化率和CO和H2的高选择性(甚至试运行)。由于上述困难,现有负载的镍催化剂中没有具有宣称的此类特点。
本发明开发了一种新的化学制备方法,其在一般采用的难熔氧化物载体中制定独特显微结构的活性Ni位点。结果,催化剂在POM中在长反应时间(例如,300小时)中展现了稳定的高活性和选择性。通过该方法,(NixOy)(OH)2(x-y)溶胶颗粒和任选地包含另一金属的溶胶颗粒(选自(AnOm)(OH)3(n-2/3m)颗粒和(AnOm)(OH)2(n-m)颗粒,A是Rh、Pd、Pt、Ru、Cu或Co)在水性介质中(在其产生时)通过合适的表面活性剂进行稳定。之后,这些溶胶颗粒被分散在大量过量的金属氢氧化物(R=H)或金属有机氧化物(R=CgH2g+1、g=1至4)[Mp(OR)q]的溶胶分散体中,其中金属M代表耐熔载体(例如,Al2O3、SiO2、CaO、MgO、ZrO2、CeO2、TiO2或Y2O3)的金属离子。之后,由Mp(OR)q产生的溶胶颗粒经受凝胶化,同时将表面活性剂包封的(NixOy)(OH)2(x-y)溶胶颗粒(和任选地上述包含另一金属的溶胶颗粒)原位嵌入形成的MpOq凝胶。之后,将生成的(NixOy)(OH)2(x-y)溶胶(和任选地包含另一金属的溶胶颗粒)/MpOq凝胶系统在空气中煅烧以形成金属氧化物负载的氧化镍催化剂,接着在H2中还原以产生期望的负载的Ni催化剂。MpOq凝胶的约束作用防止镍晶粒聚集,因此有效地抑制了焦碳沉积,如通过电子显微研究所证明的。
显著地,如下述实施例所示,金属氧化物负载的氧化镍催化剂还可在CH4中在通常落入700℃至950℃的反应温度下被还原(NiO+nCH4→Ni(Cn)+xH2+yH2O,x>>y)。在这个温度范围中,由于甲烷的自动着火温度为约600℃,所以它将同时经受燃烧。从燃烧中产生的二氧化碳和水蒸气(CH4+2O2→CO2+2H2O)将进一步通过反应(CO2+C→2CO和2H2O+C→CO2+2H2)清理在Ni上形成的碳丝。
另外,重要的是,注意,即使Ni晶体位于具有相同Ni负载水平(例如,20wt%)的相同载体(例如,ZrO2)上,本发明的方法和常规的浸渍法引起两个完全不同的化学微环境,如通过程序升温还原(TPR)实验所证明的。本发明催化剂的TPR显示了在700℃和880℃两个等效还原峰,而通过浸渍法所获得的催化剂显示了在420℃一个还原峰以及在500℃和550℃两个肩峰。对于TPR图,高温峰是由于位于界面区域的NiO还原所造成的。本发明的催化剂显示了需要非常高的温度(880℃)以驱动界面NiO物质的还原。另外,与在700℃的体相还原(bulkreduction)峰相比,展现了对于界面物质还原的相当的峰面积,这意味着在样品中存在显著量的这些物质。
原则上,H2还原温度揭示了关于Ni晶体所处的化学微环境的信息。为了还原NiO畴(其尺寸较小并且与载体的基体混合至较高的程度),通常需要较高的还原温度。结果,还原后产生了更小和更多分散地嵌入的Ni晶体。本发明的NiO-金属氧化物催化剂在每个NiO畴和基体之间提供了高度分散的界面,以致与通过在ZrO2上热沉积Ni(NO3)2而制备NiO相比,还原NiO畴需要高得多的TPR温度。
另外,显微结构的基于TPR的解释可通过透射电子显微镜(TEM)进行证实,其应该在TEM图像上显示与ZrO2载体形成对照的Ni(0)颗粒,假设Ni(0)颗粒在它们与载体之间具有清晰的边界。TEM图像证明,对于大量(即,20wt%)Ni负载量,Ni(0)颗粒不能通过TEM与基体区分,这表明Ni(0)颗粒是微型的并且与基体拥有共有的渗透界面。
