CN102741955A - 制造烧结稀土磁体的方法、烧结稀土磁体及其材料 - Google Patents

制造烧结稀土磁体的方法、烧结稀土磁体及其材料 Download PDF

Info

Publication number
CN102741955A
CN102741955A CN2010800532802A CN201080053280A CN102741955A CN 102741955 A CN102741955 A CN 102741955A CN 2010800532802 A CN2010800532802 A CN 2010800532802A CN 201080053280 A CN201080053280 A CN 201080053280A CN 102741955 A CN102741955 A CN 102741955A
Authority
CN
China
Prior art keywords
sintering
band
mutually
earth magnet
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800532802A
Other languages
English (en)
Other versions
CN102741955B (zh
Inventor
庄司哲也
佐久间纪次
岸本秀史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN102741955A publication Critical patent/CN102741955A/zh
Application granted granted Critical
Publication of CN102741955B publication Critical patent/CN102741955B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/838Magnetic property of nanomaterial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/90Manufacture, treatment, or detection of nanostructure having step or means utilizing mechanical or thermal property, e.g. pressure, heat

Abstract

一种用于制造烧结稀土磁体的方法,其特征在于烧结包括带状多晶相的原料,所述带状多晶相通过使具有稀土磁体组成的合金熔体快速凝固来制备并且平均结晶粒度为10至200nm;和在所述多晶相的表面上形成的并且具有比所述多晶相低的熔点的低熔点相。

