CN102790090A - 一种基于高k材料的ldmos器件 - Google Patents

一种基于高k材料的ldmos器件 Download PDF

Info

Publication number
CN102790090A
CN102790090A CN2012102598400A CN201210259840A CN102790090A CN 102790090 A CN102790090 A CN 102790090A CN 2012102598400 A CN2012102598400 A CN 2012102598400A CN 201210259840 A CN201210259840 A CN 201210259840A CN 102790090 A CN102790090 A CN 102790090A
Authority
CN
China
Prior art keywords
layer
ldmos device
hafnium
device based
drift region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012102598400A
Other languages
English (en)
Inventor
曾大杰
余庭
赵一兵
张耀辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUNSHAN HUATAI ELECTRONIC TECHNOLOGY Co Ltd
Original Assignee
KUNSHAN HUATAI ELECTRONIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUNSHAN HUATAI ELECTRONIC TECHNOLOGY Co Ltd filed Critical KUNSHAN HUATAI ELECTRONIC TECHNOLOGY Co Ltd
Priority to CN2012102598400A priority Critical patent/CN102790090A/zh
Publication of CN102790090A publication Critical patent/CN102790090A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种基于高K材料的LDMOS器件,其包括衬底,所述衬底上设置有源极和漏极,所述漏极连接有N型漂移区,所述源极和N型漂移区之间通过沟道连接在一起,所述沟道上设置有栅极,所述栅极和所述沟道之间设置有绝缘层,其特征在于:所述绝缘层包括一个由高K材料组成的高K层,所述绝缘层依次包括以下三层:SiO2层、高K层和SiO2层。本发明在不会增加栅的漏电流的前提下,采用具有更高介电常数的高K材料来降低绝缘层厚度。

