CN1026919C - 有涂层的光传输媒质 - Google Patents

有涂层的光传输媒质 Download PDF

Info

Publication number
CN1026919C
CN1026919C CN90103581A CN90103581A CN1026919C CN 1026919 C CN1026919 C CN 1026919C CN 90103581 A CN90103581 A CN 90103581A CN 90103581 A CN90103581 A CN 90103581A CN 1026919 C CN1026919 C CN 1026919C
Authority
CN
China
Prior art keywords
coating material
optical fiber
modulus
application system
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN90103581A
Other languages
English (en)
Other versions
CN1047394A (zh
Inventor
约翰·托马斯·蔡平
小爱迪生·盖伊·哈迪
丽莎·拉森-莫斯
查尔斯·M·莱什
鲍勃·J·奥弗顿
约翰·W·夏
卡尔·R·泰勒
约翰·迈克尔·特尼普西德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Bell Labs
AT&T Corp
Original Assignee
AT&T Bell Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Bell Laboratories Inc filed Critical AT&T Bell Laboratories Inc
Publication of CN1047394A publication Critical patent/CN1047394A/zh
Application granted granted Critical
Publication of CN1026919C publication Critical patent/CN1026919C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4457Bobbins; Reels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

有涂层的光纤传输媒质(150)包括有涂覆系统(31)的光纤(21),涂覆系统(31)一般包括由不同材料制成的两层涂层。第一涂料制成的内层(32)叫基本涂层,外层叫辅助层。为获取所要求的性能特性,将光纤性能与涂覆系统性能联系起来。涂料的模量是妥善规定了的,第二涂料的延伸率要显着小于现有辅助涂料的延伸率。所取最佳附着力(而不是取最大值)基本上经时不变。涂料的固化可以同时进行也可在分别涂敷两层涂料过程中协同进行。