Description

制造烧结稀土磁体的方法、烧结稀土磁体及其材料
技术领域
本发明涉及用于制造烧结稀土磁体的方法、烧结稀土磁体及其材料,所述烧结稀土磁体具有含有纳米尺寸晶粒的多晶相。
背景技术
以钕磁体(Nd2Fe14B)为代表的稀土磁体具有高的通量密度,并且作为极为强力的永磁体用于多种应用。为了获得甚至更佳的磁性能,要求具有纳米尺寸晶粒的稀土磁体。
以下过程可用作用于通过烧结制造稀土磁体的典型过程:
1)使具有稀土磁体组成的合金熔体快速凝固并且利用单辊法、双辊法等形成为带(急冷带);和
2)将所述带粉碎成粉末,并且通过烧结过程如加压烧结将所述粉末制成块状单元。
然而,在上述过程1)中的快速凝固期间,如果在由此形成的急冷带中产生非晶相,则必须进行上述还用作600℃或更高的热处理的过程2)中的烧结以使非晶相结晶,而该过程导致纳米结构变粗糙。
日本专利申请公开号09-139306(JP-A-09-139306)公开了利用粉末在800℃的高温下通过热压进行烧结,所述粉末通过粉碎已经通过作为用于制造烧结稀土磁体的方法的单辊法制备的急冷带而获得。一般地,当实施急冷时产生非晶相,因此实施前述类型的高温烧结以使整个块状单元结晶。结果预期晶粒尺寸变粗糙。
为了能够进行低温烧结,一个解决方案是利用具有比带主体低的熔点的低熔点相来涂覆急冷带。由于在通过粉碎急冷带所获得的粉末的表面上存在低温相,所以在烧结时在粉末颗粒的表面上将存在液相,并且这会使得能够在低温下烧结。
日本专利号02693601公开了通过双辊法进行急冷。但是利用双辊法,将在急冷带的内部中形成低熔点相而非在其表面上。
日本专利申请公开号2007-288020(JP-A-2007-288020)和日本专利申请公开号2007-288021(JP-A-2007-288021)分别公开了利用电沉积用Dy(镝)涂覆稀土磁体,或者将氯化镝溶解在有机溶剂中并利用它涂覆稀土磁体。利用这些方法,镝沉积层具有几个微米的厚度,并且与急冷带一样厚。这些方法有效用于制造通过镝的内部扩散而包含镝的稀土磁体,但是这些过程不能制造适合作为用于稀土磁体(其一般具有不同的组成)的低熔点相的几个纳米的厚度。换言之,为了形成具有亚微米或甚至纳米尺寸厚度的电沉积层,有必要在低电流和低金属离子浓度下进行电沉积,但是以Nd(钕)和镝为代表的稀土磁体具有低的还原电位,因此它们溶解在溶于溶剂中的水中,并且由此不能进行电沉积。
JP-A-2007-288021还公开了利用离子溶剂,如熔融盐,但是在该技术中,晶粒能够因熔融盐的热而变粗糙,因此,由此形成低温相基本上是不可能的。
日本专利号02779830公开了利用无水有机溶剂作为稀土磁体的表面镀覆溶液,但是其没有公开有助于低温相的电沉积的信息。
总之,上述文件中都没有公开或教导使得能够进行低温烧结以获得纳米尺寸晶粒的信息。
发明内容
本发明提供一种用于制造烧结稀土磁体的方法、烧结稀土磁体以及其材料,所述方法使得能够在低温下烧结以获得纳米尺寸的晶粒。
本发明的第一方面涉及一种用于制造烧结稀土磁体的方法,所述方法包括:通过使具有稀土磁体组成的合金熔体快速凝固来制备由多晶相构成的带,所述多晶相包含平均结晶粒度为10至200nm的晶粒;在所述带的表面上形成具有比所述多晶相低的熔点的低熔点相;和烧结由所述带和所述低熔点相构成的原料。利用该配置,使具有稀土磁体组成的合金熔体快速凝固以变成具有10-200nm的平均结晶粒度的纳米尺寸的带状多晶相,在其表面上形成具有比所述多晶相低的熔点的低熔点相,并且利用其作为原料进行烧结。因此,烧结可以在比多晶相的熔点低的温度下进行,所以可以抑制多晶相的粗糙化,并且由此可以保留纳米尺寸的晶粒。
在该方面的方法中,所述合金熔体的快速凝固可以通过其中使用单辊的单辊法来进行,并且所述带的其上形成有所述低熔点相的表面可以与和所述单辊接触的表面相反。
所述低熔点相可以通过电沉积形成在所述带的一个或两个表面上。
在该方面的方法中,所述电沉积可以利用有机溶剂或离子液体作为电解质液体来进行。
在该方面的方法中,包含在所述多晶相中的所述晶粒的平均结晶粒度可以为10至50nm。
在该方面的方法中,所述原料的烧结可以包括粉碎所述原料以获得粉末,然后烧结该粉末。
本发明的第二方面涉及一种通过以下方法制造的烧结稀土磁体,所述方法包括:通过使具有稀土磁体组成的合金熔体快速凝固来制备由多晶相构成的带,所述多晶相包含平均结晶粒度为10至200nm的晶粒;在所述带的表面上形成具有比所述多晶相低的熔点的低熔点相;和烧结由所述带和所述低熔点相构成的原料。