Description

一种基于高K材料的LDMOS器件
技术领域
本发明属于电子技术领域,具体涉及一种击穿电压可以调整RF-LDMOS器件。
背景技术
LDMOS(横向扩散金属氧化物半导体)器件与晶体管相比,在关键的器件特性方面,如增益、线性度、开关性能、散热性能以及减少级数等方面优势很明显,能够实现高的增益和高的击穿电压,因此其被广泛的用于DC-DC转换的开关管和射频功率放大器上面。LDMOS的结构设计中,如果减少LDMOS的栅长,可以提高LDMOS的截止频率,从而能够让LDMOS工作在更高的频率。同样,较小的栅长能够减小LDMOS的尺寸,提高比导通电阻。但是,减小栅长需要克服由此带来的LDMOS的短沟效应;此外,减小栅长,栅氧的厚度也需要随之减小,这带来了很大的漏电流,这些因素限制了LDMOS器件栅长的缩小。如何克服减小栅长带来的不利因素影响,尽可能减小栅长是本发明要解决的问题。
发明内容
本发明提供了一种解决上述问题的方案,提供一种可以有效减小减小栅长同时又不会增加漏电流的RF-LDMOS器件。
本发明的技术方案是提供一种基于高K材料的LDMOS器件,其包括衬底,所述衬底上设置有源极和漏极,所述源极和漏极之间通过沟道连接在一起,所述沟道上设置有栅极,所述栅极和所述沟道之间设置有绝缘层其特征在于:所述绝缘层包括一个由高K材料组成的高K层。高K材料,即高介电常数材料,是介电常数大于SiO2(K=3.9)的介电材料的泛称,所述绝缘层依次包括以下三层:SiO2层、高K层和SiO2层,当然所述绝缘层也可以仅由两层构成:第一层是SiO2,第二层是高K材料组成的高K层。
优选的,构成所述高K层的材料为:Si3N4、HfO2或ZrO2
优选的,所述衬底为SOI衬底。
优选的,所述栅极是由金属栅或多晶硅构成的。
优选的,其还包括连接所述源极和所述衬底的连接层,所述连接层由P型重掺杂或金属构成。
优选的,所述绝缘层靠近所述漏极一侧的厚度大于其靠近所述源极一侧的厚度。
优选的,其采用厚度大于所述漂移区的N阱层取代所述漂移区,所述N阱层中靠近所述源极的一侧设置有STI(sallow trenchisolation)。
优选的,其采用厚度大于所述漂移区的N阱层取代所述漂移区,所述N阱层上方设置有一层由LOCOS工艺形成的第二SiO2层,所述第二SiO2层一端设置在所述绝缘层与所述N阱层之间。LOCOS工艺即硅的选择氧化工艺,是目前常见的一种工艺方法。
优选的,所述漂移区上设置有场板,所述场板与所述漂移区之间设置有第二绝缘层。
优选的,所述第二绝缘层依次包括以下三层:SiO2层、高K层和SiO2层。
本发明的一种基于高K材料的LDMOS器件和传统结构相比,不需要增加额外的光刻板,不会显著增加成本。此外本发明仍然是采用传统的SiO2和Si的接触,跟直接采用高K材料和Si接触的结构相比,界面缺陷态密度仍然很低,降低了界面散射,提高了载流子的迁移率,提高了饱和电流。此外,采用高K材料的绝缘层结构,能够在相同的绝缘层厚度的情况下,提高COX,能够带来高的饱和电流,提高栅的控制能力,这样可以减小DIBL等短沟效应;也能够在相同COX的情况下,增加绝缘层的厚度,减小漏电流。传统的LDMOS器件,希望具有更高的截止频率,需要减小栅长,但是为了保证栅的控制能力,COX需要保证不变,这是以减小绝缘层厚度,增加栅的漏电流为代价的,但是采用本结构,可以通过寻找具有更高介电常数的材料来维持相同的绝缘层厚度,而不会增加栅的漏电流。
附图说明
图1是本发明第一最佳实施例的一种基于高K材料的LDMOS器件的第一种结构的剖面结构示意图;
图2是本发明第二最佳实施例的一种基于高K材料的LDMOS器件的剖面结构示意图;
图3是本发明第三最佳实施例的一种基于高K材料的LDMOS器件的剖面结构示意图;
图4是本发明第四最佳实施例的一种基于高K材料的LDMOS器件的剖面结构示意图;
图5是本发明第五最佳实施例的一种基于高K材料的LDMOS器件的剖面结构示意图;
图6是本发明第五最佳实施例的一种基于高K材料的LDMOS器件的剖面结构示意图;
图7是图1至图6中A处的结构示意图。
具体实施方式
下面对本发明的具体实施方式作进一步详细的描述。
如图1所示,以N型LDMOS为例,本发明第一最佳实施例的一种基于高K材料的LDMOS器件包括是高掺杂的衬底1,衬底1的电阻率通常为0.005-0.05Ω·cm 0.005|0.05Ω|cm,高掺杂的衬底1上有一层外延层2,它的电阻率通常为10-100Ω·cm。源极6和漏极10是重掺杂的N型组成的,其掺杂浓度通常在
Figure BDA00001910391700041