Description

本发明涉及一种涂覆光纤。
光纤表面受摩擦是极易损伤的,因而光纤在拉制之后但还没有和任何表面接触之前必需加以涂覆。由于涂覆材料不得损及玻璃表面,因此涂覆材料宜以液态的形式涂敷,然后固化。
受涂覆材料影响最大的光纤特性性能包括强度、抗微弯曲传输损耗性、可剥性和耐磨性。光纤受到机械应力的作用时(例如在放入光缆的过程中或形成光缆的光纤暴露在温度变化着的环境中或进行机械加工时所遇到的机械应力)是容易弯曲的。若以周期性分量形式的应力作用到光纤上使光纤轴线弯曲变形,一般达到微米至厘米级的范围时,则光在纤芯中传播时可能会跑出纤芯。这些称之谓微弯曲损耗的损耗可能很大,因此光纤必须与引起微弯曲的应力隔离开来。涂覆中光纤的性能在形成这种隔离中起着主要作用。
迄今,为解决这个问题通常采用的涂覆系统有两种。单层涂覆,这种涂覆采用较高的切变模量,例如大约1000至500,000磅/平方英寸的范围,历来是用在光纤强度要求高的场合,或用在采用缓冲管的光缆中,在这种场合,光纤对微弯曲的 敏感性不是重要问题。
双层涂覆光纤一般用在光缆中是为设计出柔韧的光缆、改进光缆的性能的。一般说来,双层涂覆光纤有一个包括内涂覆层或基本涂覆层的涂覆系统,内涂覆层的特点是涂覆光纤的材料的模量较低。基本涂覆层的模量应能有效地减小通过外部横向力传到玻璃上的应力,从而减少玻璃的微弯曲幅度。基本涂覆材料的特点在于其均衡弹性模量范围约在50磅/平方英寸至200磅/平方英寸。均衡模量可定义为交联材料过一定时间或高温下能达到的最终模量。这种模量的选择是使基本涂覆层达到其主要目的,即加到光纤上的应力要衰减且均匀分布,通过这种衰减和分布显著减少了由微弯曲所引起损耗。有关微弯曲损耗的说明和定义可参看L.L.Blyler,Jr和C.J.Aloisio在第285集《美国化学学会论文集》(ACS    Symposium)和1985年的《应用聚合物科学》(Applied    Polymer    Science)第907~930页中写的文章。显然,基本涂覆层本身在应用或使用过程中不应引来过量的应力。上述那种材料可以减少与光缆敷设、安装或光纤使用寿命期间环境变化有关的微弯曲损耗。为满足所预期的使用领域的温度条件,上述低模量涂覆材料最好应能在大约-50至85℃的温度范围内发挥作用。
一般说来,基本涂覆材料受到光化辐射时还应能产生能附着到光纤上的料层,即这个料层需要至少500克的力,最好是1000克的力才能使其与光纤分开。但这个值应小于3200克以便于卸除工作,并防止难以剥除的残留物。
外涂覆层或辅助涂覆层一般包括模量较高的材料,涂覆在基本涂覆层上,外涂覆层通常是模量更高的材料,以便使涂覆光纤耐磨且摩擦力小。双层涂覆材料通过基本涂覆层对光纤起缓冲作用,通过辅助涂覆层将外加的力分布开,从而使光纤免受弯矩的作用。
附着性能和适当的模量变化是生产出合适光纤的必要条件。但为便于制造,总希望也能在一个较小辐射剂量的宽范围内对基本涂覆材料进行固化就能达到适当的均衡模量值。辐射剂量的定义是:冲击在涂覆系统上入射的辐射或辐射能量的大小。辐照源(例如能放射出紫外光的灯)要使其(例如)能放置在光纤拉制和涂覆设备上,其实际体积是受到限制的。这种限制本身又限制了固化可用的辐射剂量,因此需要采用能在低辐射剂量下固化的材料。此外,固化所用的辐照源,其强度通常是不可变的,因而只要拉制速度发生变化,辐射剂量就要随着发生变化。再有,辐照源的老化和/或辐射源外表面淀积着材料时也会引起辐射剂量发生变化。因此要生产出始终合格的光纤,基本涂覆层应能在一个宽广的低辐射剂量范围内固化,以使其均衡模量处在一特定的范围内。模量随辐射剂量强烈变化的涂覆层会使模量范围和光纤性能变化大。
涂覆材料要达到所期望的特性性能应该具备予定的性能。能增强强度的性能是涂覆光纤所必须具备的性能,但却不能同时因此而增加传输损耗性能。另外,涂覆系统必须达到这样的程度,即无需用不适当的力就能将其从下面的玻璃光纤上剥掉或不致残留难以除去的涂层,而且因使该剥除了涂覆层的光纤可易于用市销的任何种类的装置加以端接。此外基本涂覆材料的折光指数要合适,要高于包层的折光指数。基本和辅助涂覆材料都应尽可能疏水的,以防基本涂覆层和玻璃光纤之间的界面集水,或导至在材料中相位区分成多水区。基本涂覆材料应能在低温下保持适当的抗微弯曲性能,以防光缆中产生传输损耗。辅助涂覆材料应具有适当的抗微弯曲性、耐磨性和抗割破性,而且要求较小的剥除力即可加以剥除。当然,制造光纤时,要在容许的各种生产方案中生产出质量一贯的产品,涂覆系统的固化速度是非常重要的。能使涂覆模量在规定值范围的最低紫外线剂量即为该剂量的固化速率。
人们知道上述所有性能已有一段时间了,可是光纤的性能仍然受到今天所使用的涂覆系统的有害影响。看来迄今尚未完成的工作是确定涂覆材料各种性能之间的相互关系,从而使涂覆材料同时具备一套最优化但不一定是最大限度的性能。
对现有技术的涂覆材料来说,性能随时间的变化相当大。光缆是按光纤拉制时涂覆层的性能而设计的。若这些性能随时间而变化,则所选出的光缆设计可能是不适当的且可能会出问题。因此显然重要的一点应该是使其不随岁月的流逝而变化。换句话说,在一系列温度和湿度下特定的配方必须满足这些要求。现有技术的涂覆系统看来在这些一系列条件下其稳定性并不能长期维持不变。举例说,在热和湿热等条件下它们不好养护。在这些条件下, 市销现有技术的涂覆材料的性能发生变化。换句话说,在这些条件下,现有技术涂覆材料的化学性能不稳定。此外附着性和玻璃转折温度随时间而变,会发黄,且涂覆材料因吸潮分出富水区而变得不透明。
还有,现有技术的涂覆材料在辐射剂量较低时就固化不完全。为降低成本,总想提供含有更多易反应组分的材料以加速材料的固化。此外在制造过程中使涂覆材料真正固化也很重要,这样就可以使未反应物的量减到最少。未反应物随时间而扩散开,会使涂覆材料的表面质量等性能发生变化,导致(例如)表面发粘。
目前需要的和现时现有技术所没有的看来是这样一种光学纤维缆,该光缆的涂覆光纤其性能使其涂覆系统具备所期望的性能特性。这些特性包括损耗低,强度适当,可剥性适中,抗割破性能充分。此外还要求具有与延伸性和附着性结合一起能(例如)提供所期望的性能的各种模量谱(modulus    spectrum)和玻璃转折温度。虽然这些性能要求有些已逐点达到从而实现所期望的具体性能特性,但迄今本技术领域尚未找到也来提供达到全部性能总的解决办法。现在所要寻求的是能解决问题的一组性能,如果要使涂覆系统满足所期望的性能特征,光纤涂覆系统的一种或多种特殊组分就必须满足该一组性能的要求。
本发明是要提供一种含有一根包括一纤芯和包层的光纤的涂覆光纤。光纤实质上封闭在一种涂覆系统中,该涂覆系统包括一由基本涂覆材料制成的内层。基本涂覆材料周围环绕有辅助涂覆材料构成的外层。基本和辅助涂覆材料的特点是它们具备一组能解决问题的特性以便满足性能上的要求。
基本涂覆材料的特点是具有能在预定的温度范围内提供适当抗微弯曲性能的各种各样的模量谱和玻璃转折温度。此外基本涂覆材料具有这样的特点:附着力大致均匀、连续,在光纤与基本涂层材料之间的界面不会有分层现象和非均质的物质存在。有利的方面在于,附着性能适中,不致高得以致将涂覆系统从光纤上卸除时残留除不去的涂覆层。辅助涂覆材料的玻璃转折温度低得足以防止涂覆系统从光纤上脱落,并足以提供适当的抗微弯曲性能。无论处在湿度转高和老化时间较长的情况下涂覆系统的涂覆材料都能保持其性能。
在一个最佳实施例中,基本涂覆层的模量在大约70至150磅/平方英寸的范围内,玻璃转折温度不超过大约-40℃的值。此外,辅助涂覆材料的玻璃转折温度是能在预期的操作温度范围内(但不超过60℃的温度)使辅助涂覆材料具有抗割破性和耐磨性。若该温度超过60℃,则因基本和辅助涂覆材料之间膨胀系数不同而产生的向外径向力会例如使脱层问题更严重。此外辅助涂覆材料还具有这样的特点,即其玻璃转折温度低得足以使辅助涂覆材料随时间而松弛下来,因而变得较柔顺。
附图中:
图1是制造本发明光纤的一部分制造过程的总透视图。
图2是具有两层涂覆材料(基本涂覆材料和辅助涂覆材料)的光纤的端部剖视图,该两涂覆材料构成涂敷到光纤上的涂覆系统。
图3是一般涂覆材料以普通对数表示的模量相对于温度的曲线图。
图4是图2的涂覆光纤的涂覆系统的基本涂覆材料以及现有技术的涂覆材料的对数模量对温度的关系曲线图。
图5是一些涂覆系统的附加损耗对温度的关系曲线图。
图6是现有技术涂覆材料和本发明的涂覆材料拉制过程中就地测出的模量对辐射剂量系数的关系曲线图。
图7是拉伸绕制损耗特性的条形图,画出了现有技术涂覆光纤和本发明的涂覆光纤在室温下、在-40℃下和经老化处理后在-40℃下的附加损耗。
图8是一曲线图,画出了在125℃下老化处理对双层涂覆光纤之基本涂覆材料的模量的影响。
图9是一曲线图,画出了在95℃和95%相对湿度下对双层涂覆光纤进行的老化处理对基本涂层之模量的影响。
图10是本发明的辅助涂覆材料的对数模量对温度的关系曲线图。
图11是多个恒负荷曲线的纤芯偏移对辅助模量的关系曲线和多个恒定偏移曲线的纤芯偏移对辅助模量的关系曲线图。
图12是用于测定从涂覆光纤剥除涂覆系统所需力的装置的示意图。
图13表示现有技术和本发明从光纤剥除涂覆 材料的方式以及进行剥除所需要的力。
图14为曲线图,画出了在95℃和95%相对湿度下双层涂覆光纤进行的老化对该光纤机械剥除力的影响。
图15为曲线图,画出了125℃下双层涂覆光纤进行的老化对该光纤机械剥除力的影响。
图16是表示一些涂覆系统机械剥除力的条形图。
图17是剥除力对时间的关系曲线图。
图18是剥除力对辐射剂量因数的关系曲线图。
图19是在双层涂覆光纤上进行涂覆层对玻璃粘附的抗拔力试验的示意图。
图20是拔力对辐射剂量因数的关系曲线图。
图21是拔力对时间的关系曲线图。
图22为曲线图,画出了在23℃和95%的相对湿度下双层涂覆光纤进行的老化对该光纤剥除过程的影响。
图23为曲线图,画出了在95℃和95℃相对湿度下双层涂覆光纤进行的老化对剥除力的影响。