本发明的第三方面涉及一种烧结稀土磁体的原料,所述原料包括:由多晶相构成的带,所述多晶相包含平均结晶粒度为10至200nm的晶粒;和在所述带的表面上形成的并且具有比所述多晶相低的熔点的低熔点相。
在该方面的原料中,包含在所述多晶相中的所述晶粒的所述平均结晶粒度可以为10至50nm。
附图说明
参考附图,从以下示例性实施方案的描述中,本发明的前述和其它目的、特征和优点将变得明显,附图中类似的附图标记用于表示类似的要素,其中:
图1A和1B分别是显示在单辊法和双辊法中凝固的方向与形成低熔点相的位置之间的关系的示意图;
图2是显示单辊和双辊材料的断裂横截面的扫描电子显微镜(SEM)图像和背散射电子(BSE)图像的照片;
图3A至3E是显示单辊法中急冷带内的快速凝固的发展的示意图;
图4是比较单辊和双辊材料的烧结过程中温度和位移变化的图;
图5是电沉积设备的示意图;
图6A至6E是显示通过扫描电子显微镜-能量色散X射线分析(SEM-EDX)获得的带的断裂表面的元素分布结果的照片;和
图7A至7C是显示带表面上的沉积物的SEM图像和BSE图像的照片和显示EDX谱的图表。
具体实施方式
下面详细描述本发明的一个实施方案。
通过实施方案的制造过程制造的烧结稀土磁体的组成式为RaJbFecCodBeMf,其中R代表包括Y(钇)在内的稀土元素中的至少一种元素;J代表包括Dy(镝)和Tb(铽)在内的重稀土元素中的至少一种元素;M代表选自Ga(镓)、Zn(锌)、Si(硅)、Al(铝)、Nb(铌)、Zr(锆)、Ni(镍)、Cu(铜)、Cr(铬)、Hf(铪)、Mo(钼)、P(磷)、C(碳)和Mg(镁)中的至少一种元素;a代表13至20的数;b代表0至4的数;c代表通过从100减去a、b、d、e和f而获得的数;d代表0至30的数;e代表4至20的数;和f代表0至3的数。该实施方案中的烧结稀土磁体包含上述元素中的每一种作为合金组分,并且其还包含因为原料和制造过程而不可避免地包含的不可避免的杂质。不可避免的杂质的含量应当尽可能多地进行限制,使得它们基本上不影响通过该实施方案的制造过程所制造的烧结稀土磁体的性能,或者制造过程自身。
通过该实施方案中的制造过程所制造的烧结稀土磁体基本上由包含多晶相的主相和在晶粒边界处形成的晶界相组成。
在该情况下,主相的组成式为(RJ)2(FeCo)14B,并且晶界相的组成式包括具有组成式(RJ)2(FeCo)14B的相和具有组成式RJ的相。
在该实施方案中,通过快速凝固的带的制造按以下方式实施。
急冷中的冷却速率设定为大至足以形成包含纳米尺寸的晶粒的多晶相但没有大至形成非晶相的范围。其原因在于,当在带中形成非晶相时,于是需要热处理来使该相结晶,并且在该过程期间晶粒可变粗糙。
在该情况下,术语纳米尺寸的晶粒是指10nm至200nm、并且优选10nm至50nm(其小于信号磁畴粒度)的晶粒。
低熔点相构成了具有比结晶相低的熔点并且不影响烧结稀土磁体作为磁体的性质的材料。
形成低温相的原因如下:当通过粉碎包含多晶相和低熔点相的原料来获得粉末并且烧结该粉末时,在比对仅由多晶相组成的原料粉末实施烧结时低的温度下,由低熔点相形成液相,结果,烧结可以在低温下进行。因此,在构成用于烧结的原料的急冷带的表面上必须存在低熔点相。
低熔点相的厚度可以为约50nm至1000nm,并且可以在形成基底的多晶相的约3体积%份数内。如果低熔点相的比例过高,则通过烧结获得的磁体的磁性能将显著降低。
用于形成低熔点相的方法包括:(1)在快速凝固期间利用偏析的方法和(2)其中在形成急冷带之后形成低熔点相的方法。
首先将描述在快速凝固期间利用偏析的方法。在可用作用于进行快速凝固的方法的单辊法和双辊法中,在该实施方案中,使用单辊法在急冷带的表面上形成低熔点相。因此,在急冷过程中,凝固从与辊接触的急冷带表面朝向自由表面发展,并且利用通过其中作为最后的凝固位点的自由表面具有最低熔点的组成来进行的偏析。这种手段将在以下实施例1中更详细地描述。
接下来,将描述在形成急冷带之后形成低熔点相的方法。低熔点相可以通过使用电沉积、溅射、冷喷沉积、和化学还原等形成在通过快速凝固制造的急冷带的一个或两个表面上。电沉积法将在以下实施例2中更详细地描述。
在方法(1)的情况下,待制造的烧结稀土磁体的组成将低熔点相的组成限制为快速凝固期间作为最后凝固的部分的组成。相反,在方法(2)的情况下,可以使用多种组成而不受烧结稀土磁体的组成的限制。
当制造具有由组成式Nd2Fe14B表示的组成的烧结稀土磁体时,下面将描述具有比急冷带的Nd2Fe14B多晶相的1155℃低的熔点的低熔点相。
在方法(1)中形成的低熔点相是最后的凝固相,其中Nd相(熔点1021℃)或Nd以高浓度偏析。