以上,金属线5和金属线11分别是用来连接源和漏的金属连线。N型掺杂的漂移区9是用来提高LDMOS器件的击穿电压。P型重掺杂4是用来给P-型沟道提供一个固定的电位,防止寄生的Bipolar导通。P-Body7是用来形成LDMOS的沟道的,调节它的掺杂浓度可以改变LDMOS的阈值电压,此外也可以防止沟道的Punch-Through。衬底3是通常是由P型重掺杂或者是由金属如钨塞组成,它是用来连接源和高掺杂的衬底,这样源的接触就可以不通过金属线5接出,而是通过高掺杂衬底背面贴着的金属引出,这样减小了源端的寄生电感,提高了器件的射频特性。如果没有衬底3,源端通过金属线5引出。对于本结构,栅8可以是跟传统一样由多晶硅组成,也可以是由金属组成。对于金属,可以通过选择不同功函数的金属,来调节器件的阈值电压。如图7所示,绝缘层A由三层组成:SiO2层12、高K材料层13、SiO2层14。其中SiO2层12、14是SiO2组成的薄层;高K材料层13是高K材料层,其组成材料可以是Si3N4,也可以是HfO2,也可以是ZrO2等介电常数大于3.9的材料。绝缘层A的结构也可以不采用传统的三层结构,而是两层,即由SiO2层和高K层组成。采用如图7所示的绝缘层结构,可以在相同绝缘层厚度的情况下,提高Cox,这样能够增强栅对沟道的控制能力,抑制短沟道效应。此外也可以在保证相同Cox的情况下提高绝缘层的厚度,减小栅的漏电流。这样可以保证LDMOS的沟道尺寸可以继续减小。
图2至图6都是LDMOS器件的变形结构。图2中,栅8和衬底3的绝缘层的厚度不再是一样的,而是靠近Source端的绝缘层厚度低,靠近漏端的绝缘层厚度高。绝缘层同样是由三种材料组成,SiO2,高K材料和SiO2组成。采用这种结构能够减小栅和漏之间的寄生电容Cgd,提高器件输入和输出之间的隔离度,提高器件的稳定性。同时栅8和N型漂移区9,具有一段较大的Overlap,跟前面的器件结构相比。此时栅8还充当了场板的作用,用来提高器件的击穿电压。
图3中,图2的N型漂移区9被N阱层15(Nwell)所取代,Nwell跟NLDD相比具有较深的厚度。浅沟道隔离16的作用是减少了栅和漏之间的寄生电容Cgd,同样能够提高器件的稳定性,同时本来沿着N阱层15表面流的电流因为STI,向N阱层15体内流。这样相当于增加了漂移区的长度,因此可以承受更高的击穿电压。
图4中,采用SOI衬底,SiO2层17,厚度一般小于1μm,在400nm-600n之间。采用SOI衬底,能够减小器件源和漏的寄生电容,提高器件工作的速度。N阱层18,SiO2层19,它跟上图具有相同的目的能够让电流不是在表面,而是往N阱层18体内流,增加了漂移区的长度,提高了击穿电压。SiO2层19是利用LOCOS工艺形成的,跟STI相比,工艺上更加容易实现。
图5和图1的区别在于增加了一个场板21,场板21通常是跟源接在一起,场板能够提高器件击穿电压。场板和衬底是通过绝缘层20,隔离的。通常是SiO2
图6中,将图5中的场板21的绝缘层换成SiO2+高K材料+SiO2的结构,这种方法同样不需要增加额外的光刻板。这样绝缘层的等效介电常数能够提高,这样能够降低沿着沟道表面电场的强度,提高漏端的击穿电压。
以上实施例仅为本发明其中的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种基于高K材料的LDMOS器件,其包括衬底,所述衬底上设置有源极和漏极,所述漏极连接有漂移区所述源极和漂移区之间通过沟道连接在一起,所述沟道上设置有栅极,所述栅极和所述沟道之间设置有绝缘层,其特征在于:所述绝缘层包括一个由高K材料组成的高K层。
2.根据权利要求1所述的一种基于高K材料的LDMOS器件,其特征在于:构成所述高K层的材料为:Si3N4、HfO2或ZrO2
3.根据权利要求1所述的一种基于高K材料的LDMOS器件,其特征在于:所述衬底为SOI衬底。
4.根据权利要求1所述的一种基于高K材料的LDMOS器件,其特征在于:所述栅极是由金属栅或多晶硅构成的。
5.根据权利要求1所述的一种基于高K材料的LDMOS器件,其特征在于:其还包括连接所述源极和所述衬底的连接层,所述连接层由P型重掺杂或金属构成。
6.根据权利要求1所述的一种基于高K材料的LDMOS器件,其特征在于:所述绝缘层靠近所述漏极一侧的厚度大于其靠近所述源极一侧的厚度。
7.根据权利要求1所述的一种基于高K材料的LDMOS器件,其特征在于:其采用厚度大于所述漂移区的N阱层取代所述漂移区,所述N阱层中靠近所述源极的一侧设置有浅沟道隔离。
8.根据权利要求1所述的一种基于高K材料的LDMOS器件,其特征在于:其采用厚度大于所述漂移区的N阱层取代所述漂移区,所述N阱层上方设置有一层由LOCOS工艺形成的第二SiO2层,所述第二SiO2层一端设置在所述绝缘层与所述N阱层之间。
9.根据权利要求1所述的一种基于高K材料的LDMOS器件,其特征在于:所述漂移区上设置有场板,所述场板与所述漂移区之间设置有第二绝缘层。
10.根据权利要求9所述的一种基于高K材料的LDMOS器件,其特征在于:所述第二绝缘层依次包括以下三层:SiO2层、高K层和SiO2层。
CN2012102598400A 2012-07-20 2012-07-20 一种基于高k材料的ldmos器件 Pending CN102790090A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012102598400A CN102790090A (zh) 2012-07-20 2012-07-20 一种基于高k材料的ldmos器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012102598400A CN102790090A (zh) 2012-07-20 2012-07-20 一种基于高k材料的ldmos器件