图24为曲线图,画出了涂覆光纤的静态疲劳性能对该光纤在90℃水中数日浸渍的关系曲线。
图25是一些涂覆系统的吸水百分率的条形图。
图26为条形图,比较了本发明的涂覆光纤和现有技术的涂覆光纤的割破力。
图27是附加损耗对负荷的关系曲线图。
图28为曲线图,画出了本发明涂覆光纤的涂覆材料的偏移情况。
图29是本发明的光学纤维缆的透视图。
现参看图1,可以看到总标号为20的设备用以从料坯22拉制光纤21,然后涂覆该光纤。正如从图1所见,拉制系统包括熔炉23,料坯22即在熔炉23中向下拉制成光纤的大小,然后将光纤21从热区拉出。光纤21的直径由器件24测定。测出光纤21的直径之后,用装置25将保护涂层系统涂上,以形成涂覆光纤30。然后,涂覆光纤30通过同心度仪26、供固化涂覆材料的紫外光(UV)仪27和涂覆光纤外径测定装置28之后穿过拉丝卷筒29,绕在卷轴上。
涂敷在从料坯经拉制之后的光纤上的涂覆系统31(见图2)最好包括两层经辐照固化的聚合物材料。内层32叫做基本涂覆材料,外层34叫做辅助涂覆材料。一般说来,基本和辅助涂覆层的厚度各为30微米左右。
涂覆光纤30一定要符合所要求的性能参数的要求(见图2)。举例说,涂覆光纤必需具有优导的传输特性,经受处理过程和环境影响后必需无任何损伤,应能连接到其它涂覆光纤或器件,而且应能加以测试。
更具体地说,基本涂覆材料与玻璃纤维之间的界面应具足以防止脱层的适当强度,而且应能使涂覆系统从光纤上剥除而不致在光纤表面残留下除不掉的涂层。另一方面,辅助涂覆材料的表面应不致使毗邻光纤圈之间拼拢在一起(阻塞),以免从工艺卷轴上突然松卷。此外,辅助涂覆层的外表面应能适应较厚挤压外包层的涂敷过程,该外包层可以叫做缓冲和/或染料层,供在多纤单元中进行识别之用。
此外,基本涂覆材料必需具有适当的抗微弯曲性,一直持续到低温下,和适当的机械强度。辅助涂覆材料也必需具有适当的抗微弯曲性、充分的耐磨性和抗割破性,而且不应使从光纤上除去涂覆系统所需的力变得过大。
涂覆材料通过微弯曲的机械作用而影响着光纤损耗。涂覆材料对玻璃光纤起缓冲作用,使它不受外部弯力的作用,如果没有涂覆材料就不能处理玻璃光纤。温度下降时,涂覆材料变硬,有可能使微弯曲损耗增加。为便于维护,辅助涂覆材料必须是结实耐用的,而且应能抵抗外来的破坏。基本和辅助涂覆材料的特性应结合起来看,因为它们和性能有关,不应忘记,它们是合一起表征一个复合涂覆系统的特性的。
为满足上述所要求的特性,涂覆光纤30的涂覆系统31表征了一系列能解决问题的性能。在本发明出现之前没有搞清的问题:如何改变性能以使涂覆光纤具有全部所需性能特性(见图2)至于涂覆,不应给传输过程带来附加损耗,其强度特性应足以对光纤起保护作用。此外,涂覆系统应易从光纤上除去以便使光纤可以连接到其它光纤或器件上。另外,辅助涂覆材料的抗割破性应使涂覆光缆能进行测试并在以后的缓冲和敷设光缆的加工作中易于维护。
本发明涂覆系统的优点就是能实现上述在性能 上要达到的目的。基本涂覆层与玻璃之间界面的性能特性是通过适当的附着性和对水份的敏感性加以实现的,而辅助涂覆材料表面的性能特性则通过该表面的表面摩擦力和粘性以及基本涂覆材料对水份的敏感性和挥发性物质来加以控制的。
为了提供具有能满足所有上述性能标准的涂覆系统的涂覆光纤,就要确定使上述性能标准是以满足的各种性能之间的相互关系,这一点很重要。然后调节诸特定性能以使它们满足全部要求。
基本涂覆材料的性能是通过使其各种模量谱和其玻璃转折温度之间相互配合而实现的。聚合物材料的模量与时间和温度有关。图3用曲线40举例说明了聚合物材料模量的一般特性与温度的函数关系。当聚合物处于该曲线的区42中时就叫做处于玻璃态,在玻璃态下,聚合物的模量高,而且大致上恒定。曲线的拐点定义为一个叫做玻璃转折温度Tg的参数。材料的玻璃转折点温度Tg是材料的模量从出现在材料较低温度的玻璃态的较高值转变为出现在材料往更高温度弹性态的过渡区中的较低值时的温度。这个温度可用例如应力/应变测量法测定。图3中,Tg在过渡区44中将玻璃态区42与区46分开,区46中的模量较低,且大致上不变,这是聚合物的弹性区。在过渡区之后的较低且大致上恒定的模量叫做均衡模量。
辅助涂覆层的抗微弯曲性和耐磨性以及抗割破性也是通过其一系列模量谱和玻璃转折温度实现的。辅助涂覆层的耐磨性、抗割破性和剥除力是通过其模量、玻璃转折温度和伸长度等性能实现的。
本发明的涂覆系统31并不会给光纤带来不希望有的附加损耗量。这是通过采用其模量范围能防止带来附加损耗的基本和辅助涂覆材料实现的。我们发现,基本涂覆材料的均衡模量在大约70-200磅/平方英寸的范围是可行的,在大约70-150磅/平方英寸的范围则最好。基本涂覆材料的均稀模量过高时,在室温时的应力作用下在草模光纤中就开始出现不能容许的附加损耗。另一方面,基本涂覆材料的均衡模量过低时,光纤就会在基本涂覆层中翘曲,涂覆系统就会与光纤脱层。
图4中的曲线48示出了本发明涂覆光纤30之涂覆系统31的基本涂覆材料的对数模量对温度的关系。现有技术基本涂覆材料对应的曲线以编号49表示。可以看到,本发明涂覆光纤基本涂覆材料的玻璃转折温度大大低于由曲线49所示的现有技术涂覆材料的玻璃转折温度,并大致上与曲线47所表示的另一个现有技术涂覆材料的玻璃转折温度等效。在一个最佳实施例中,基本涂覆材料的玻璃转折温度不超过大约40℃值。1987年8月28日提出的发明人为M.G.Chan-J.R.Peticel-1尚未获准的申请091,151中公开了适宜用作基本涂覆层32的材料。
现在参看图5,图中示出了紧绕着的光纤的一些涂覆系统的附加损耗对温度的关系曲线图。应该指出的是诸附图中,本发明的涂覆材料和现有技术的涂覆材料系分别用例如清晰的实线或虚线表示。这些线总的说来对应于本发明涂覆光纤系统的涂覆材料和以A至D表示的市销的涂覆材料。图5的曲线51表示配备有现有技术双涂覆系统的光纤的特性。本发明涂覆系统由曲线53和54表示,这些曲线同曲线52所表示的先前涂覆系统相比可看出,其较低温度下的附加损耗显著减小了。根据各附图中所采用的涂覆系统,应该理解的是,图4中的曲线47表示与图5的曲线52采用了同样材料。
在这方面,同样重要的是能以较低的辐射剂量达到对基本涂覆材料的真正固化。本发明基本涂覆材料的这种能力在图6中清楚地表示出来。图6是拉制光纤时在其上就地测出的模量对称为辐射剂量系数的参数的关系曲线图。辐射剂量系数的定义是:固化灯(例如紫外固化灯)的数目与线速率的比值。因此这是照射到光纤涂覆系统上的辐射能的相对额定剂量。涂覆系统31的基本涂覆材料的模量大致上是恒定的,其范围从0.1左右的较低剂量系数至2左右的值。图6中的曲线60表示了本发明的一个实例。本发明涂覆系统的特点在于,在较宽的辐射剂量系数范围内固化基本上是完全的,而从曲线62所表示的现有技术的涂覆材料可以看到,在同样的辐射剂量系数范围内,拉制时就地测出的模量变化显著。这可能会导致产品在制造过程中基本涂覆层的变化很大。
图7画出了对涂覆光纤进行的试验:将涂覆光纤在低张力下松松地绕制,经测定后又在高张力下如象蓝形编织式样那样重新绕制,然后再进行测量。篮形编织式样是每绕制一圈就有若干光纤交叉点的编织式样。本发明的涂覆光纤在图7左侧部分 用条线63、64和65表示,而现有技术的涂覆系统则分别在中心和右侧用条线67、68和69以及条线71、72和73表示。预期损耗量是高的。但如所看到的那样,由于基本涂覆材料较软(这与在-40℃下的微弯曲有关),附加损耗还是低的。以现有技术的一种涂覆层而论,在室温下和在-40℃下(见条线67和68)的附加损耗是可允许的,但经过5天在88℃温度下老化之后,当涂覆层处于-40℃的温度下时,损耗显著增加(见条线69)。另一现有技术涂覆材料则不仅在经过五天老化之后而且在老化前在-40℃下也出现不能容许的损耗(见条线73和72)。
事实上,我们发现现有技术经固化后的光纤涂覆材料,其化学性质会因老化处理而发生变化。通常,许多聚合物材料对在较高温度和较高湿度下进行的老化是不稳定的,它们因此而变脆而且其模量特性与图4所画出的显著不同。另一方面,本发明涂覆光纤涂覆材料的性能并不因老化处理而显著变化,其模量特性经时不变。可以看出,按本发明制造出来的涂覆光纤,其基本涂覆层就地测出的模量受老化过程的影响显着减小。
现在参看图8。图中的曲线74示出了在125℃高温而干燥的环境中进行的老化对双层涂覆光纤30的基本涂覆材料模量的影响。其它现有技术的材料经老化后性能差。对微弯曲的敏感性随模量的增加而增加。我们所期望的是较低而经时稳定的模量。另一方面,从图8中可以看出,曲线75和76所示的其它市销的现有技术的涂覆层在老化过程中模量性能显著变化。
图9画出了双层涂覆光纤30在高温高湿度老化试验中,基本涂覆材料32的就地测出的模量。约15天之后,现有技术的涂覆材料的模量急剧下降(见曲线78和79)。曲线77所表示的基本涂覆材料32一例的模量在老化试验开始时稍微上升。另一方面在含有现有技术涂覆层的光纤中,模量下降了50%。所要求的和应该保持的基本模量值最好在大约70-150磅/平方英寸的范围。
至于辅助涂覆材料,其微弯曲性能应相对于其模量和Tg来衡量。辅助涂覆材料34的对数模量对温度的关系曲线示于图10,以编号80表示。曲线81是与现有技术涂覆材料有关的曲线。涂覆光纤30的辅助涂覆材料34的玻璃转折温度约在20至60℃的范围内。最好在大约40℃。若玻璃转折温度低于20℃,则光纤的耐用性过低以致不能在工厂的条件下加以处理,因为辅助材料会太软。若辅助涂覆材料的玻璃转折温度过高,则可能出现涂覆系统与光纤脱层现象,也就是说,基本涂覆材料更易于剥离玻璃光纤。其原因在于,基本涂覆材料的膨胀和收缩系数大于辅助涂覆材料的膨胀和收缩系数。结果,由于辅助涂覆层在Tg以下的温度其硬度增加从而使辅助涂覆材料的收缩跟不上基本涂覆材料的收缩(见图10)。这使基本涂覆材料处于张紧状态,从而脱离玻璃光纤。采用玻璃转折湿度较低的辅助涂覆材料可以使这种效应减小到最低程度。适宜作为辅助涂覆材料34的一种材料是可从De    Soto,Des    Plaines,Ⅲ公司购得的名叫950-103的材料。