相信上述已经充分地解释了本发明,所以不再进一步的阐述。因此,下述实施例仅仅是作为示例进行解释,并且不以任何方式限制本公开的余下部分。本文所引用的全部出版物其全部通过引入并入本文。
实施例
实施例1:制备Al2O3负载的Ni催化剂
在65℃下通过搅拌将15.0gNi(NO3)2.6H2O和5.0g正十六烷基三甲基溴化铵(CTAB)溶解于100ml水中,使溶液冷却至室温后将10ml四甲基氢氧化铵(TMAH,1.0M水溶液)添加至溶液立即混合。将上述混合物搅拌约1小时后,形成稳定的(NixOy)(OH)2(x-y)胶态悬浮体。然后在室温下将60g异丙醇铝引入所得(NixOy)(OH)2(x-y)胶态悬浮体,并且将形成的悬浮体使用陶瓷介质进行球磨72小时,产生均匀的溶胶分散体。将该溶胶分散体在80℃稠化以形成固体凝胶,最后将固体凝胶在600℃进行煅烧4小时以产生具有22wt%镍负载量的Al2O3负载的Ni催化剂。
实施例2:制备SiO2负载的Ni催化剂
在65℃下通过搅拌将15.0gNi(NO3)2.6H2O和5.0gCTAB溶解于100ml水中,溶液冷却至室温后将10mlTMAH(1.0M水溶液)添加至溶液立即混合。将上述混合物搅拌约1小时后,形成稳定的(NixOy)(OH)2(x-y)胶态悬浮体。然后在室温下将60ml原硅酸四乙酯(TEOS)引入所得(NixOy)(OH)2(x-y)胶态悬浮体。通过在室温下搅拌过夜使混合物均匀,之后在65℃继续搅拌24小时以使得TEOS完全水解,从而形成溶胶分散体。在80℃稠化后使该溶胶分散体转化成固体凝胶,最后将固体凝胶在600℃进行煅烧4小时以产生具有18wt%镍负载量的SiO2负载的Ni催化剂。
实施例3:制备CaO负载的Ni催化剂
在65℃下通过搅拌将15.0gNi(NO3)2.H2O和5.0gCTAB溶解于100ml水中,溶液冷却至室温后将10mlTMAH(1.0M水溶液)添加至溶液立即混合。将上述混合物搅拌约1小时后,形成稳定的(NixOy)(OH)2(x-y)胶态悬浮体。然后在室温下将12gCaO引入所得(NixOy)(OH)2(x-y)胶态悬浮体,该悬浮体使用陶瓷进行球磨72小时。在这个过程中,CaO的表面在碱性介质中成为包含Ca(OH)2物质的水凝胶层。因此,(NixOy)(OH)2(x-y)溶胶颗粒可有效地进入这个水凝胶层。在80℃稠化该悬浮体以形成固体凝胶,最后将固体凝胶在600℃进行煅烧4小时以产生具有22wt%镍负载量的CaO负载的Ni催化剂。
实施例4:制备20wt%Ni-ZrO2催化剂
在65℃下通过搅拌将15.0gNi(NO3)2.6H2O和5.0gCTAB溶解于100ml水中,溶液冷却至室温后将10mlTMAH(1.0M水溶液)添加至溶液立即混合。将上述混合物搅拌约1小时后,形成稳定的(NixOy)(OH)2(x-y)胶态悬浮体。然后在室温下将47g丁醇锆(IV)(80wt%溶液,正丁醇中)引入所得(NixOy)(OH)2(x-y)胶态悬浮体,然后将产生的悬浮体搅拌过夜以完全水解,这产生均匀的溶胶分散体。在80℃将溶胶分散体稠化以形成固体凝胶,最后将固体凝胶在600℃进行煅烧4小时以产生具有20wt%镍负载量的ZrO2负载的Ni催化剂。
对比实施例:通过浸渍法制备20wt%Ni-ZrO2催化剂