在方法(2)中形成的低熔点相可以为Nd,但是也可以为NdGa(651℃)、DyCu(790℃)、DyAl(636℃)、Cu(1085℃)、Al(660℃)、Zn(420℃)、NdCu(520℃)、NdAl(635℃)、NdNi(690℃)或NdFe(640℃)。上述括号内的数值是各自的熔点。该低熔点相可以构成单质金属、合金或低共熔化合物,条件是其不影响烧结稀土磁体的磁性能。
有机溶剂或离子液体可以用于方法(2)中的电沉积所用的电解质液体,并且在还原和沉积稀土元素的情况下,可以使用可耐受还原电位的溶剂,即不被还原电位分解的溶剂。表1显示这类电解质液体的实例。
Figure BDA00001679026900061
Figure BDA00001679026900071
如果在用于电沉积的电解质液体中包含水,则当试图用比水的分解电位低的电位来还原元素时,水将优先分解。因此,电沉积不能在稀金属离子浓度下实施。为了防止发生该分解,在通过分子筛过程等从电解质液体中除去水之后,水的浓度应当设定为不高于100ppm,并且优选不高于50ppm。通过这样做,可以将水的分解保持为最小。为了避免大气水蒸汽溶解到电解质液体中,电沉积在惰性气氛中进行。电沉积可以在具有不高于1ppm的氧浓度和氢浓度两者的气氛中进行。
利用相关技术的电沉积方法几乎不能形成具有1μm或更小的膜厚度的低熔点相,但是,通过调节上述电沉积方法中的金属离子浓度、电流、和沉积时间,能够形成具有1μm或更小的膜厚度、并且优选具有纳米级厚度的低熔点相。由此,能够在急冷带的表面上形成具有上述期望厚度(50至1000nm)或期望体积份数(不高于多晶相的3体积%)的低熔点相,其为几微米厚的薄片。
此外,根据该实施方案,非晶相的结晶不是必要的,这是因为形成用于烧结的原料的急冷带是结晶物质。因此,在600℃或更高的温度下实施的高温烧结以及用于结晶的热处理也不是必须的。
烧结可以通过加压烧结来进行,并且此时所施加的压力可以为40MPa至300MPa。
直至开始烧结的温度升高速率可以大至足以防止晶粒变粗糙,并且可以为20℃/分钟或更高。
下面描述该实施方案的实施例。
通过单辊法制备急冷带作为实施例1。通过双辊法制备急冷带作为对比例。下面将详细描述单辊法和双辊法。
图1A和图1B示意性显示在单辊法和双辊法中凝固的方向和低熔点相的形成位点之间的关系。图1A和图1B中的框是急冷带的部分横截面的放大图。
在图1A的单辊法中,当合金熔体从熔体喷嘴N排放到单辊R的外周时,熔体通过辊R在一侧开始快速冷却并且凝固。然后,其沿辊的转动方向RD从单辊R的外周作为急冷带QR排出。如在放大部分中显示的,从辊R开始的凝固方向SD从与所述辊接触的辊表面RS朝向不与所述辊接触的自由表面FS延伸,凝固沿着SD方向进行。结果,自由表面FS变成最终的凝固位点,并且其变成横截面中具有最低熔点的组成。换言之,在这样的快速凝固过程中,沿急冷带QR的厚度方向发生偏析,并且在结晶相CP的一侧上形成低熔点相LM。因此,当通过单辊法实施快速凝固时,在用作烧结原料的快速急冷带的一侧上形成低熔点相。结果,可以实施粉碎的快速急冷带的低温烧结。
在图1B的双辊法中,当熔体从对辊R1和R2的外周之间的熔体喷嘴N排出时,熔体通过辊R1和R2在两侧上凝固,并且作为快速急冷带QR在辊之间沿辊的转动方向RD排出。如在放大的部分中显示的,从对辊R1和R2开始的凝固方向SD1和SD2分别从在与对辊R1和R2分别接触的两侧上的辊表面RS朝急冷带QR的厚度的中央延伸,并且凝固从急冷带QR的两个表面朝厚度的中央进行。结果,急冷带QR的厚度中央变成最终的凝固位点,并且其变成在横截面上具有最低熔点的组成。因此,利用双辊进行的快速凝固不可能形成低熔点相。由于该原因,几乎不可能对粉碎的快速急冷带实施低温烧结。
在表2所示的条件下,通过图1A和1B的方法,分别地通过单辊法制备具有组成Nd15Fe70B14Ga的快速急冷带,和通过双辊法制备具有组成Nd12Fe81B6Nb的快速急冷带。
表2
  喷嘴直径   0.6mm
  间隙   0.7mm
  喷射压力   0.4kg/cm3
  辊速   2350rpm
  熔化温度   1450℃
每个制备的快速急冷带都在液氮中断裂,并且通过SEM观察断裂表面。图2显示SEM和BSE图像。