我们发现,从微弯曲的观点看,辅助涂覆材料具有一定的顺从性是有好处的。这个结果是出乎意料之外的,因为现有技术一般是要求基本涂覆材料较软,辅助涂覆材料较硬。现有技术的这种作法看来在应力条件不变时才必需这样做的(见图11)。从图11可以看到,在为提高基本涂覆模量而加恒定负荷的曲线84-84的情况下,(这些曲线是计算出的)纤芯的偏移随着辅助涂覆材料模量的下降而增加。负荷是周期地以微米有至厘米级的间距加上时,纤芯的偏移越大,微弯曲损耗也越大。换句话说,损耗与纤芯偏移之间存在一种相关性。在实用中,当辅助涂覆材料松弛且其模量随时间和/或温度不同而减小时,因微弯曲而产生的附加损耗随辅助涂覆材料的柔软性或依从性的增加而减小。从图11的曲线86-86即可以看到这一点,曲线86-86是经常应用的偏移曲线。可以看到,辅助涂覆材料的模量减小时,附加损耗随时间流逝而减小。这个研究结果与光缆及张力绕制结果是一致的,在该情况下,因微弯曲而引起的附加损耗随时间的推移和温度的提高而减少。在现有技术中,推荐了超过85℃甚至100至120℃范围的Tg温度。若辅助涂覆材料具有那种特点,则会松弛得慢到使纤芯仍然偏移而不会恢复到未偏移的状态,从而使附加损耗过大。因此Tg显着较低时对辅助涂覆层的抗微弯曲性能有利的结论是令人惊奇的。本发明辅助涂覆材料的Tg都在该较低范围内的。事实上若Tg过高且在工作温度范围之外,则辅助涂覆材 料可能不会充分松弛以避免不希望有的附加损耗。显然,我们需要做的是使辅助涂覆材料的Tg最佳化而不是最大化。
辅助涂覆层的耐用性、可剥性和抗割破性所需要的较高Tg,低损耗所需要的低Tg和防止脱层的中间范围Tg,它们之间必须平衡。Tg过低时会引起表面摩擦力增加和抗割破性下降的问题,而且剥除力还可能提高。另一方面,若Tg太高,则会引起脱层和损耗增加的问题。
另一种性能是机械可剥性,这种性能似乎长期被人们所误解且看来与涂覆光纤其性能有关的其它重要性能不相关。可剥性是衡量涂覆系统从光纤上剥除的难易程度,它可用图12所示的设备90测出。图12中,刀片91-91是要使其通过辅助涂覆材料切入基本涂覆材料中。我们总希望涂覆系统只需要较小的剥除力就能加以剥除。若剥除力过高,则可能使光纤断裂或会将光纤包层刮掉。
光纤工业界历来认为,可剥性反映了涂覆系统对玻璃光纤的附着能力。与这种想法相反,现已发现,从光纤上剥除涂覆系统所需用的力是辅助涂覆材料的延伸率因而也是玻璃转折温度的一个函数。延伸率是指辅助涂覆材料断裂之前引入其内的应变。
理想的延伸率为小于40%左右,最好约为30%。这是通过使辅助涂覆材料的玻璃转折温度高于一般使用材料的玻璃转折温度来实现的。若Tg过低,辅助涂覆材料的弹性可能会提高,且其延伸率可能会提高到损害可剥性的程度。但我们不希望玻璃转折温度显着超过大约60℃,不然的话,基本涂覆材料热缩或挥发物损耗所引起的向外径向应力会引起涂覆材料与玻璃脱层。由于脱层是间歇进行的,因而会产生不均匀的局部高应力和损耗。由于这种相关性和由此而采取的折衷办法,本发明的涂覆系统31要求较低的剥除力。
剥除力是辅助涂覆材料断裂过程和撕裂因素的函数。若光纤采用延伸率较高的辅助涂覆材料,则进行剥除时会产生翘曲,涂覆材料隆起。这一点示于图13(A)和13(B)中,其中辅助涂覆材料的延伸率分别为70%和80%。另一方面,若辅助涂层材料的延伸率较低(例如)为33%,则正如图13(C)所示的那样,涂覆材料在剥除的过程中会扯碎。因此得出在整个长度上不变的剥除力(见图13(C)),而采用其涂覆系统为现有技术的光纤,剥除力猛增,如图13(A)和13(B)所示。还应该加以避免的是剥除之后的残留部分,不然的话会妨碍终端接线作业,而且光纤对不齐。如象现有技术那样存在难以除去的残留涂覆层,则作终端接线之前必须将光纤清理干净,但这样可能会损害光纤表面。本发明的涂覆光纤不存在残留物问题。
图14示出了在95℃和95%相对湿度下进行的老化对机械剥除力的影响。含有曲线102所示的现有技术涂覆层的光纤难以剥除,因为其辅助涂层的延伸率高,即约为70%左右。在用曲线103表示的本发明涂覆光纤中,辅助材料的延伸率降低了大约40%。此外挺有意思的是,由曲线101所表示的一种现有技术辅助涂覆材料具有延伸率较低因而可剥性适中的特点。但从图4中可以看到这种现有技术的涂覆材料其模量高到不能容许的程度。而且该现有技术的辅助涂覆材料的老化性能差。通过上述比较可以看出,对现有技术的涂覆材料可能也要求它能满足某些性能,但所要求的性能没有象本发明的涂覆系统中那样全面。从图14中可以看出,现有技术的涂覆系统(如曲线101和102所示)的剥除力不稳定,即随时间推移而减小。
图15画出了在125℃较干燥的环境下的老化对机械剥除力的影响。可以看到,涂覆有现有技术涂覆系统的光纤其用曲线105和106表示的剥除力以及本发明涂覆系统(其用曲线107表示)的剥除力都比较稳定。比较一下图14和15就可以看出水份在寻致不稳定方面所起的作用有多重要。图16画出了用条形图比较各种涂覆系统(包括现有技术涂覆系统和本发明其中一种以编号109表示的涂覆系统)的剥除力。
从图17中的曲线114可以看到,本发明涂覆系统的剥除力的优点在于其基本上不随时间而变化。此外,剥除力相对于大约0.3和2之间的辐射剂量系数也大致上恒定,如图18中标号为115的曲线所示。
要使性能特性处于容许范围,强度性能是极端重要的一个因素。涂覆光纤必须能够将其挪来挪去。涂覆系统最好有利于保持由检验试验(zeproof    test)所模拟出的光纤的强度性能。为达到所要求的强度性能,涂覆系统31必须对光纤21具有适当的附着力。不应忘记:可剥性并不仅仅与 附着力有关。可剥性达较高值时,附着力就成为剥除力的一个因素。
有些制造厂家追求较高的附着水平。实际,涂覆系统31对玻璃的附着力不需要太大。若涂覆系统31对玻璃的附着力太大,光纤表面在机械剥除作业之后可能会产生难以剥除的残留涂覆层。这种残留涂层可能给光缆终端接线作业带来不利影响,例如,当想把其端部塞入直径0.005英寸且在金属包头中形成的通道时就是这样。
我们发现,若附着力处在适当的范围,例如大约每厘米拔拉力为1~5磅的范围,那就足以允许将光缆挪来挪去,同时保持其强度。此外还发现,附着力处在这样大小时,涂覆系统不会与光纤脱层。
使涂覆光纤30在其整个工作温度范围内保持低温损耗特性也很重要。鉴于制造厂家们已使玻璃转折温度较低,要使附着力处于转高水平就有问题了。因此要同时达到低温柔质和高的附着力是有困难的。在涂覆系统31中,实现低温柔质的方法是采用即使在高温和高湿度的条件下也足以避免脱层的中等程度的附着力。只要在较高的温度和湿度下附着力的水平基本上维持不变就可以获得适当的特性。结果可以在获得较低的玻璃转折温度的同时提供可容许的低温性能。
与现有技术相反,涂覆系统31最好是使其附着力在上述量级范围,而且光纤21与涂覆系统30之间的界面即使处在湿度变化着的环境中也是稳定的,这一点很重要。我们发现若附着力的大小低于上述范围,涂覆系统会脱离光纤。我们也发现,在上述规定的范围内,即使处在湿度较高的环境中,涂覆材料也不会变混浊。若有混浊现象,这可能表明涂覆系统与玻璃光纤之间的界面聚集着水份。从静疲劳的观点看,界面稳定可以保持强度性能。
尽管其他人认为附着力必须是高量级的,本发明考虑的是最佳而不是最大的附着力,而更重要的是:与玻璃形成的界面涂覆层要均匀而连贯。要在干燥状态下达到最佳的附着力并不怎么难,可是如果湿度大,现有技术的涂覆材料就会有问题。本发明的涂覆系统无论在干燥还是潮湿的气候下,附着力都表现出上述的高水平。
图19中示出了为研究涂覆层与玻璃界面110处附着力所用的拔拉结合力试验。若基本涂覆材料32与玻璃光纤21之间界面处的附着力消失,可能会出现断断续续的脱层现象,而且对性能产生恶劣的影响,这是因为光损耗和强度变化所致。若在界面因脱层引起的凹处集水,则产生的恶果是惊人的。因此即使在恶劣环境中也必须维持规定范围内的一个适当附着力。
为获得一个稳定的附着力范围,需要基本上稳定的系统。从图20中的曲线19可见,本发明的涂覆系统的拔拉力在辐射剂量系数高于一定程度时其变化幅度比现有技术的要小得多。象剥除力(见图17)和附着力(见图21)之类的性能在室温下在紧接着拉制之后的一段时间内基本上是恒定的。这段时间是监视拔拉情况的均衡期。从图21中可以看出,在理想的范围内,附着力处于中等水平,因此在此后的制造工序中不会出现脱层现象。众所周知,涂覆层与玻璃之间只要有脱层现象就会损坏光纤。另一方面,现有技术材料的附着力水平实质上是变化的。图21所示的现有技术涂覆系统的附着力大小在拉制出的光纤因在皮带轮上运动而极易损坏时开始极其接近1磅。另一方面,稍后当希望使附着力处于中等程度以避免难以除去的残留涂层时,图21现有技术系统的附着力量级变得较高。
至于现有技术的涂覆系统,老化对拔拉结合力试验的结果有不良的影响。从图22可以看到,与本发明的涂覆光纤有关并以曲线11画出的拔拉力其变化幅度比起现有技术涂覆材料以曲线112和113画出的拔拉力在所示条件下的变化幅度要小得多。图23示出了另一个老化效应,它画出了老化作用对在95℃和95%相对湿度下老化过的双层涂覆光纤的机械拔拉力的影响。曲线116所表示的涂覆系统31处在这些条件下时有些变化,但其变化幅度远比用曲线117和118画出的其它现有技术材料小得多。事实上,用曲线119表示的市销涂覆系统其拔拉力急剧降到1磅以下并脱层。基本涂覆材料配方也需要有附着力促进剂。但所使用的附着力促进剂应不妨碍涂覆材料的固化过程。
图23的曲线也可与图24的曲线结合起来看,其中曲线121中对应于现有技术涂覆层静态疲劳特性中第一瞬态的弯曲部分会在7至10天内出现。静态疲劳涉及光纤以较小半径弯曲而不致断裂的能力。静态疲劳试验时,将光纤插入一个管孔精密的管中,其中不同的半径涉及不同的应力级。