通过在水中水解丁醇锆(IV)得到纯ZrO2粉末,然后在600℃煅烧4小时。所得ZrO2粉末的平均粒径为约300nm和BET表面面积为10.2m2/g。之后,将1.6gZrO2引入由1.98gNi(NO3)2.6H2O和50ml水组成的水溶液。干燥所得悬浮液并在600℃煅烧4小时以形成具有20wt%镍负载量的ZrO2负载的Ni催化剂。
实施例5:评估在POM中负载的Ni催化剂
针对在850℃下甲烷部分氧化,评价获自上述制备方法的催化剂。例如,对于Al2O3-Ni催化剂,反应物流包含4种组分:He/N2/CH4/O2(摩尔比为37.3/3.8/2/1),气时空速(gashourlyspacevelocity(GHSV))为每小时245,195。在6小时的反应运行时间(time-on-stream)后,甲烷转化率高于95%,CO选择性高于98%以及H2/CO摩尔比为2/1。
表1:不同催化剂POM性能的比较
实施例6:测试在POM中ZrO2-Ni催化剂的催化稳定性
在用于催化POM(如表1所列)后,ZrO2-Ni催化剂在新的一轮中重复使用,其中反应气体混合物He/N2/CH4/O2的摩尔比为37.3/3.8/2/1,GHSV为每小时125,200。经300小时催化剂稳定地展示出POM的非常高的活性(XCH4>95%)和选择性(SCO>95%)。
实施例7:制备ZrO2负载的Ni(Rh)催化剂
在65℃下通过搅拌将15.0gNi(NO3)2.6H2O、0.40gRhCl3xH2O和5.1gCTAB溶解于100ml水中,溶液冷却至室温后将10.5mlTMAH(1.0M水溶液)添加至该溶液并立即混合。将上述混合物搅拌约1小时后,形成包含(NixOy)(OH)2(x-y)和(RhnOm)(OH)3(n-2/3m)溶胶颗粒的稳定的胶态悬浮体。然后在室温下将47g丁醇锆(IV)(80wt%正丁醇溶液)引入所得胶态悬浮体,接着将产生的悬浮体搅拌过夜以完全水解,这产生均匀的溶胶分散体。在80℃将溶胶分散体稠化以形成固体凝胶,最后将固体凝胶在600℃经受煅烧4小时以产生具有20wt%Ni-Rh合金负载量的ZrO2负载的Ni(97.08mol%)-Rh(2.92mol%)催化剂。
实施例8:制备ZrO2负载的Ni(Pd)催化剂
在65℃下通过搅拌将15.0gNi(NO3)2.6H2O、3mLPd(NO3)2溶液(10wt%,d=1.118g/mL)和5.1gCTAB溶解于100ml水中,溶液冷却至室温后将10.5mlTMAH(1.0M水溶液)添加至溶液并立即混合。将上述混合物搅拌约1小时后,形成包含(NixOy)(OH)2(x-y)和(PdnOm)(OH)2(n-m)溶胶颗粒的稳定的胶态悬浮体。然后在室温下将47g丁醇锆(IV)(80wt%正丁醇溶液)引入所得胶态悬浮体,接着将产生的悬浮体搅拌过夜以完全水解,产生均匀的溶胶分散体。在80℃将溶胶分散体稠化以形成固体凝胶,最后将固体凝胶在600℃经受煅烧4小时以产生具有20wt.%Ni-Pd合金负载量的ZrO2负载的Ni(97.26mol%)-Pd(2.74mol%)催化剂。
另一些实施方案
在本说明书中所公开的所有特征可以以任何组合合并。在本说明书中所公开的每个特征可替换为具有相同、等价或类似目的的可替换的特征。因此,除非另有明确的说明,否则所公开的每个特征仅是一般系列等价或类似特征的实例。
从上述中,本领域技术人员可简单地确定本发明的基本特征,并且在没有背离本发明精神和范围的情况下,可使本发明进行多种改变和修改以使其适应多种用法和条件。因此,另一些实施例也在下述权利要求的范围内。