如在BSE图像中显示的,富Nd低熔点相(平行排列的白点)存在于通过单辊法制备的快速急冷带的自由表面(图中的上表面)侧上的表面直接下方。主相Nd2Fe14BNd的熔点为1155℃,Nd的熔点为1021℃,NdGa的熔点为651℃。与之相比,在通过双辊法制备的材料中,富Nd的低熔点相(白点)存在于快速急冷带的断裂表面的中央附近。换言之,如上文参考图1指出的,低熔点相(富Nd相)通过单辊法形成在快速急冷带的一个表面(自由表面)上,但是低熔点相(富Nd相)通过双辊法形成在快速急冷带的中央。
图3A至3E示意性示出在单辊法中快速急冷带内快速凝固的前进。从图3A至3E,显示了其中断裂表面内的凝固随时间的推移而从辊表面朝快速急冷带的自由表面前进的状态。如左端所显示的冷却方向(凝固方向)是从图的下边缘(辊表面)朝上边缘(自由表面)的方向。换言之,在合金熔体与单辊的外周表面接触之后,结晶相(主相)立即开始在熔体内成核,如图3A所示;在图3B至3C所示的阶段中,结晶相(主相)逐渐生长;在图3D中显示的阶段中形成晶粒边界相,以形成多晶相,并且熔体(熔融的液体)部分仅保留在自由表面的侧面上;在图3E中显示的阶段中自由表面的侧面上的熔融液体最终凝固,以变成低熔点相(富Nd相)。
接下来,利用通过粉碎在实施例1中通过单辊法制备的快速急冷带所获得的粉末(单辊法材料)和通过粉碎在对比例中通过双辊法制备的快速急冷带所获得的粉末(双辊法材料),来进行火花等离子体烧结(SPS)。烧结条件如下:真空气氛压力10-2Pa,加压压力100MPa,升温速率60℃/分钟。
图4显示在单辊法材料和双辊法材料的各自烧结过程期间,温度和位移变化的比较。对于位移值(图的垂直轴),向下的位移对应于膨胀,而向上的位移对应于收缩。
如图所示,随着温度升高,两种材料从加热开始都逐渐经历热膨胀,并且在预定的温度下(在图中用“↓”表示),由于烧结的开始它们转而进行收缩。收缩随着烧结的完成而结束。
因此,从图4中明显可见,对于对比例的双辊法材料,烧结开始时的温度是600℃,烧结完成时的温度是700℃。与之相比,对于实施例1的单辊法材料,明显可见烧结开始时的温度是400℃,烧结结束时的温度是570℃。换言之,通过利用实施例1的单辊法制备快速急冷带,与双辊法相比,烧结开始时的温度降低了200℃,即从600℃降低至400℃。此外,与利用双辊法的700℃相比,利用单辊法,烧结结束时的温度显著降低至570℃,并且由此可以获得针对通过烧结获得的磁体中95%或更高磁通密度的必需温度。
对于烧结完成之后的结晶粒度,在由单辊法材料烧结的样品中平均结晶粒度为51nm,并且防止了结晶粒度的变粗糙。与之相比,在由对比例的双辊法材料烧结的样品中平均结晶粒度为93nm,并且发现了明显的变粗糙。
下面将描述实施例2。以与实施例1中相同的方式,通过单辊法制备具有组成Nd15Fe77B8的快速急冷带。利用图5中显示的电沉积装置,在其表面上形成由AlDy合金组成的低熔点相。
将碳酸亚乙酯(EC)和碳酸二乙酯(DEC)混合(EC:DEC)并用作电解质液体(溶剂)。将AlCl3溶解至0.02摩尔/L的浓度,并且将DyCl3溶解至0.02摩尔/L的浓度,以作为用于电沉积的各自的Al和Dy盐。
如图5中所示,在极低的氧条件下,将快速急冷条Nd15Fe77B8安装在电沉积装置的工作电极W处。
为了防止由在用作电解质的Dy中和用于对电极C和参比电极RE的锂箔上的氧和水的反应所导致的氧化物和氢氧化物的形成,在手套箱中进行试剂的混合,并且在填充有Ar的玻璃干燥器中进行电流-电势曲线的测量。
在+1.2V电压下进行电沉积4小时之后,在+0.4V电压下进行电沉积4小时,并且将Al和Dy沉积在快速急冷带Nd15Fe77B8的表面上。
在乙醇中清洗所得的带之后,通过SEM-EDX观察基质。
图6A至6E和图7A至7C显示出观察结果。
图6A至6E显示带断裂表面的通过SEM-EDX获得的元素分布图,并且其可证实Al-Dy集中在快速急冷带的表面上。图7A至7C显示带表面上的沉淀物和EDX谱,并且Al和Dy的同时检测证实形成了AlDy合金。膜厚度为200nm至300nm。
正如在实施例1中一样,与快速急冷带的多晶相Nd15Fe77B8中的Nd2Fe14B相(熔点1155℃)相比,AlDy相(熔点636℃)用作低熔点相,并且由此使得能够对稀土磁体进行低温烧结并且防止多晶相中的Nd15Fe77B8的晶粒变粗糙。
通过本发明的制造方法制造的烧结稀土磁体的组成不限于上述实施方案中的组成。
本发明提供一种用于制造烧结稀土磁体的方法,其使得能够在低温下烧结以获得纳米尺寸的晶粒。
虽然上文已经举例说明了本发明的一些实施方案,但是应当理解,本发明不限于所示出的实施方案的细节,而是在不脱离本发明的范围的情况下,可以体现为本领域普通技术人员能够想到的多种变化、修改或改进方案。