在试验结果示于图24的一次试验中,涂覆光纤的试样系浸渍在90℃的水槽中。光纤的强度在大约一个星期的时间后通过一瞬态而迅速下降。附着情况不好时,在涂覆层与玻璃光纤脱开后潮气渗入涂覆层与玻璃光纤之间的气隙。水接触玻璃表面,于是开始应力腐蚀过程。水一旦到达光纤表面,光纤就损坏了。比较一下图22和23即可看到不良附着力在高湿度所产生的这一后果。图22画出了老化对在室温和高湿度下(即不加热的情况下)拔拉过程的影响。热加速了老化过程。由于吸潮拔拉力开始下降,虽然图22中曲线113所表示的光纤看来是可允许的,但在95℃和95%相对湿度下进行检验时就不可允许的了(见图23的曲线117)。
此外,玻璃表面水份的含量还应该低,不然静疲劳试验的结果必然差。换句话说,各涂覆材料的吸水率最好低,即涂覆材料尽可能是疏水性的。图25中示出了本发明的涂覆光纤的吸水率与现有技术的涂覆光纤吸水率在两种不同相对湿度下加以比较的情况。条纹124和125分别表示了涂覆光纤30在50%和65%相对湿度下的实例。条纹对126、127和128、129表示了对市销的涂覆材料进行的试验。至于静疲劳试验,其目的是获得附着在玻璃上的没有会引起不稳定界面的集水的稳定的基本涂覆层。若吸湿率高,则可用挤压法敷上一层叫做缓冲层的较厚塑料层时,便可释放出潮气。吸潮率不高时,敷上缓冲层之前就无需事先对涂覆材料进行干燥。另外,水份过量时会使缓冲层的界面不均匀。
涂覆光纤30与现有技术的光纤相比,变化是很大的。之所以发生这种变化是由于对各种性能进行了控制,例如改善拔拉性能和降低对潮气的敏感性等。从图24对数应力对对数时间的关系曲线可以看出,现有技术涂覆层曲线121的弯曲部分是在大约1至10天的时间出现的。但从表示本发明涂覆系统31的曲线122来看,本发明的涂覆光纤其弯曲部分的起始点业已从1至10天的范围增加到100天。这是因为在潮湿环境和潮湿敏感性降低的情况下附着力大小稳定所致。对涂覆系统31来说这种变质情况直到大约100天之后才发生。要使界面稳定并不是依赖特高的附着力而是采取折衷的方法。
水分不仅会影响涂覆材料对玻璃和纤芯的附着力,而且还会侵袭一般聚合物涂层的聚合物链。此外水分对光纤的玻璃有害,引起应力腐蚀。涂覆材料最好具有抗吸潮的能力。图24清楚地描绘出本发明的涂覆31的抗吸潮能力,可以看出试验曲线的弯曲部分显著偏移。
令涂覆系统处于相对湿度约为95%的环境中就可以看出它是否脱层。采用不会分相的涂料配方并采用吸水率较低的涂料配方就可以将附着力控制到大约1至5磅/厘米长的水平,从而防止脱层。此外,用较硬的辅助涂覆材料在辐射剂量低于规定值时产生脱层是普遍的现象。为解决这个问题,辅助涂覆材料34应采用中等耐用度的涂覆材料,并使基本涂覆材料含有附着力促进剂。这样就扩大了不脱层的窗口。玻璃转折温度约为40℃的辅助涂覆材料只有当其加了附着力促进剂的基本涂覆材料的拔拉水平小于大约1磅/厘米时才有脱层现象。
模量达到适当值之后就要考虑涂覆层的稳定性了。有些稳定剂易于从涂料组合物中析出。此外我们还研究了老化性能。老化过程时间采用七天,在老化期间评价色泽的变化。涂料配方中还加入了抗氧化稳定剂。涂覆光纤30的涂覆系统31不应随时间的推移而褪色。
另外,辅助涂覆材料的外表面应便于我们对光纤进行处理和成圈绕制,不致使毗邻各圈粘结在一起。可以设想,如果产生不希望有的表面发粘现象,则在放松光纤各圈时会产生阻塞和不希望有的困难。通常,外涂覆材料的这种不希望有的发粘现象是由于其外层固化不足引起的。在存在氮气的情况下固化涂覆光纤可以避免这种现象。
此外,辅助涂覆材料的外表面应较为光滑,以便在涂覆光纤与包括其它光纤表面的其它表面接合时减少其摩擦力。通过组合玻璃转折温度、辅助涂覆材料的均衡模量和受控的工艺参数,使它们达到最佳状态便可减小摩擦力。
辅助涂覆材料还应能往其上敷上缓冲材料。例如聚氯乙烯(PVC)组合物或染色原料等。能接收缓冲或油墨料的外表面应具有适当的质地,且应由能与缓冲材料或油墨相容的材料制成。
应认识到的重要的一点是,许多性能是要达到的,但不一定要达到最高量级。相反,在某些情况下可能需要作折衷的选择,即要达到通常被视为与 另种所要求的性能相对立的一种性能。举例说,为降低损耗而要达到低模量时可能需要在高固化速率上做一些牺牲。在强度过关的情况下,在工艺上总是争取使附着力达到最高。然后对本发明的涂覆材料来说,过去有人认为只有在兼顾其它重要性能(例如高固化速率、一致的涂层段、(cousistent    coating    lots)对湿度的低敏感性和通过机械装置达到的剥除能力等)的基础上才能达到所述的附着力水平。但我们发现,涂覆系统31是不需要这些兼顾的。
图26中示出了涂覆光纤30与现有技术的涂覆光纤在抗割破能力方面进行的比较,其抗割破能力是较高的,光纤的表面和断面上没有裂纹。在那种结构中,如果没有裂纹和瑕疵,则涂覆系统会呈现出高得多的强度。因此这种抗割破能力是完全过关的。标号为140的条纹绘出了辅助涂覆材料的玻璃转折温度为40℃的涂覆光纤30的性能,条纹142、144和146则绘出了涂覆了现有技术材料的光纤性能。条纹142所表示的试样的玻璃转折温度为25℃。由条纹144所表示的试样其复合Tg在20~36℃范围。由条纹146所表示的试样其复合Tg范围为10~36℃。从图26应可看出,Tg与抗割破性能之间存在有一定的相关性。辅助涂覆材料34的Tg使抗割破能力提高。可是Tg过高时,由于辅助涂覆层的柔顺性下降,导致基本涂覆层脱层,而且损耗增加。
与本发明想解决的一系列性能一致的涂覆系统31,其老化性能和可靠性优异,光损耗3特性也卓越。它在各种不用的工作条件和老化试验中,性能应该是不变的。为测定光纤的诸性能,就得进行试验。性能测定之后,就对作为这些性能的函数的特性进行评价。我们把光纤的性能和特性联系起来。例如,已将延伸率与可剥性联系起来。现有技术从来没有象这里所进行的那样对光纤的性能作全面的评述。
本发明的涂覆光纤30质量高而恒定,味不大或无味,抗割破能力有所提高,光纤表面光滑,湿度敏感性有所降低,发黄现象最少,不混浊,机械剥除力有所减小。此外其在预定温度范围(例如下降不超过约-40℃,上限不超过约85℃的温度范围)内的抗微弯曲性能适中,温度损耗特性低,耐静疲劳,而且老化性能和可靠性优异。
能达到这些性能是和一些具体参数有关的。例如,固化速率与一致性有关。由于改善了涂覆材料32和34的固化速率,因而提高了光纤卷轴间的一致性。特定涂覆材料的成份不应引起发黄,不然可能会分辨不清光纤的识别色。
还记得图6示出了固化速度作为辐射剂量系数的函数曲线。举例说,辐射剂量系数为0.4时,以曲线62例示的现有技术的涂覆系统并没有完全固化,但可以看到本发明的涂覆系统则完全固化了。具有本发明特点的涂覆材料在较低的辐照水平下固化得更彻底。
现在参看图27,该图示出了将光纤安置在两个表面铺以150号粒度砂纸的压板之间进行的按压试验的结果。往压板上加挤压力使砂纸压入涂覆系统中。挤压促使纤芯略为偏移从而产生微弯曲。这和光纤在光缆制造过程中横向偏移的情况有点类似。涂覆系统越硬,对微弯曲作用就越敏感。可以看到,现有技术光纤分别在1300和1550毫微米波长以成对曲线130和131以及133和135表示的附加损耗比以曲线137和139表示的本发明涂覆光纤的附加损耗要大。
图28中绘出了在-40℃下进行的涂覆层偏移的研究结果。关键的参数是在室温和在-40℃的基本模量。这些结果是衡量基本涂覆材料在-40℃下的柔韧程度,探头变形和在-40℃下引起偏移的程度即为对-40℃下的模量的一种量度。图28是在光纤上测出的柔韧情况。基本涂覆材料越柔软,就越可能抗衡模向负荷,因而抗衡微弯曲作用。从沿X轴的现有技术涂层曲线140实质上看不出有任何偏移,而本发明的涂层如曲线142所示的那样探头极易移动。
涂覆光纤30的基本涂覆材料的特点是在低温下实质上比现有技术的光纤基本涂覆材料更柔顺。在较短的时间内,所有的涂覆材料是较硬的,但到48小时时,现有技术光纤的基本涂覆材料则表现得比那时已基本松弛处于其均衡模量状态的涂覆光纤30的涂覆材料硬得多。
图7应与图27和28结合起来考虑。图28示出了由带负荷的探头而引起的涂覆层的偏移情况,这是在光纤上测出的数据。从图28可以看到,辅助涂层较硬时,只有当基本涂覆材料偏移时它才偏移。曲线142表示包含玻璃转折温度约为-45℃的 基本涂覆材料的涂覆光纤30。另一曲线140表示包含玻璃转折温度约为-28℃的基本涂覆材料的现有技术光纤。可以看到在-40℃温度下现有技术的光纤无偏移现象。因此,该光纤由曲线140表示的涂覆系统不能偏移以吸收横向负荷因而损耗增加。这一点也可从图7中看出。图7中,涂覆光纤即使在-40℃下,即使经五天的老化处理之后在-40℃进行试验时其损耗也是小的。而现有技术玻璃转折温度转高的涂覆层的损耗,特别是在老化处理之后,要增大。
在这方面图27也是很重要的。通过比较在1550毫微米下的曲线130、131和137可以看出,现有技术涂层在按压试验中的附加损耗明显更大。涂覆光纤30的复合涂覆系统31,由于其辅助涂覆材料的抗割破能力较高,再加上其基本涂覆材料的均衡模量较低(这使其在按压试验中的附加损耗小于现有技术的涂覆系统),因而具有更好的性能。
两种涂覆材料涂敷好之后,同时进行固化处理。在最佳实施例中,涂覆材料为辐照可固化的,更具体地说,是用紫外线可固化的涂覆材料。可以先涂覆并固化基本涂覆材料,然后再涂覆并固化辅助涂覆材料。不然也可以象美国专利4,474,820所示的那样,同时涂覆两种涂覆材料,然后再固化。
稍后,给一根或多根光纤30-30加上铠装系统以形成光缆。从图29中可以看到,光缆150有多个光纤30-30组成的单元152-152,各单元由粘合剂153固定在一起。诸单元152-152封闭在由适当塑料材料制成的芯管154中。芯管周围可以设置金属铠装156和加强件系统157。加强件系统157可以包括多个纵向延伸的加强件。塑料外套159把加强件系统和铠装封闭起来。美国专利4,765,712中公开了光学纤维缆的实例。
应该理解的是,上述配置方式仅仅是为了说明本发明而已。本领域的人员还可能设计出其它体现出本发明的原理因而也属于本发明范围和精神实质的配置方式。