Claims (8)

1.一种通过以下方法制备的金属氧化物负载的镍催化剂,所述方法包括:
在水性介质中产生(NixOy)(OH)2(x-y)颗粒和任选的选自(AnOm)(OH)3(n-2/3m)和(AnOm)(OH)2(n-m)颗粒的含另一金属的颗粒,从而形成胶态悬浮体,其中1≤x≤100,y<x,1≤n≤100,m<n,A是选自Rh、Pd、Pt、Ru、Cu和Co的金属,以及所述颗粒通过表面活性剂稳定;
将式Mp(OR)q的化合物添加至所述胶态悬浮体以形成溶胶,其中p是1;q是2、3或4;M是选自Al、Si、Ca、Mg、Zr、Ce、Ti和Y的金属;并且R是H或CgH2g+1,g是1至4的整数;
加热所述溶胶以形成凝胶;
煅烧所述凝胶以形成金属氧化物负载的氧化镍催化剂;和
还原所述金属氧化物负载的氧化镍催化剂以形成金属氧化物负载的镍催化剂;
其中所述金属氧化物负载的镍催化剂包含70wt%至85wt%的含有金属氧化物的基体;和18wt%至22wt%的分布在整个所述基体中并与所述基体之间没有清晰的界面边界的催化位点,其中所述金属氧化物选自Al2O3、SiO2、CaO、MgO、ZrO2、CeO2、TiO2和Y2O3;和所述催化位点选自纳米镍(0)畴和纳米镍(0)-A(0)合金畴,A是Rh、Pd、Pt、Ru、Cu或Co,在所述催化位点是纳米镍(0)-A(0)合金畴时,镍(0)为所述合金畴中的至少95wt%。
2.根据权利要求1所述的催化剂,其中在所述产生步骤中只产生了(NixOy)(OH)2(x-y)颗粒从而形成金属氧化物负载的纳米镍(0)畴催化剂。
3.根据权利要求2所述的催化剂,其中所述金属氧化物是Al2O3、SiO2、CaO或ZrO2
4.根据权利要求1所述的催化剂,其中在所述产生步骤中产生(NixOy)(OH)2(x-y)颗粒和含另一金属的颗粒二者从而形成金属氧化物负载的纳米镍(0)-A(0)合金畴催化剂。
5.根据权利要求4所述的催化剂,其中A是Rh。
6.根据权利要求4所述的催化剂,其中所述金属氧化物是Al2O3、SiO2、CaO或ZrO2
7.根据权利要求6所述的催化剂,其中A是Rh。
8.一种通过C1-C5烃的部分氧化来产生一氧化碳和氢的方法,所述方法包括
在反应器中放置权利要求1的金属氧化物负载的镍催化剂,和
向所述反应器中注入包含C1-C5烃和氧气的气态流以使得所述C1-C5烃与氧气在700℃至900℃下反应,从而产生一氧化碳和氢。
CN201180012988.8A 2010-03-08 2011-03-08 通过溶胶凝胶封装法将Ni纳米畴植入难熔金属氧化物载体——一种有效地解决天然气部分氧化中生焦的方案 Expired - Fee Related CN102811811B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31165710P 2010-03-08 2010-03-08
US61/311,657 2010-03-08
PCT/SG2011/000090 WO2011112152A1 (en) 2010-03-08 2011-03-08 Implantation of ni nano domains in refractory metal oxide support by means of sol-gel encapsulation - an effective solution to coke formation in the partial oxidation of natural gas