Claims (9)

1.一种用于制造烧结稀土磁体的方法,其特征在于包括:
通过使具有稀土磁体组成的合金熔体快速凝固来制备由多晶相构成的带,所述多晶相包含平均结晶粒度为10至200nm的晶粒;
在所述带的表面上形成具有比所述多晶相低的熔点的低熔点相;和
烧结由所述带和所述低熔点相构成的原料。
2.根据权利要求1所述的方法,其中使所述合金熔体快速凝固通过其中使用单辊的单辊法来进行,并且所述带的其上形成有所述低熔点相的表面与和所述单辊接触的表面相反。
3.根据权利要求1所述的方法,其中所述低熔点相通过电沉积形成在所述带的一个或两个表面上。
4.根据权利要求3所述的方法,其中所述电沉积利用有机溶剂或离子液体作为电解质液体来进行。
5.根据权利要求1至4中任一项所述的方法,其中包含在所述多晶相中的所述晶粒的所述平均结晶粒度为10至50nm。
6.根据权利要求1至5中任一项所述的方法,其中所述原料的烧结包括粉碎所述原料以获得粉末,和烧结所述粉末。
7.一种烧结稀土磁体,其特征在于利用根据权利要求1至6中任一项所述的方法来制造。
8.一种用于烧结稀土磁体的原料,其特征在于包括:
由多晶相构成的带,所述多晶相包含平均结晶粒度为10至200nm的晶粒;和
在所述带的表面上形成的并且具有比所述多晶相低的熔点的低熔点相。
9.根据权利要求8所述的原料,其中包含在所述多晶相中的所述晶粒的所述平均结晶粒度为10至50nm。
CN201080053280.2A 2009-11-26 2010-11-18 制造烧结稀土磁体的方法、烧结稀土磁体及其材料 Expired - Fee Related CN102741955B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-268943 2009-11-26
JP2009268943A JP5093215B2 (ja) 2009-11-26 2009-11-26 焼結希土類磁石の製造方法
PCT/IB2010/002934 WO2011064636A1 (en) 2009-11-26 2010-11-18 Method for producing sintered rare-earth magnet, sintered rare-earth magnet, and material for same