Claims (14)

1、一种光传输媒质,它包括一具有纤芯和包层的光纤和封闭所述光纤的涂覆系统,该涂覆系统包括与光纤接合并将其真正包裹的第一涂覆材料和包裹第一涂覆材料的第二涂覆材料,本发明的特征在于:
所述第一涂覆材料其模量谱和玻璃转折温度使其在预定温度范围内具有适中的抗微弯曲能力;以及其对光纤的附着力大致均匀、连续,而且使光纤和第一涂覆材料之间的界面无脱层现象和非均质的物质,这种附着力用以防止第一涂覆材料从光纤上剥除之后在光纤上仍有残留物方面最为理想,而且基本上经时不变,所述模量谱、玻璃转折温度和附着力在较高的湿度和较长时间的老化条件下基本上能保持;和
所述第二涂覆材料的玻璃转折温度很低,足以防止涂覆系统与光纤的脱层并提供适当的抗微弯曲能力。
2、如权利要求1所述的光传输媒质,其特征在于,所述第一涂覆材料具有范围为70至150磅/平方英寸的均衡模量以及约-40℃的玻璃转折温度。
3、如权利要求2所述的光传输媒质,其特征在于,所述预定温度范围的下限不超过约-40℃,上限不超过约85℃。
4、如权利要求3所述的光传输媒质,其特征在于,所述第二涂覆材料具有这样的玻璃转折温度,以致光纤可以在周围环境条件下处理,且该玻璃转折温度足够低以使所述第二涂覆材料随着时间的推移松弛下来而变得较柔顺。
5、如权利要求4所述的光传输媒质,其特征在于,所述第二涂覆材料具有范围在大约20℃至大约60℃的玻璃转折温度和范围在大约1000磅/平方英寸至大约5000磅/平方英寸的均衡模量。
6、如权利要求5所述的光传输媒质,其特征在于,所述第二涂覆材料具有足够低的延伸率以便于从光纤上剥除涂覆系统。
7、如权利要求6所述的光传输媒质,其特征在于,所述第二涂覆材料的所述延伸率小于40%左右。
8、如权利要求7所述的光传输媒质,其特征在于,所述附着力约在1至5磅/厘米拔拉力范围内。
9、如权利要求8所述的光传输媒质,其特征在于,所述第一涂覆材料的模量在贯穿整个工作温度范围的较短时间内就松弛到某一均衡值。
10、如权利要求9所述的光传输媒质,其特征在于,所述较短的时间为48小时左右。
11、如权利要求1所述的光传输媒质,其特征在于,各所述涂覆材料均是可固化的材料。
12、如权利要求11所述的光传输媒质,其特征在于,所述各涂覆材料是辐射可固化材料。
13、如权利要求7所述的涂覆光纤传输媒质,其特征在于,所述第二涂覆材料的所述延伸率为30%左右,且因此使测出的可剥性在大约0.6至大约2范围的辐射剂量系数下大致经时恒定。
14、如权利要求12所述的光纤传输媒质,其特征在于,所述第一涂覆材料的就地测出的模量在大约0.1至2的辐射剂量系数范围内基本上是恒定的。
CN90103581A 1989-05-15 1990-05-14 有涂层的光传输媒质 Expired - Fee Related CN1026919C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US351,984 1989-05-15
US07/351,984 US4962992A (en) 1989-05-15 1989-05-15 Optical transmission media and methods of making same