Publications (2)

Publication Number Publication Date
CN102811811A CN102811811A (zh) 2012-12-05
CN102811811B true CN102811811B (zh) 2015-11-25

Family

ID=44563735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180012988.8A Expired - Fee Related CN102811811B (zh) 2010-03-08 2011-03-08 通过溶胶凝胶封装法将Ni纳米畴植入难熔金属氧化物载体——一种有效地解决天然气部分氧化中生焦的方案

Country Status (5)

Country Link
US (2) US8658559B2 (zh)
EP (1) EP2544816A4 (zh)
JP (1) JP2013522005A (zh)
CN (1) CN102811811B (zh)
WO (1) WO2011112152A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102035714B1 (ko) * 2012-08-08 2019-10-23 연세대학교 원주산학협력단 탄화수소 개질용 니켈 촉매
CN104399470A (zh) * 2014-12-10 2015-03-11 太原理工大学 一种用于甲烷部分氧化的介孔三氧化二铝镍基催化剂的制备方法
US10351424B2 (en) * 2015-03-30 2019-07-16 Council Of Scientific & Industrial Research Nano Ni—Zr oxide catalyst for activation of methane by tri-reforming and a process for the preparation thereof
US9630167B2 (en) * 2015-04-09 2017-04-25 Council Of Scientific & Industrial Research Ni nano cluster support on MgO—CeO2—ZrO2 catalyst for tri-reforming of methane and a process for preparation thereof
TWI611839B (zh) * 2016-09-07 2018-01-21 國立清華大學 應用於低碳烴之低溫部分氧化產氫之觸媒
CN108097256B (zh) * 2017-12-29 2020-08-18 中山大学 一种催化湿式氧化降解腐殖质的催化剂及其制备方法
WO2020080400A1 (ja) * 2018-10-19 2020-04-23 日本化学産業株式会社 担持金属触媒及びその製造方法
US11724937B2 (en) * 2021-12-22 2023-08-15 King Abdulaziz University Method of dry reforming of methane
CN115212872B (zh) * 2022-08-03 2023-08-15 中山大学 一种氢氧直接合成高浓度过氧化氢的单原子合金催化剂及其制备方法
CN115888725B (zh) * 2022-09-20 2024-04-16 山西大学 一种c2+烷烃和二氧化碳向合成气转化反应的催化剂及制备
CN115920915B (zh) * 2023-01-12 2024-05-07 成都理工大学 用于乙酸自热重整制氢的烧绿石型镍基催化剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403195A (zh) * 2002-08-23 2003-03-19 中国科学院兰州化学物理研究所 镍基催化剂的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2106415B (en) * 1981-10-01 1985-03-13 Atomic Energy Authority Uk A method of preparing a supported catalyst
DE3347676A1 (de) * 1983-12-31 1985-07-11 VEG-Gasinstituut N.V., Apeldoorn Kupfer-nickel-katalysator, verfahren zu seiner herstellung und dessen verwendung
JPS63248444A (ja) * 1987-04-03 1988-10-14 Tokyo Gas Co Ltd 炭化水素の水蒸気改質および/または部分酸化用触媒
US6409940B1 (en) 1999-10-18 2002-06-25 Conoco Inc. Nickel-rhodium based catalysts and process for preparing synthesis gas
US6911161B2 (en) 2002-07-02 2005-06-28 Conocophillips Company Stabilized nickel-containing catalysts and process for production of syngas
TW200422260A (en) * 2002-11-07 2004-11-01 Sustainable Titania Technology Titania-metal complex and method for preparation thereof, and film forming method using dispersion comprising the complex
JP2005066463A (ja) * 2003-08-25 2005-03-17 Mitsubishi Heavy Ind Ltd 微細界面構造を有する触媒及びその製造方法
JP2005144402A (ja) * 2003-11-19 2005-06-09 Sangaku Renkei Kiko Kyushu:Kk 炭化水素の部分酸化用触媒およびそれを用いた合成ガスの製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403195A (zh) * 2002-08-23 2003-03-19 中国科学院兰州化学物理研究所 镍基催化剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Highly coking resistant and stable Ni/Al2O3 catalysts prepared by W/O microemulsion for partial oxidation of methane;Shan Xu et al.;《Fuel Processing Technology》;20041125;第86卷(第2期);第123页 摘要,第124-125页 1.前言、2.1催化剂的制备、2.3催化反应 *
微乳化法制备Ni/Al2O3催化剂及其在甲烷部分氧化反应中的高温稳定性和抗积炭性能;许珊 等;《复旦学报(自然科学版)》;20030630;第42卷(第3期);全文 *
掺杂镧对Ni-Si甲烷裂解催化剂性能影响的研究;于瀛 等;《稀有金属》;20090630;第33卷(第3期);全文 *
甲烷催化部分氧化制合成气的研究进展;孙长庚 等;《化学工业与工程》;20040825;第21卷(第4期);第277页 2.1 Ni系负载型催化剂 *

Also Published As

Publication number Publication date
CN102811811A (zh) 2012-12-05
EP2544816A1 (en) 2013-01-16
US20140077134A1 (en) 2014-03-20
US8658559B2 (en) 2014-02-25
WO2011112152A1 (en) 2011-09-15
US20130065751A1 (en) 2013-03-14
EP2544816A4 (en) 2017-03-15
US8859453B2 (en) 2014-10-14
JP2013522005A (ja) 2013-06-13

Similar Documents

Publication Publication Date Title
CN102811811B (zh) 通过溶胶凝胶封装法将Ni纳米畴植入难熔金属氧化物载体——一种有效地解决天然气部分氧化中生焦的方案
Singh et al. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review
Sharifianjazi et al. A review on recent advances in dry reforming of methane over Ni-and Co-based nanocatalysts
TWI374116B (en) Catalyst for hydrogen production by autothermal reforming, method of making same and use thereof
Al-Fatesh et al. Effect of cerium promoters on an MCM-41-supported nickel catalyst in dry reforming of methane
EP2506350B1 (en) Oxide-based stable high-potential carrier for solid polymer fuel cell
Chong et al. Development of nanosilica-based catalyst for syngas production via CO2 reforming of CH4: A review
US20090272943A1 (en) Supported Noble Metal Catalyst And Its Use In Synthesis Gas Production
CN1662300A (zh) 催化剂
JP5483705B2 (ja) 水素製造触媒およびそれを用いた水素製造方法
CN109967081A (zh) 一种高活性、抗积碳甲烷干气重整催化剂及其制备方法
Amin et al. Effect of a Swelling Agent on the Performance of Ni/Porous Silica Catalyst for CH4–CO2 Reforming
Wong et al. Development of Co supported on Co− Al spinel catalysts from exsolution of amorphous Co− Al oxides for carbon dioxide reforming of methane
US20220288568A1 (en) Mesoporous support-immobilized metal oxide-based nanoparticles
CN107970907A (zh) 一种纳米复合氧化物催化剂及其制备方法和应用
Zhang et al. Effect of Gd promoter on the structure and catalytic performance of mesoporous Ni/Al2O3–CeO2 in dry reforming of methane
JP2019155227A (ja) Co2メタン化触媒及びこれを用いた二酸化炭素の還元方法
Sun et al. Yolk-shell structured Pt-CeO2@ Ni-SiO2 as an efficient catalyst for enhanced hydrogen production from ethanol steam reforming
Xue et al. Constructing Ni-based confinement catalysts with advanced performances toward the CO 2 reforming of CH 4: state-of-the-art review and perspectives
CN107624081A (zh) 镍‑锰橄榄石和镍‑锰尖晶石作为本体金属催化剂用于甲烷的二氧化碳重整的用途
CN110035821A (zh) 在自热重整过程中将天然气或伴生气转化为合成气的催化剂及其制备方法
KR102472412B1 (ko) 액상유기수소운반체 탈수소화용 촉매 및 이의 제조방법
Liu et al. Constructing fibril-in-tube structures in ultrathin CeO2-based nanofibers as the ideal support for stabilizing Pt nanoparticles
CN106540674A (zh) 一种金属掺杂的氧化锆催化剂及其制备方法与在催化合成气催化转化中的应用
JP2005144402A (ja) 炭化水素の部分酸化用触媒およびそれを用いた合成ガスの製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20170308

CF01 Termination of patent right due to non-payment of annual fee