Publications (2)

Publication Number Publication Date
CN102741955A true CN102741955A (zh) 2012-10-17
CN102741955B CN102741955B (zh) 2015-07-15

Family

ID=43516034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080053280.2A Expired - Fee Related CN102741955B (zh) 2009-11-26 2010-11-18 制造烧结稀土磁体的方法、烧结稀土磁体及其材料

Country Status (5)

Country Link
US (1) US9640305B2 (zh)
JP (1) JP5093215B2 (zh)
CN (1) CN102741955B (zh)
DE (1) DE112010004576B4 (zh)
WO (1) WO2011064636A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428049A (zh) * 2014-09-12 2016-03-23 西门子公司 用于提高稀土永磁体的矫顽磁场强度的钕的电化学沉积
CN105648487A (zh) * 2014-12-03 2016-06-08 北京中科三环高技术股份有限公司 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159733A (ja) * 2010-01-29 2011-08-18 Toyota Motor Corp ナノコンポジット磁石の製造方法
JP5640946B2 (ja) * 2011-10-11 2014-12-17 トヨタ自動車株式会社 希土類磁石前駆体である焼結体の製造方法
JP2013098319A (ja) * 2011-10-31 2013-05-20 Toyota Motor Corp Nd−Fe−B系磁石の製造方法
WO2014034854A1 (ja) * 2012-08-31 2014-03-06 信越化学工業株式会社 希土類永久磁石の製造方法
US10138564B2 (en) 2012-08-31 2018-11-27 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
MY168479A (en) * 2012-08-31 2018-11-09 Shinetsu Chemical Co Production method for rare earth permanent magnet
DE102013004985A1 (de) * 2012-11-14 2014-05-15 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Permanentmagneten sowie Permanentmagnet
DE102013202254A1 (de) * 2013-02-12 2014-08-14 Siemens Aktiengesellschaft Verfahren zur Herstellung von Hochenergiemagneten
DE102013220452A1 (de) 2013-10-10 2015-04-30 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Permanentmagneten sowie Permanentmagnet und elektrische Maschine mit einem solchen
JP6090589B2 (ja) 2014-02-19 2017-03-08 信越化学工業株式会社 希土類永久磁石の製造方法
JP6191497B2 (ja) 2014-02-19 2017-09-06 信越化学工業株式会社 電着装置及び希土類永久磁石の製造方法
DE102014215873A1 (de) * 2014-08-11 2016-02-11 Siemens Aktiengesellschaft Elektrochemische Abscheidung eines schweren Seltenerdmaterials zur Vergrößerung der Koerzitivfeldstärke von Seltenerddauermagneten
GB2540149B (en) * 2015-07-06 2019-10-02 Dyson Technology Ltd Magnet
GB2540150B (en) 2015-07-06 2020-01-08 Dyson Technology Ltd Rare earth magnet with Dysprosium treatment
CN106601401B (zh) * 2016-12-14 2018-04-03 中国工程物理研究院材料研究所 晶界多层结构调控的高丰度稀土烧结钕铁硼磁体的制备方法及其产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293097A (ja) * 2002-04-03 2003-10-15 Sumitomo Special Metals Co Ltd ナノコンポジット磁石用急冷合金およびその製造方法
US20040025974A1 (en) * 2002-05-24 2004-02-12 Don Lee Nanocrystalline and nanocomposite rare earth permanent magnet materials and method of making the same
CN1628182A (zh) * 2002-02-05 2005-06-15 株式会社新王磁材 使用稀土类-铁-硼系磁体用合金粉末的烧结磁体
US20060005898A1 (en) * 2004-06-30 2006-01-12 Shiqiang Liu Anisotropic nanocomposite rare earth permanent magnets and method of making
JP2007288021A (ja) * 2006-04-19 2007-11-01 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石の製造方法
JP2008130802A (ja) * 2006-11-21 2008-06-05 Hitachi Metals Ltd 鉄基希土類永久磁石およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455806A (en) * 1987-08-27 1989-03-02 Tdk Corp Rare earth magnet
JP2779830B2 (ja) 1988-04-20 1998-07-23 株式会社 トーキン R▲下2▼t▲下1▼▲下4▼b金属間化合物永久磁石のメッキ膜用有機溶媒電気メッキ液
DE69032805T2 (de) * 1989-04-20 1999-06-10 Tokin Corp Verfahren zur Beschichtung von Permanentmagneten der intermetallischen Verbindung R2T14B
JP2693601B2 (ja) 1989-11-10 1997-12-24 日立金属株式会社 永久磁石および永久磁石原料
JP3247508B2 (ja) * 1993-08-31 2002-01-15 株式会社東芝 永久磁石
JPH09139306A (ja) 1995-11-16 1997-05-27 Nissan Motor Co Ltd 高強度希土類磁石
US6010610A (en) * 1996-04-09 2000-01-04 Yih; Pay Method for electroplating metal coating(s) particulates at high coating speed with high current density
JP2000026901A (ja) * 1998-07-08 2000-01-25 Sumitomo Metal Mining Co Ltd R−Fe−B系焼結磁石用原料合金粉末
JP2005272924A (ja) * 2004-03-24 2005-10-06 Neomax Co Ltd 異方性交換スプリング磁石材料およびその製造方法
US7842140B2 (en) * 2004-12-16 2010-11-30 Hitachi Metals, Ltd. Iron-based rare-earth nanocomposite magnet and method for producing the magnet
US7938915B2 (en) * 2005-08-08 2011-05-10 Hitachi Metals, Ltd. Rare earth alloy binderless magnet and method for manufacture thereof
US7988795B2 (en) 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
JP4765747B2 (ja) 2006-04-19 2011-09-07 日立金属株式会社 R−Fe−B系希土類焼結磁石の製造方法
WO2008139559A1 (ja) * 2007-05-02 2008-11-20 Hitachi Metals, Ltd. R-t-b系焼結磁石
EP2099039A1 (en) 2008-02-29 2009-09-09 Daido Steel Co.,Ltd. Material for magnetic anisotropic magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1628182A (zh) * 2002-02-05 2005-06-15 株式会社新王磁材 使用稀土类-铁-硼系磁体用合金粉末的烧结磁体
JP2003293097A (ja) * 2002-04-03 2003-10-15 Sumitomo Special Metals Co Ltd ナノコンポジット磁石用急冷合金およびその製造方法
US20040025974A1 (en) * 2002-05-24 2004-02-12 Don Lee Nanocrystalline and nanocomposite rare earth permanent magnet materials and method of making the same
US20060005898A1 (en) * 2004-06-30 2006-01-12 Shiqiang Liu Anisotropic nanocomposite rare earth permanent magnets and method of making
JP2007288021A (ja) * 2006-04-19 2007-11-01 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石の製造方法
JP2008130802A (ja) * 2006-11-21 2008-06-05 Hitachi Metals Ltd 鉄基希土類永久磁石およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428049A (zh) * 2014-09-12 2016-03-23 西门子公司 用于提高稀土永磁体的矫顽磁场强度的钕的电化学沉积
CN112614684A (zh) * 2014-09-12 2021-04-06 西门子公司 用于提高稀土永磁体的矫顽磁场强度的钕的电化学沉积
CN105648487A (zh) * 2014-12-03 2016-06-08 北京中科三环高技术股份有限公司 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法

Also Published As

Publication number Publication date
US9640305B2 (en) 2017-05-02
WO2011064636A1 (en) 2011-06-03
US20130092867A1 (en) 2013-04-18
DE112010004576T5 (de) 2012-12-13
JP5093215B2 (ja) 2012-12-12
JP2011114149A (ja) 2011-06-09
CN102741955B (zh) 2015-07-15
DE112010004576B4 (de) 2023-01-26

Similar Documents

Publication Publication Date Title
CN102741955B (zh) 制造烧结稀土磁体的方法、烧结稀土磁体及其材料
Li et al. Microstructure evolution of Mg–10Gd–3Y–1.2 Zn–0.4 Zr alloy during heat-treatment at 773 K
CN1958824B (zh) R-t-b系合金、其合金片制造方法和永久磁体及其制造用细粉
JP5509850B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP6079633B2 (ja) R−t−b系焼結磁石及びその製造方法、並びに回転機
EP2265744B1 (de) Verfahren zum herstellen von metalloxidschichten vorbestimmter struktur durch funkenverdampfung
US20100230013A1 (en) R-t-b alloy, process for production of r-t-b alloy, fine powder for r-t-b rare earth permanent magnets, and r-t-b rare earth permanent magnet
CN105957680B (zh) 稀土钴永磁体
US20090072938A1 (en) R-t-b system alloy and method of preparing r-t-b system alloy, fine powder for r-t-b system rare earth permanent magnet, and r-t-b system rare earth permanent magnet
DE60118623T2 (de) Schleudergussverfahren und schleudergussvorrichtung
CN105405553B (zh) 磁性化合物及其制造方法
JP2007329331A (ja) R−Fe−B系希土類焼結磁石およびその製造方法
CN102696080A (zh) 稀土磁体及其制造方法
JPWO2006101117A1 (ja) 鉄基希土類系ナノコンポジット磁石およびその製造方法
KR20160030366A (ko) 자성 화합물 및 그 제조 방법
DE102016105105A1 (de) Permanent magnet
US20110286878A1 (en) Method for production of ndfebga magnet and ndfebga magnet material
JP5730744B2 (ja) 磁石薄帯の製造方法および製造装置
JP6221246B2 (ja) R−t−b系焼結磁石およびその製造方法
CN109427455B (zh) 磁性化合物及其制造方法以及磁性粉体
JP2013098319A (ja) Nd−Fe−B系磁石の製造方法
Choe et al. Microstructure and martensitic transformation behavior of crystallized Ti–36Ni–7Sn (at%) alloy ribbons
EP1494250B1 (en) Rare earth sintered magnet and method for production thereof
CN1858861A (zh) 含钛、碳的Re-Fe-B基高性能纳米复合永磁材料
KR20200065390A (ko) 고강도 알루미늄 합금의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150715

CF01 Termination of patent right due to non-payment of annual fee