Publications (2)

Publication Number Publication Date
CN1047394A CN1047394A (zh) 1990-11-28
CN1026919C true CN1026919C (zh) 1994-12-07

Family

ID=23383283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN90103581A Expired - Fee Related CN1026919C (zh) 1989-05-15 1990-05-14 有涂层的光传输媒质

Country Status (10)

Country Link
US (1) US4962992A (zh)
EP (1) EP0398564B1 (zh)
JP (1) JP2828733B2 (zh)
KR (1) KR0171887B1 (zh)
CN (1) CN1026919C (zh)
AU (1) AU618478B2 (zh)
BR (1) BR9002274A (zh)
CA (1) CA2016799C (zh)
DE (1) DE69021635T2 (zh)
DK (1) DK0398564T3 (zh)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352712A (en) * 1989-05-11 1994-10-04 Borden, Inc. Ultraviolet radiation-curable coatings for optical fibers
US5536529A (en) * 1989-05-11 1996-07-16 Borden, Inc. Ultraviolet radiation-curable coatings for optical fibers and optical fibers coated therewith
CA1321671C (en) * 1989-05-11 1993-08-24 Paul J. Shustack Ultraviolet radiation-curable coatings for optical fibers and optical fibers coated therewith
US5062685A (en) * 1989-10-11 1991-11-05 Corning Incorporated Coated optical fibers and cables and method
US5459175A (en) * 1990-11-28 1995-10-17 Loctite Corporation Optical fiber primary coatings and fibers coated therewith
US5371181A (en) * 1990-11-28 1994-12-06 Loctite Corporation Thiol-ene compositions with improved cure speed retention
CA2082614A1 (en) * 1992-04-24 1993-10-25 Paul J. Shustack Organic solvent and water resistant, thermally, oxidatively and hydrolytically stable radiation-curable coatings for optical fibers, optical fibers coated therewith and processes for making same
US5257339A (en) * 1992-07-29 1993-10-26 At&T Bell Laboratories Package of optical fiber suitable for high speed payout
US6240230B1 (en) 1997-03-06 2001-05-29 Dsm N.V. Protective materials for optical fibers which do not substantially discolor
JPH09243877A (ja) * 1996-03-12 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ心線
CA2251074A1 (en) * 1996-04-10 1997-10-16 Dsm N.V. A method of increasing the adhesion between radiation-cured, inner primary coatings and optical glass fibers
EP0976692B2 (en) * 1997-01-20 2004-12-29 Sumitomo Electric Industries, Ltd. Optical fiber equipped with cladding and method of manufacturing the same
US6579618B1 (en) * 1997-08-15 2003-06-17 Dsm N.V. Coated optical fiber and radiation curable resin composition
US6215934B1 (en) 1998-10-01 2001-04-10 Lucent Technologies, Inc. Coated optical fiber with improved strippability
US6215931B1 (en) * 1999-01-26 2001-04-10 Alcatel Flexible thermoplastic polyolefin elastomers for buffering transmission elements in a telecommunications cable
WO2001035143A1 (en) * 1999-11-05 2001-05-17 Sumitomo Electric Industries, Ltd. Coated optical fiber
CA2395531A1 (en) 1999-12-30 2001-07-12 Corning Incorporated Secondary coating composition for optical fibers
US6775451B1 (en) 1999-12-30 2004-08-10 Corning Incorporated Secondary coating composition for optical fibers
AU1582701A (en) 1999-12-30 2001-07-16 Corning Incorporated Optical fibers prepared with a primary coating composition including a monomer with a pendant hydroxyl functional group
KR20020067056A (ko) 1999-12-30 2002-08-21 코닝 인코포레이티드 1차 광섬유 코팅의 급속 경화방법
EP1250386A1 (en) 1999-12-30 2002-10-23 Corning Incorporated Composition containing tackifier and method of modifying time-sensitive rheological properties of optical fiber coating
KR20030022790A (ko) 2000-05-01 2003-03-17 코닝 인코포레이티드 광섬유 코팅
US6577802B1 (en) 2000-07-13 2003-06-10 Corning Incorporated Application of silane-enhanced adhesion promoters for optical fibers and fiber ribbons
US6579914B1 (en) 2000-07-14 2003-06-17 Alcatel Coating compositions for optical waveguides and optical waveguides coated therewith
US6584263B2 (en) 2000-07-26 2003-06-24 Corning Incorporated Optical fiber coating compositions and coated optical fibers
US6553169B2 (en) 2000-11-29 2003-04-22 Corning Incorporated Optical fiber coating compositions and coated optical fibers
EP1346959A4 (en) * 2000-12-22 2005-04-06 Sumitomo Electric Industries COATED OPTICAL FIBER AND ITS MANUFACTURING METHOD
US6602601B2 (en) 2000-12-22 2003-08-05 Corning Incorporated Optical fiber coating compositions
EP1370499A2 (en) 2000-12-29 2003-12-17 DSM IP Assets B.V. Non-crystal-forming oligomers for use in radiation-curable fiber optic coatings
US20030077059A1 (en) * 2001-03-13 2003-04-24 Ching-Kee Chien Optical fiber coating compositions
US6707977B2 (en) 2001-03-15 2004-03-16 Corning Incorporated All fiber polarization mode dispersion compensator
US6470128B1 (en) 2001-03-30 2002-10-22 Alcatel UV-curable coating composition for optical fiber for a fast cure and with improved adhesion to glass
US6810187B2 (en) * 2001-07-27 2004-10-26 Corning Incorporated Optical waveguide thermoplastic elastomer coating
US20050226582A1 (en) * 2002-04-24 2005-10-13 Nagelvoort Sandra J Radiation curable coating composition for optical fiber with reduced attenuation loss
ATE378301T1 (de) * 2002-04-24 2007-11-15 Prysmian Cavi Sistemi Energia Optische faser mit verringerten dämpfungsverlusten
BRPI0210491B1 (pt) * 2002-04-24 2016-02-23 Pirelli & C Spa método para controlar perdas de atenuação causadas pela microflexão no sinal transmitido por uma fibra ótica
US7238386B2 (en) * 2002-05-09 2007-07-03 Hexion Specialty Chemicals, Inc. Methods for making and using point lump-free compositions and products coated with point lump-free compositions
US6862392B2 (en) 2003-06-04 2005-03-01 Corning Incorporated Coated optical fiber and curable compositions suitable for coating optical fiber
US7207732B2 (en) * 2003-06-04 2007-04-24 Corning Incorporated Coated optical fiber and curable compositions suitable for coating optical fiber
US7050688B2 (en) * 2003-07-18 2006-05-23 Corning Cable Systems Llc Fiber optic articles, assemblies, and cables having optical waveguides
US7715675B2 (en) * 2003-07-18 2010-05-11 Corning Incorporated Optical fiber coating system and coated optical fiber
US7373057B2 (en) * 2003-09-30 2008-05-13 Prysmian Cavi E Sistemi Energia S.R.L. Telecommunication loose tube optical cable with reduced diameter
US20050207716A1 (en) * 2004-03-17 2005-09-22 Kariofilis Konstadinidis Optical fiber cable coatings
US7423105B2 (en) * 2005-09-30 2008-09-09 Corning Incorporated Fast curing primary optical fiber coatings
US8093322B2 (en) * 2005-10-27 2012-01-10 Corning Incorporated Non-reactive additives for fiber coatings
US7257299B2 (en) * 2005-11-30 2007-08-14 Corning Incorporated Optical fiber ribbon with improved stripability
US7289706B2 (en) * 2005-11-30 2007-10-30 Corning Incorporated Optical fiber ribbon with improved stripability
KR101105053B1 (ko) * 2006-12-14 2012-01-16 디에스엠 아이피 어셋츠 비.브이. 광섬유용 d1368 cr 방사선 경화성 1차 코팅
KR101155014B1 (ko) * 2006-12-14 2012-06-11 디에스엠 아이피 어셋츠 비.브이. 광섬유에 대한 d1378 ca 선 경화성 1차 코팅
WO2008076285A1 (en) * 2006-12-14 2008-06-26 Dsm Ip Assets B.V. D1364 bt secondary coating on optical fiber
EP2089333B1 (en) * 2006-12-14 2011-02-16 DSM IP Assets B.V. D1363 bt radiation curable primary coatings on optical fiber
KR101105035B1 (ko) * 2006-12-14 2012-01-16 디에스엠 아이피 어셋츠 비.브이. 광섬유용 d1370 r 방사선 경화성 2차 코팅
KR101105116B1 (ko) * 2006-12-14 2012-01-16 디에스엠 아이피 어셋츠 비.브이. 광섬유에 대한 d1365 bj 선 경화성 1차 코팅
ATE499331T1 (de) * 2006-12-14 2011-03-15 Dsm Ip Assets Bv Strahlungshärtbare d1379-grundierbeschichtung für optische fasern
EP2089334B1 (en) * 2006-12-14 2011-06-01 DSM IP Assets B.V. D1369 d radiation curable secondary coating for optical fiber
US8426020B2 (en) * 2006-12-14 2013-04-23 Dsm Ip Assets B.V. D1381 supercoatings for optical fiber
JP2008224744A (ja) * 2007-03-08 2008-09-25 Furukawa Electric Co Ltd:The 光ファイバ心線
CN101952215B (zh) * 2007-11-29 2013-07-10 康宁股份有限公司 用扩展的辐照器进行纤维固化
JP5587323B2 (ja) 2008-09-26 2014-09-10 コーニング インコーポレイテッド 高開口数多モード光ファイバ
US8314408B2 (en) 2008-12-31 2012-11-20 Draka Comteq, B.V. UVLED apparatus for curing glass-fiber coatings
US20100220966A1 (en) * 2009-02-27 2010-09-02 Kevin Wallace Bennett Reliability Multimode Optical Fiber
CN102483501A (zh) 2009-07-17 2012-05-30 康宁光缆系统有限责任公司 光纤带和具有低含量齐聚物的带基质材料
US8406596B2 (en) * 2009-08-12 2013-03-26 Corning Incorporated Optical fiber containing multi-layered coating system
US20110188822A1 (en) * 2010-02-04 2011-08-04 Ofs Fitel, Llc Optical fiber coatings for reducing microbend losses
US8385703B2 (en) 2010-03-02 2013-02-26 Corning Incorporated High numerical aperture multimode optical fiber
DK2388239T3 (da) 2010-05-20 2017-04-24 Draka Comteq Bv Hærdningsapparat, der anvender vinklede UV-LED'er
US8871311B2 (en) 2010-06-03 2014-10-28 Draka Comteq, B.V. Curing method employing UV sources that emit differing ranges of UV radiation
US20110300367A1 (en) 2010-06-07 2011-12-08 Ching-Kee Chien Optical Fiber With Photoacid Coating
DK2418183T3 (en) 2010-08-10 2018-11-12 Draka Comteq Bv Method of curing coated glass fibers which provides increased UVLED intensity
JP5533825B2 (ja) * 2011-09-13 2014-06-25 住友電気工業株式会社 光ファイバ製造方法および光ファイバ
BR112014006106A2 (pt) 2011-09-16 2017-04-11 Corning Inc fibra ótica e sistema de transmissão ótica de multiplexação de divisão de modo
JP5255690B2 (ja) * 2011-12-27 2013-08-07 古河電気工業株式会社 光ファイバ着色心線、光ファイバテープ心線および光ファイバケーブル
US8848285B2 (en) 2012-01-12 2014-09-30 Corning Incorporated Few mode optical fibers for Er doped amplifiers, and amplifiers using such
US9678247B2 (en) 2012-05-08 2017-06-13 Corning Incorporated Primary optical fiber coating composition containing non-radiation curable component
US9197030B2 (en) 2012-07-31 2015-11-24 Corning Incorporated Few mode rare earth doped optical fibers for optical amplifiers, and amplifiers using such fibers
US9057814B2 (en) 2013-03-28 2015-06-16 Corning Incorporated Large effective area fiber with low bending losses
US9057817B2 (en) 2013-04-15 2015-06-16 Corning Incorporated Low diameter optical fiber
US9383511B2 (en) 2013-05-02 2016-07-05 Corning Incorporated Optical fiber with large mode field diameter and low microbending losses
US9488774B2 (en) 2014-04-01 2016-11-08 Corning Incorporated Primary optical fiber coating composition containing non-radiation curable component
US9891379B2 (en) 2014-11-14 2018-02-13 Corning Incorporated Optical fiber coating compositions with acrylic polymers
US20160177092A1 (en) 2014-12-18 2016-06-23 Corning Incorporated Optical fiber coating composition with non-reactive reinforcing agent
US10604659B2 (en) 2015-06-08 2020-03-31 Dsm Ip Assets B.V. Liquid, hybrid UV/VIS radiation curable resin compositions for additive fabrication
CN108027558B (zh) 2015-10-01 2022-03-25 科思创(荷兰)有限公司 用于加成法制造的液体、混杂的可紫外/可见光辐射固化树脂组合物
KR20180095666A (ko) * 2015-12-18 2018-08-27 레오니 카벨 게엠베하 케이블 및 케이블을 제조하기 위한 방법
WO2017173296A1 (en) 2016-04-01 2017-10-05 Dsm Ip Assets B.V. Multi-layered coated colored optical fibers
JP7111432B2 (ja) 2017-06-02 2022-08-02 コベストロ (ネザーランズ) ビー.ブイ. 光ファイバー用耐熱放射線硬化性コーティング
JP2019129005A (ja) * 2018-01-22 2019-08-01 住友電気工業株式会社 被覆電線および多芯ケーブル
US11181687B2 (en) 2018-04-30 2021-11-23 Corning Incorporated Small diameter low attenuation optical fiber
US11181686B2 (en) 2018-04-30 2021-11-23 Corning Incorporated Small diameter low attenuation optical fiber
EP3788420A1 (en) 2018-04-30 2021-03-10 Corning Incorporated Small outer diameter low attenuation optical fiber
US10775557B2 (en) 2018-05-03 2020-09-15 Corning Incorporated Fiber coatings with low pullout force
US10689544B2 (en) 2018-05-03 2020-06-23 Corning Incorporated Fiber coatings with low pullout force
BR112020024440A2 (pt) 2018-06-01 2021-03-23 Dsm Ip Assets B.V. composições curáveis por radiação para revestir fibra ótica e os revestimentos produzidos a partir das mesmas
WO2020069053A1 (en) 2018-09-28 2020-04-02 Corning Research & Development Corporation Small diameter fiber optic cables having low-friction cable jackets and optical fibers with reduced cladding and coating diameters
WO2020114902A1 (en) 2018-12-03 2020-06-11 Dsm Ip Assets B.V. Filled radiation curable compositions for coating optical fiber and the coatings produced therefrom
US11036000B2 (en) 2019-01-16 2021-06-15 Corning Incorporated Optical fiber cable with high fiber count
JP2022533453A (ja) 2019-05-24 2022-07-22 コベストロ (ネザーランズ) ビー.ヴィー. 強化された高速加工性を備えた光ファイバーをコーティングするための放射線硬化性組成物
JP2022533793A (ja) 2019-05-24 2022-07-25 コベストロ (ネザーランズ) ビー.ヴィー. 強化された高速加工性を備えた光ファイバーをコーティングするための放射線硬化性組成物
EP4003927A1 (en) 2019-07-31 2022-06-01 Covestro (Netherlands) B.V. Radiation curable compositions with multi-functional long-armed oligomers for coating optical fibers
US11194107B2 (en) 2019-08-20 2021-12-07 Corning Incorporated High-density FAUs and optical interconnection devices employing small diameter low attenuation optical fiber
JP2023519073A (ja) 2020-01-07 2023-05-10 コーニング インコーポレイテッド 高い機械的信頼性を有する半径の減少した光ファイバ
WO2021231083A1 (en) 2020-05-12 2021-11-18 Corning Incorporated Reduced diameter single mode optical fibers with high mechanical reliability
CN111707206B (zh) * 2020-06-04 2022-03-18 哈尔滨工程大学 一种带位置检测功能的量子点光纤微弯传感器
WO2022002909A1 (en) 2020-06-30 2022-01-06 Covestro (Netherlands) B.V. Viscosity index improvers in optical fiber coatings
WO2023205221A2 (en) 2022-04-21 2023-10-26 Covestro (Netherlands) B.V. Low-volatility radiation curable compositions for coating optical fibers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105284A (en) * 1976-05-10 1978-08-08 Corning Glass Works Buffered optical waveguide fiber
US4324575A (en) * 1980-08-11 1982-04-13 Bell Telephone Laboratories, Incorporated Low TG soft UV-curable coatings
JPS58211707A (ja) * 1982-06-04 1983-12-09 Nippon Telegr & Teleph Corp <Ntt> 被覆光フアイバ
GB2145841B (en) * 1983-09-01 1987-04-01 American Telephone & Telegraph Coated optical fiber
NL8502402A (nl) * 1985-09-03 1987-04-01 Philips Nv Optische vezel voorzien van een kunststofbedekking, en werkwijze en inrichting voor de vervaardiging van een dergelijke optische vezel.
NL8702395A (nl) * 1987-10-08 1989-05-01 Philips Nv Optische vezel voorzien van een kunststofbedekking.
US4900126A (en) * 1988-06-30 1990-02-13 American Telephone & Telegraph Co. Bonded array of transmission media