Publications (1)

Publication Number Publication Date
CN102790090A true CN102790090A (zh) 2012-11-21

Family

ID=47155446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102598400A Pending CN102790090A (zh) 2012-07-20 2012-07-20 一种基于高k材料的ldmos器件

Country Status (1)

Country Link
CN (1) CN102790090A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183632A (zh) * 2014-08-13 2014-12-03 昆山华太电子技术有限公司 Rf-ldmos自对准的漏端场板结构及制作方法
CN105448996A (zh) * 2016-01-07 2016-03-30 昆山华太电子技术有限公司 一种提高鲁棒性的rf-ldmos器件结构
CN114497173A (zh) * 2020-11-12 2022-05-13 苏州华太电子技术有限公司 应用于射频功率放大的双埋沟rfldmos器件
EP4092754A1 (en) * 2021-05-21 2022-11-23 Renesas Electronics Corporation Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399348A (zh) * 2002-08-29 2003-02-26 电子科技大学 用高介电系数膜的表面(横向)耐压结构
US20060113601A1 (en) * 2004-11-30 2006-06-01 Shibib Muhammed A Dual-gate metal-oxide semiconductor device
CN101359688A (zh) * 2007-07-31 2009-02-04 台湾积体电路制造股份有限公司 一种半导体器件
US20100295125A1 (en) * 2009-05-22 2010-11-25 Broadcom Corporation Split gate oxides for a laterally diffused metal oxide semiconductor (LDMOS)
CN102082174A (zh) * 2009-10-02 2011-06-01 台湾积体电路制造股份有限公司 高电压装置以及形成高电压装置的方法
CN202772140U (zh) * 2012-07-20 2013-03-06 昆山华太电子技术有限公司 一种基于高k材料的ldmos器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399348A (zh) * 2002-08-29 2003-02-26 电子科技大学 用高介电系数膜的表面(横向)耐压结构
US20060113601A1 (en) * 2004-11-30 2006-06-01 Shibib Muhammed A Dual-gate metal-oxide semiconductor device
CN101359688A (zh) * 2007-07-31 2009-02-04 台湾积体电路制造股份有限公司 一种半导体器件
US20100295125A1 (en) * 2009-05-22 2010-11-25 Broadcom Corporation Split gate oxides for a laterally diffused metal oxide semiconductor (LDMOS)
CN102082174A (zh) * 2009-10-02 2011-06-01 台湾积体电路制造股份有限公司 高电压装置以及形成高电压装置的方法
CN202772140U (zh) * 2012-07-20 2013-03-06 昆山华太电子技术有限公司 一种基于高k材料的ldmos器件

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183632A (zh) * 2014-08-13 2014-12-03 昆山华太电子技术有限公司 Rf-ldmos自对准的漏端场板结构及制作方法
CN104183632B (zh) * 2014-08-13 2017-08-29 昆山华太电子技术有限公司 Rf‑ldmos自对准的漏端场板结构及制作方法
CN105448996A (zh) * 2016-01-07 2016-03-30 昆山华太电子技术有限公司 一种提高鲁棒性的rf-ldmos器件结构
CN114497173A (zh) * 2020-11-12 2022-05-13 苏州华太电子技术有限公司 应用于射频功率放大的双埋沟rfldmos器件
CN114497173B (zh) * 2020-11-12 2023-10-31 苏州华太电子技术股份有限公司 应用于射频功率放大的双埋沟rfldmos器件
EP4092754A1 (en) * 2021-05-21 2022-11-23 Renesas Electronics Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US10453955B2 (en) Lateral DMOS device with dummy gate
CN102148251B (zh) Soi横向mosfet器件和集成电路
US8482059B2 (en) Semiconductor structure and manufacturing method for the same
JP2013125827A (ja) 半導体装置およびその製造方法
CN103915506B (zh) 一种具有纵向npn结构的双栅ldmos器件
CN103296081B (zh) 一种横向双扩散金属氧化物半导体场效应晶体管
WO2019157819A1 (zh) 一种具有三维沟道的复合栅igbt芯片
CN102386211A (zh) Ldmos器件及其制造方法
CN105810680B (zh) Jfet及其制造方法
CN104659090B (zh) Ldmos器件及制造方法
CN103560145B (zh) 一种具有界面栅的soi功率器件结构
CN102790090A (zh) 一种基于高k材料的ldmos器件
CN103325835B (zh) 一种具有结型场板的soi功率ldmos器件
CN109346524B (zh) 一种具有阶梯浓度多晶硅侧墙结构的超结vdmos器件
CN202772140U (zh) 一种基于高k材料的ldmos器件
US20140159110A1 (en) Semiconductor device and operating method for the same
CN104617139A (zh) Ldmos器件及制造方法
CN103762241B (zh) 一种梳状栅纵向沟道soi ldmos单元
CN112186028A (zh) 一种集成npn穿通三极管的屏蔽栅mosfet器件
CN102122666A (zh) 使用高介电常数栅介质的耐压器件
CN103928526A (zh) 一种横向功率mos高压器件
CN105826392B (zh) 小能带隙iii-v族mosfet器件的非对称型源漏极结构
CN104183635B (zh) 一种场效应晶体管
CN104347691B (zh) 半导体装置及其操作方法
CN110212033B (zh) 一种栅控双极-场效应复合碳化硅ldmos

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20121121