Also Published As

Publication number Publication date
DE69021635T2 (de) 1996-01-18
KR0171887B1 (ko) 1999-05-01
JP2828733B2 (ja) 1998-11-25
US4962992A (en) 1990-10-16
DK0398564T3 (da) 1995-09-18
DE69021635D1 (de) 1995-09-21
KR900018709A (ko) 1990-12-22
CA2016799A1 (en) 1990-11-15
EP0398564A3 (en) 1991-07-17
JPH039311A (ja) 1991-01-17
CN1047394A (zh) 1990-11-28
AU618478B2 (en) 1991-12-19
EP0398564A2 (en) 1990-11-22
AU5487690A (en) 1990-11-15
CA2016799C (en) 1994-12-13
EP0398564B1 (en) 1995-08-16
BR9002274A (pt) 1991-08-06

Similar Documents

Publication Publication Date Title
CN1026919C (zh) 有涂层的光传输媒质
US5621838A (en) Resins for coated optical fiber units
EP0311186B1 (en) Optical fibre provided with a synthetic resin coating
CN1021258C (zh) 粘合的传输介质阵列
CN1136352A (zh) 宽频带光纤、光纤芯线、光线缆芯
CN1029037C (zh) 带覆层光纤及其制造方法
KR100505858B1 (ko) 광조사 경화형 봉함 재료를 함유하는 광섬유 리본
CN101542347B (zh) 光纤芯线
CN103229083B (zh) 光纤着色芯线
EP2816383A1 (en) Optical fiber colored core, optical fiber tape core and optical fiber cable
CN1094908C (zh) 带有被覆层的光纤维及其制造方法
AU626202B2 (en) Tape-like coated optical fiber
JP2011128377A (ja) 光ファイバ心線
CN1790071A (zh) 聚合物光波导及其制造方法
CN1378655A (zh) 被覆光纤
EP0260756A1 (en) Method of manufacturing an optical fibre
CN1094909C (zh) 带有被覆层的光纤维及其制造方法
WO2009113361A1 (ja) 光ファイバ心線
EP1394571A3 (en) Plastic optical fiber and method for producing the same
JPS6322872A (ja) 紫外線硬化性塗料およびそれを用いてなる光フアイバ
JP2529671B2 (ja) 合成樹脂コ−テイングを有する光ガラスフアイバ及び硬化性エラストマ−形成性物質
CN1170606C (zh) 球拍用细绳及其制造方法
JP2925099B2 (ja) 光ファイバ心線およびテープ状光ファイバ心線
US7068908B2 (en) Resin liquid for optical fiber coating layer
JPH0629888B2 (ja) 被覆光フアイバ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee