CN103232175B - 光纤上的d1363bt可辐射固化初级涂层 - Google Patents

光纤上的d1363bt可辐射固化初级涂层 Download PDF

Info

Publication number
CN103232175B
CN103232175B CN201310090691.4A CN201310090691A CN103232175B CN 103232175 B CN103232175 B CN 103232175B CN 201310090691 A CN201310090691 A CN 201310090691A CN 103232175 B CN103232175 B CN 103232175B
Authority
CN
China
Prior art keywords
primary coating
oligomer
approximately
coating
radiation curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310090691.4A
Other languages
English (en)
Other versions
CN103232175A (zh
Inventor
鲍路斯·安东尼厄·玛丽亚·斯特曼
吴小松
史蒂文·R·施密德
爱德华·J·墨菲
约翰·M·齐默曼
安东尼·约瑟夫·托尔托雷洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV filed Critical DSM IP Assets BV
Priority claimed from CNA200780041391XA external-priority patent/CN101535196A/zh
Publication of CN103232175A publication Critical patent/CN103232175A/zh
Application granted granted Critical
Publication of CN103232175B publication Critical patent/CN103232175B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/106Single coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/724Combination of aromatic polyisocyanates with (cyclo)aliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及光纤上的D1363BT可辐射固化初级涂层,被这种涂层涂布的光纤以及这种被涂布光纤的制备方法。所述可辐射固化涂层包含至少一种(甲基)丙烯酸酯官能化的低聚物和光引发剂,其中,所述氨基甲酸酯(甲基)丙烯酸酯低聚物CA/CR包含(甲基)丙烯酸酯基团、至少一个多元醇主链和氨基甲酸酯基团,其中,约15%或更多的所述氨基甲酸酯基团源自2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯中的一个或二者,其中,至少15%的所述氨基甲酸酯源自环状的或支化的脂族异氰酸酯,并且其中,所述(甲基)丙烯酸酯官能化的低聚物的数均分子量至少为约4000g/mol,但小于或等于约15000g/mol;并且其中,所述可辐射固化初级涂层组合物的固化膜具有小于或等于约1.2MPa的模量。

Description

光纤上的D1363BT可辐射固化初级涂层
相关申请的交叉引用
本申请是2009年5月7日递交的中国专利申请200780041391.X(PCT/US2007/025481)的分案申请。
本专利申请要求于2006年12月14日递交的共同待审的美国临时专利申请60/874,719,"CRRadiationCurablePrimaryCoatingforOpticalFiber"、于2006年12月14日递交的共同待审的美国临时专利申请60/874,722,"PRadiationCurablePrimaryCoatingforOpticalFiber"、于2006年12月4日递交的共同待审的美国临时专利申请60/874,721,"CARadiationCurablePrimaryCoatingforOpticalFiber"、于2006年12月14日递交的共同待审的美国临时专利申请60/874,730,"SupercoatingsforOpticalFiber"以及于2007年9月24日递交的共同待审的美国临时专利申请60/974,631,"PRadiationCurablePrimaryCoatingonOpticalFiber"的优先权,上述专利申请通过引用全部插入本文。
技术领域
本发明一般性地涉及一种用作光纤的初级涂层的可辐射固化涂层,被这种涂层涂布的光纤以及这种被涂布光纤的制备方法。
背景技术
光纤通常被两层或多层可辐射固化涂层涂布。这些涂层通常以液体形式涂敷到光纤上,然后暴露于辐射下以实现固化。可用于固化这种涂层的辐射的类型应当是能够引发这种涂层中一种或多种可辐射固化组分发生聚合的辐射。适于固化这种涂层的辐射是公知的,其包括紫外光(此后称为“UV”)和电子束(“EB”)。在被涂布光纤的制备过程中,优选用于固化涂层的辐射类型是UV。
直接与所述光纤接触的涂层被称为“初级涂层”,覆盖所述初级涂层的涂层被称为“次级涂层”。在光纤用可辐射固化涂层的领域中,已知初级涂层比次级涂层软有利。这种排布带来的好处是提高了对微弯曲的抵抗性。
微弯曲是光纤中的明显但细微的弯曲曲率,其涉及几微米的局部轴向位移以及几毫米的空间波长。微弯曲可以由热应力和/或机械横向力引起。微弯曲如果存在会导致被涂布光纤的信号传输能力衰减。衰减是指由光纤承载的信号发生人们不希望的减少。相对较软的初级涂层对光纤的微弯曲提供抵抗性,从而使信号的衰减最少。
与适于用作光纤的初级涂层的可辐射固化涂层相关的出版信息包括如下:
在公开的中国专利申请CN16515331,“辐射固化涂料及其应用”(受让人:上海飞凯光电材料有限公司,发明人:林际兵和张金山)中,描述并要求保护一种可辐射固化涂层,其包含低聚物、活性稀释剂、光引发剂、热稳定剂、选择性粘着促进剂,其中,所述低聚物的含量介于20%和70%之间(以重量计,以下相同),其余组分的含量介于30%和80%之间;所述低聚物选自(甲基)丙烯酸酯化的聚氨酯低聚物或者(甲基)丙烯酸酯化的聚氨酯低聚物和(甲基)丙烯酸酯化的环氧低聚物的混合物;其中所述(甲基)丙烯酸酯化的聚氨酯低聚物通过采用至少一种如下物质来制备:
(1)至少一种选自如下的多元醇:聚氨酯多元醇、聚酰胺多元醇、聚醚多元醇、聚酯多元醇、聚碳酸酯多元醇、烃多元醇、聚硅氧烷多元醇、两种或多种相同种类或不同种类的多元醇的混合物;
(2)两种或多种二异氰酸酯或多异氰酸酯的混合物;
(3)含有一个能与异氰酸酯发生反应的羟基的(甲基)丙烯酸酯化的化合物。
公开的中国专利申请CN16515331中的实施例3是这个公开的专利申请中唯一一个描述如何合成适于用作可辐射固化初级涂层的可辐射固化涂层的实施例。实施例3中合成的涂层具有1.6MPa的弹性模量。
文章“UV-CUREDPOLYURETHANE-ACRYLICCOMPOSITIONSASHARDEXTERNALLAYERSOFTWO-LAYERPROTECTIVECOATINGSFOROPTICALFIBRES”(作者为W.Podkoscielny和B.Tarasiuk,Polim.Tworz.Wielk,Vol.41,Nos.7/8,p.448-55,1996,NDN-131-0123-9398-2)描述了UV固化的氨基甲酸酯-丙烯酸酯低聚物的合成的优化以及它们作为光纤硬质保护涂层的应用。对于所述合成,除了甲基丙烯酸羟乙酯和甲基丙烯酸羟丙酯以外,还使用波兰制低聚醚醇、二乙二醇、甲苯二异氰酸酯(IzocynT-80)和异佛尔酮二异氰酸酯。将活性稀释剂(丙烯酸丁酯、丙烯酸2-乙基己酯和丙烯酸1,4-丁二醇酯或其混合物)和作为光引发剂的2,2-二甲氧基-2-苯基苯乙酮加入这些具有聚合活性双键的氨基甲酸酯-丙烯酸酯低聚物中。该组合物在无氧气氛中进行UV辐射。记录了该组合物的IR光谱,并且测定了固化前后的一些物理性质、化学性质以及机械性质(密度、分子量、作为温度函数的粘度、折射率、凝胶含量、玻璃化转变温度、Shore硬度、杨氏模量、拉伸强度、断裂伸长率、耐热性和水蒸汽扩散系数)。
文章“PROPERTIESOFULTRAVIOLETCURABLEPOLYURETHANE-ACRYLATES”(作者为M.Koshiba;K.K.S.Hwang;S.K.Foley.;D.J.Yarusso;和S.L.Cooper;发表于J.Mat.Sci.,17,No.5,1982年5月,p.1447-58;NDN-131-0063-1179-2)对基于异佛尔酮二异氰酸酯和TDI的UV固化的聚氨酯-丙烯酸酯的化学结构和物理性质之间的关系进行了研究。制成的两个体系具有不同软段分子量以及具有不同交联剂含量。动态机械测试结果表明,取决于软段分子量可能获得一相材料或两相材料。随着两相材料的增多,多元醇的Tg向更低的温度移动。N-乙烯基吡咯烷酮(NVP)或聚乙二醇二丙烯酸酯(PEGDA)用量的增加导致杨氏模量以及最终拉伸强度增加。NVP交联导致两相材料的挺度提高,并且导致高温Tg峰移向更高的温度,但是PEGDA不会导致上述结果。这两种体系的拉伸性质通常是类似的。
光纤上使用的可辐射固化涂层的制造过程中,异氰酸酯通常被用于制造氨基甲酸酯低聚物。一些参考文献(包括美国专利7,135,229,“RADIATION-CURABLECOATINGCOMPOSITION”,2006年11月14日授权,受让人:DSMIPAssetsB.V.,第7栏,第10-32行)为本领域普通技术人员提供了如何合成氨基甲酸酯低聚物的教导。适于制备该发明的组合物的多异氰酸酯可以是脂族的、脂环族的或芳族的,其包括二异氰酸酯,诸如2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、1,3-二甲苯二异氰酸酯、1,4-二甲苯二异氰酸酯、1,5-萘二异氰酸酯、间-亚苯基二异氰酸酯、对-亚苯基二异氰酸酯、3,3'-二甲基-4,4'-二苯基甲烷二异氰酸酯、4,4'-二苯基甲烷二异氰酸酯、3,3'-二甲基亚苯基二异氰酸酯、4,4'-亚联苯基二异氰酸酯、1,6-己烷二异氰酸酯、异佛尔酮二异氰酸酯、亚甲基二(4-环己基)异氰酸酯、2,2,4-三甲基六亚甲基二异氰酸酯、二(2-异氰酸酯基-乙基)富马酸酯、6-异丙基-1,3-苯基二异氰酸酯、4-二苯基丙烷二异氰酸酯、赖氨酸二异氰酸酯、氢化的二苯基甲烷二异氰酸酯、氢化的二甲苯二异氰酸酯、四甲基二甲苯二异氰酸酯和2,5(或6)-二(异氰酸根合甲基)-双环[2.2.1]庚烷。这些二异氰酸酯之中,特别优选2,4-甲苯二异氰酸酯、异佛尔酮二异氰酸酯、二甲苯二异氰酸酯和亚甲基二(4-环己基)异氰酸酯。这些二异氰酸酯化合物可以单独使用或者可以两种或多种组合使用。
尽管当前可得到多种初级涂层,但是理想的是提供一种新型的初级涂层,其相对于现有涂层具有改善的制造性质和/或性能表现。
发明内容
本发明所要求保护的第一方面是一种可辐射固化初级涂层组合物,其包含至少一种(甲基)丙烯酸酯官能化的低聚物和光引发剂,
其中,所述氨基甲酸酯(甲基)丙烯酸酯低聚物包含(甲基)丙烯酸酯基团、至少一个多元醇主链和氨基甲酸酯基团,
其中,约15%或更多的所述氨基甲酸酯基团源自2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯中的一个或二者,
其中,至少15%的所述氨基甲酸酯源自环状的或支化的脂族异氰酸酯,并且
其中,所述(甲基)丙烯酸酯官能化的低聚物的数均分子量至少为约4000g/mol,但小于或等于约15000g/mol;并且
其中,所述可辐射固化初级涂层组合物的固化膜具有小于或等于约1.2MPa的模量。
本发明所要求保护的第二方面是本发明第一方面所要求保护的可辐射固化初级涂层组合物,其中,所述可辐射固化初级涂层组合物的剪切储能模量G’在G’’=100Pa下测量时小于或等于约0.8Pa。
本发明所要求保护的第三方面是一种采用可辐射固化初级涂层涂布玻璃纤维的方法,所述方法包括:
a)操作玻璃拉丝塔从而制成玻璃光纤;
b)将本发明第一方面所要求保护的的可辐射固化初级涂层组合物涂敷到所述光纤的表面上。
本发明所要求保护的第四方面是一种本发明的第三方面所要求保护的方法,其中,所述玻璃拉丝塔在介于约750米/分钟和约2100米/分钟之间的线速度下操作。
本发明所要求保护的第五方面是一种被第一层和第二层涂布的导线(wire),其中,所述第一层是被固化的本发明第一方面所要求保护的所述可辐射固化初级涂层组合物的可辐射固化初级涂层,其与所述导线的外表面接触,并且所述第二层是被固化的可辐射固化次级涂层,其与所述初级涂层的外表面接触,
其中,所述导线上被固化的初级涂层在初始固化后以及在85℃和85%的相对湿度下老化一个月后具有如下性质:
A)RAU%为约84%至约99%;
B)原位模量介于约0.15MPa和约0.60MPa之间;和
C)管Tg为约-25℃至约-55℃。
本发明所要求保护的第六方面是一种被第一层和第二层涂布的光纤,其中,所述第一层是被固化的本发明第一方面所要求保护的所述可辐射固化初级涂层组合物的可辐射固化初级涂层,其与所述光纤的外表面接触,并且所述第二层是被固化的可辐射固化次级涂层,其与所述初级涂层的外表面接触,
其中,所述光纤上被固化的初级涂层在初始固化后以及在85℃和85%的相对湿度下老化一个月后具有如下性质:
A)RAU%为约84%至约99%;
B)原位模量介于约0.15MPa和约0.60MPa之间;和
C)管Tg为约-25℃至约-55℃。
本发明所要求保护的第七方面是一种本发明第一方面所要求保护的可辐射固化初级涂层组合物,其进一步包含催化剂,其中,所述催化剂选自二丁基二月桂酸锡;金属羧酸盐,包括但不限于:诸如新癸酸铋的有机铋催化剂、新癸酸锌、新癸酸锆和2-乙基己酸锌;磺酸,包括但不限于十二烷基苯磺酸和甲磺酸;氨基或有机碱催化剂,包括但不限于1,2-二甲基咪唑、二氮杂双环辛烷;三苯基膦;锆和钛的烷氧化物,包括但不限于丁氧化锆和丁氧化钛;离子化液体鏻盐和十四烷基(三己基)鏻盐酸盐。
相对于涂布光纤的制造中使用的现有初级涂层,本发明具有有益效果。
其中一个益处是:在各种低聚物的制造过程中,能够在本发明的各个方面中使用相对低廉的材料:芳族二异氰酸酯(其为甲苯二异氰酸酯(TDI))组合脂族二异氰酸酯(其优选为异佛尔酮二异氰酸酯(IPDI)),而并不会过度牺牲组合物在低剪切速率下的非粘弹性。事实上,与仅含有通过单独使用芳族二异氰酸酯(例如2,4-TDI和2,6-TDI)制成的低聚物(此后被称为全芳族低聚物)的可固化涂层相比,这种可固化组合物在低于100s-1(20℃)的剪切速率下具有明显的牛顿流动行为。
具体实施方式
本专利申请通篇中,以下术语具有所指出的含义:
本发明所要求保护的第一方面是一种可辐射固化初级涂层组合物,其包含至少一种(甲基)丙烯酸酯官能化的低聚物和光引发剂,
其中,所述氨基甲酸酯(甲基)丙烯酸酯低聚物包含(甲基)丙烯酸酯基团、至少一个多元醇主链和氨基甲酸酯基团,
其中,约15%或更多的所述氨基甲酸酯基团源自2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯中的一个或二者,
其中,至少15%的所述氨基甲酸酯源自环状的或支化的脂族异氰酸酯,并且
其中,所述(甲基)丙烯酸酯官能化的低聚物的数均分子量至少为约4000g/mol,但小于或等于约15000g/mol;并且
其中,所述可辐射固化初级涂层组合物的固化膜具有小于或等于约1.2MPa的模量。
以下部分描述了可用在本发明各个方面中的低聚物。一般而言,所述低聚物是氨基甲酸酯(甲基)丙烯酸酯低聚物,其包含(甲基)丙烯酸酯基团、氨基甲酸酯基团和主链(术语“(甲基)丙烯酸酯”包括丙烯酸酯官能团以及甲基丙烯酸酯官能团)。所述主链由如下衍生:使用已与芳族二异氰酸酯和脂族二异氰酸酯发生反应的多元醇以及(甲基)丙烯酸羟基烷基酯,优选使用丙烯酸羟乙酯。
令人惊讶地发现,使用甲苯二异氰酸酯的2,4-异构体和2,6-异构体的80/20共混物优于使用TDS,该TDS为100%纯的甲苯二异氰酸酯的2,4-异构体。
低聚物A
低聚物A适于通过如下制成:使丙烯酸酯(例如HEA)与芳族异氰酸酯(例如TDI)、脂族异氰酸酯(例如IPDI)、多元醇(例如P2010)、催化剂(例如DBTDL)和抑制剂(例如BHT)进行反应。
芳族异氰酸酯和脂族异氰酸酯是已知的,且可商购。优选的芳族异氰酸酯是TDI,而优选的脂族异氰酸酯是异佛尔酮二异氰酸酯。
当制备低聚物A时,异氰酸酯组分可以以如下用量加入低聚物反应混合物中,其用量基于低聚物混合物的重量百分率在约1至约25wt%的范围内,适于在约1.5至20wt%的范围内,优选在约2至约15wt%的范围内。
适当地,异氰酸酯应当包含比芳族异氰酸酯要多的脂族异氰酸酯。更适当地,脂族异氰酸酯与芳族异氰酸酯的比为约6:1,优选为约4:1,最优选为约3:1。
各种多元醇可用在低聚物的制备中。合适多元醇的实例是聚醚多元醇、聚酯多元醇、聚碳酸酯多元醇、聚己内酯多元醇、丙烯酸酯多元醇等等。这些多元醇可以单独使用也可以两种或多种组合使用。对这些多元醇中结构单元的聚合方式没有特殊限制:无规聚合、嵌段聚合或接枝聚合中的任意一种都是可接受的。优选地,使用P2010(BASF)。
当制备低聚物A时,多元醇组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物混合物的重量百分率适于在约20至约99wt%的范围内,更适于在约40至97wt%的范围内,优选在约65至约95wt%的范围内。
适于用在低聚物的制备中的多元醇的数均分子量可以在约500至约8000的范围内,适于在约750至约6000的范围内,优选在约1000至约4000的范围内。
任何类型的丙烯酸酯组分都可用在低聚物A的制备过程中,但适于为(甲基)丙烯酸羟基烷基酯,优选为丙烯酸羟乙酯(HEA)。当制备低聚物A时,丙烯酸酯组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物反应混合物的重量适于在约1至20wt%的范围内,更适于在约1.5至10wt%的范围内,优选在约2至约4wt%的范围内。
在制备低聚物A的反应中,可以使用氨基甲酸酯化催化剂。合适的催化剂是本领域公知的,其可以是选自如下组成的组中的一种或多种:二月桂酸二丁基锡;金属羧酸盐,包括但不限于,有机铋催化剂,诸如新癸酸铋CAS34364-26-6、新癸酸锌CAS27253-29-8、新癸酸锆CAS39049-04-2和2-乙基己酸锌CAS136-53-8;磺酸,包括但不限于十二烷基苯磺酸CAS27176-87-0和甲磺酸CAS75-75-2;氨基或有机碱催化剂,包括但不限于1,2-二甲基咪唑CAS1739-84-0(非常弱的碱)和二氮杂双环辛烷(AKADABCO)CAS280-57-9(强碱);三苯基膦(TPP);锆和钛的烷氧化物,包括但不限于丁氧化锆(锆酸四丁酯)CAS1071-76-7和丁氧化钛(钛酸四丁酯)CAS5593-70-4;离子化液体鏻盐,Cyphosil101(十四烷基(三己基)鏻盐酸盐)。优选的催化剂是DBTDL。
这些催化剂可以以游离状态、可溶状态和均相状态使用;或者它们可被限定在惰性试剂上,诸如硅胶上或者二乙烯基交联的大型网状树脂(macroreticularresin)上并以非均相状态使用(在低聚物的合成结束时滤除)。
当制备低聚物A时,催化剂组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物反应混合物的重量适于在约0.01至约1.0wt%的范围内,更适于在约0.01至0.5wt%的范围内,优选在约0.01至约0.05wt%的范围内。
抑制剂也被用在低聚物A的制备过程中。这种组分有助于抑制在低聚物合成和储存期间的丙烯酸酯聚合。各种抑制剂是本领域公知的,其可用在低聚物的制备过程中。优选地,抑制剂是BHT。
当制备低聚物A时,抑制剂组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物反应混合物的重量适于在约0.01至约2wt%的范围内,更适于在约0.01至1.0wt%的范围内,优选在约0.05至约0.50wt%的范围内。
本发明所要求保护的一个实施方式包括数均分子量小于或等于约11000g/mol的低聚物A。本发明所要求保护的另一实施方式包括数均分子量小于或等于约10000g/mol的低聚物A。本发明所要求保护的另一实施方式包括数均分子量小于或等于约9000g/mol的低聚物A。
本发明的另一方面是一种可辐射固化初级涂层组合物,其适于作为光纤优选玻璃光纤上的初级涂层。所述可辐射固化涂层包含:
A)低聚物P;
B)第一稀释单体;
C)第二稀释单体;
D)光引发剂;
E)抗氧化剂;和
F)粘着促进剂;
其中,所述低聚物P是如下物质的反应产物:i)丙烯酸羟乙酯;ii)芳族异氰酸酯;iii)脂族异氰酸酯;iv)多元醇;v)催化剂;和vi)抑制剂;
其中,所述低聚物的数均分子量至少为约4000g/mol,但小于或等于约15000g/mol;并且
其中,所述可辐射固化初级涂层组合物的固化膜具有约-25℃至约-45℃的峰tanδTg以及约0.50MPa至约1.2MPa的模量。
低聚物P
低聚物P适于通过如下制成:使丙烯酸酯(例如HEA)与芳族异氰酸酯(例如TDI)、脂族异氰酸酯(例如IPDI)、多元醇(例如P2010)、催化剂(例如DBTDL)和抑制剂(例如BHT)进行反应。
芳族异氰酸酯和脂族异氰酸酯是已知的,且可商购。优选的芳族异氰酸酯是TDI,而优选的脂族异氰酸酯是异佛尔酮二异氰酸酯。
当制备低聚物P时,异氰酸酯组分可以以如下用量加入低聚物反应混合物中,其用量基于低聚物混合物的重量百分率在约1至约25wt%的范围内,适于在约1.5至20wt%的范围内,优选在约2至约15wt%的范围内。
适当地,异氰酸酯应当包含比芳族异氰酸酯要多的脂族异氰酸酯。更适当地,脂族异氰酸酯与芳族异氰酸酯的比可以在约2-7:1的范围内,优选在约3-6:1的范围内,最优选在约3-5:1的范围内。
低聚物A中所述的各种多元醇可用在低聚物P的制备中。优选地,使用PluracolP2010,一种2000Mw的聚丙二醇(BASF)。
当制备低聚物P时,多元醇组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物混合物的重量百分率适于在约20至约99wt%的范围内,更适于在约40至97wt%的范围内,优选在约65至约95wt%的范围内。
适于用在低聚物P的制备中的多元醇的Mw可以在约500至约8000的范围内,适于在约750至约6000的范围内,优选在约1000至约4000的范围内。
低聚物A中所述的任何类型的丙烯酸酯组分都可用在低聚物P的制备过程中。当制备低聚物时,丙烯酸酯组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物反应混合物的重量适于在约1.0至20wt%的范围内,更适于在约1.5至10wt%的范围内,优选在约2至约4wt%的范围内。
在制备该低聚物的反应中,可以使用氨基甲酸酯化催化剂。合适的催化剂是本领域公知的,其可以是低聚物A中所述的一种或多种。优选的催化剂是DBTDL和Coscat83。
这些催化剂可以以游离状态、可溶状态和均相状态使用;或者它们可被限定在惰性试剂上,诸如硅胶上或者二乙烯基交联的大型网状树脂上并以非均相状态使用(在低聚物的合成结束时滤除)。
当制备低聚物P时,催化剂组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物反应混合物的重量适于在约0.01至约0.5wt%的范围内,更适于在约0.01至0.05wt%的范围内。
抑制剂也被用在低聚物P的制备过程中。这种组分有助于抑制在低聚物合成和储存期间的丙烯酸酯聚合。各种抑制剂是本领域公知的,其在低聚物A中有所描述。优选地,抑制剂是BHT。
当制备低聚物P时,抑制剂组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物反应混合物的重量适于在约0.01至约1.0wt%的范围内,更适于在约0.05至0.50wt%的范围内。
本发明所要求保护的一个实施方式包括数均分子量至少为约5000g/mol的低聚物P。本发明所要求保护的另一实施方式包括数均分子量至少为约6000g/mol的低聚物P。本发明所要求保护的一个实施方式包括数均分子量至少为约7000g/mol的低聚物P。
本发明所要求保护的一个实施方式包括数均分子量小于或等于约10000g/mol的低聚物P。本发明所要求保护的另一实施方式包括数均分子量小于或等于约9000g/mol的低聚物P。本发明所要求保护的一个实施方式包括数均分子量小于或等于约8000g/mol的低聚物P。
另一方面,本发明提供了一种可辐射固化初级涂层组合物,其适于作为光纤优选玻璃光纤上的初级涂层。所述可辐射固化涂层包含:
A)低聚物CA/CR;
B)稀释单体;
C)光引发剂;
D)抗氧化剂;和
E)粘着促进剂;
其中,所述低聚物CA/CR是如下物质的反应产物:i)丙烯酸羟乙酯;ii)芳族异氰酸酯;iii)脂族异氰酸酯;iv)多元醇;v)催化剂;和vi)抑制剂;
其中,所述低聚物的数均分子量至少为约4000g/mol,但小于或等于约15000g/mol;并且
其中,所述可辐射固化初级涂层组合物的固化膜具有约-30℃至约-40℃的峰tanδTg以及约0.65MPa至约1MPa的模量。
低聚物CA/CR
低聚物CA/CR适于通过如下制成:使丙烯酸酯(例如HEA)与芳族异氰酸酯(例如TDI)、脂族异氰酸酯(例如IPDI)、多元醇(例如P2010)、催化剂(例如Coscat83或DBTDL)和抑制剂(例如BHT)进行反应。
芳族异氰酸酯和脂族异氰酸酯是已知的,且可商购。优选的芳族异氰酸酯是TDI,而优选的脂族异氰酸酯是异佛尔酮二异氰酸酯。
当制备低聚物CA/CR时,异氰酸酯组分可以以如下用量加入低聚物反应混合物中,其用量基于低聚物混合物的重量百分率在约1至约25wt%的范围内,适于在约1.5至20wt%的范围内,优选在约2至约15wt%的范围内。
适当地,异氰酸酯应当包含比芳族异氰酸酯要多的脂族异氰酸酯。更适当地,脂族异氰酸酯与芳族异氰酸酯的比可以为6:1,优选为约4:1,最优选为约3:1。
低聚物A中所述的各种多元醇可用在低聚物CA/CR的制备中。优选地,使用P2010(BASF)。
当制备低聚物CA/CR时,多元醇组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物混合物的重量百分率适于在约20至约99wt%的范围内,更适于在约40至97wt%的范围内,优选在约65至约95wt%的范围内。
适于用在低聚物CA/CR的制备中的多元醇的Mw可以在约500至约8000的范围内,适于在约750至约6000的范围内,优选在约1000至约4000的范围内。
低聚物A中所述的任何类型的丙烯酸酯组分都可用在低聚物CA/CR的制备过程中。当制备该低聚物时,丙烯酸酯组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物反应混合物的重量适于在约1至20wt%的范围内,更适于在约1.5至10wt%的范围内,优选在约2至约4wt%的范围内。
在制备该低聚物的反应中,可以使用氨基甲酸酯化催化剂。合适的催化剂是本领域公知的,其可以是低聚物A中所述的一种或多种。优选的催化剂是有机铋催化剂,例如Coscat83。
这些催化剂可以以游离状态、可溶状态和均相状态使用;或者它们可被限定在惰性试剂上,诸如硅胶上或者二乙烯基交联的大型网状树脂上并以非均相状态使用(在低聚物的合成结束时滤除)。
当制备低聚物CA/CR时,催化剂组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物反应混合物的重量适于在约0.01至约1.0wt%的范围内,更适于在约0.01至0.5wt%的范围内,优选在约0.01至约0.05wt%的范围内。
抑制剂也被用在低聚物CA/CR的制备过程中。这种组分有助于抑制在低聚物合成和储存期间的丙烯酸酯聚合。各种抑制剂是本领域公知的,其在低聚物A中有所描述。优选地,抑制剂是BHT。
当制备低聚物CA/CR时,抑制剂组分可以以任何适当的用量加入低聚物反应混合物中,其用量基于低聚物反应混合物的重量适于在约0.01至约2.0wt%的范围内,更适于在约0.01至1.0wt%的范围内,优选在约0.05至约0.50wt%的范围内。
本发明进一步提供了一种可辐射固化初级涂层组合物。这种涂层组合物包含至少一种(甲基)丙烯酸酯官能化的低聚物H和光引发剂,其中,所述氨基甲酸酯-(甲基)丙烯酸酯低聚物H包含(甲基)丙烯酸酯基团、至少一个多元醇主链和氨基甲酸酯基团,约15%或更多的所述氨基甲酸酯基团源自2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯中的一个或二者,至少15%的所述氨基甲酸酯源自环状的或支化的脂族异氰酸酯,并且所述低聚物的数均分子量至少为约4000g/mol,但小于或等于约11000g/mol;所述可固化涂层的储能模量(G’)在G’’=100Pa下测量时小于或等于约0.8Pa。
上述低聚物的制备可以采用任何适当的方法来进行,但优选通过如下进行:将异氰酸酯、多元醇和抑制剂组分混合,然后将催化剂加入其中。接着对混合物进行加热,使其反应完全。最后适当地添加丙烯酸酯(例如HEA),对混合物进行加热直到反应完全。这是用于制备低聚物P、B和CA/CR的优选方法。
还可以首先使异氰酸酯组分(适于为环状的或支化的脂族多异氰酸酯)与丙烯酸酯(例如HEA)适当地在抑制剂和催化剂的存在下进行反应。然后,使所得产物与多元醇进行反应,从而得到低聚物。当芳族异氰酸酯和脂族异氰酸酯被用于制备低聚物时,可以使一种类型的异氰酸酯(例如脂族异氰酸酯)与丙烯酸酯(例如HEA)适当地在抑制剂和催化剂的存在下首先进行反应,然后将所得产物与多元醇和另一种类型的异氰酸酯(例如芳族异氰酸酯)进行反应。
在制备低聚物的上述反应中,所述反应适于在约10℃至约90℃的温度下实施,更适于在约30℃至约85℃的温度下实施。
可辐射固化涂层组合物
在制备低聚物后,可以制备本发明各方面中的可辐射固化涂层。
可辐射固化涂层A
低聚物A在可固化组合物中的用量可以根据所需性质而发生变化,其用量基于可辐射固化组合物的重量百分率适于在约20至80wt%的范围内,更适于在约30至70wt%的范围内,优选在约40至60wt%的范围内。
一种或多种反应性单体稀释剂也可被添加到可固化组合物中,这种稀释剂是本领域公知的。本领域公知且可用在低聚物制备中的各种稀释剂包括,但不限于,烷氧基化的被烷基取代的苯酚丙烯酸酯,诸如乙氧基化的壬基苯酚丙烯酸酯(ENPA)、丙氧基化的壬基苯酚丙烯酸酯(PNPA);乙烯基单体,诸如乙烯基己内酰胺(nVC)、丙烯酸异癸酯(IDA)、丙烯酸2-乙基-己酯(EHA)、丙烯酸二乙二醇乙基己酯(DEGEHA)、丙烯酸异冰片酯(IBOA)、三丙二醇二丙烯酸酯(TPGDA)、己二醇二丙烯酸酯(HDDA)、三羟甲基丙烷三丙烯酸酯(TMPTA)、烷氧基化的三羟甲基丙烷三丙烯酸酯以及烷氧基化的双酚A二丙烯酸酯,诸如乙氧基化的双酚A二丙烯酸酯(EO-BPADA)。优选地,Photomer4066被用作稀释剂。稀释剂在可固化组合物中的总量可以根据所需性质发生变化,其用量基于可辐射固化组合物的重量百分率适于在约20至80wt%的范围内,更适于在约30至70wt%的范围内,优选在约40至60wt%的范围内。
可固化组合物还适于包含一种或多种光引发剂。这种组分是本领域公知的。光引发剂存在时,其包含在可固化组合物中的含量在约0.5wt%至约3wt%的范围内,优选在约1wt%至约2wt%的范围内。优选的光引发剂是ChivacureTPO。
可以用在可固化组合物中的另一组分是抗氧化剂。这种组分是本领域公知的。抗氧化剂存在时,其包含在可固化组合物中的含量在约0.2wt%至约1wt%的范围内。优选的抗氧化剂是Irganox1035。
适于包含在可固化组合物中的另一组分是粘着促进剂,正如该名称所暗示的,其会增强固化涂层对光纤的粘着作用。这种组分是本领域公知的。粘着促进剂存在时,其包含在可固化组合物中的含量在约0.5wt%至约2wt%的范围内。优选的粘着促进剂是A-189。
可以将前述组分混合在一起,从而形成可辐射固化涂层。适当地,将低聚物、稀释单体、光引发剂和抗氧化剂混合,然后在70℃下加热约1小时,从而溶解所有粉末原料。然后,将温度控制在不超过55℃,接着加入粘着促进剂,并将各组分混合约30分钟。
在本发明的优选方面中,低聚物A可以由如下组分(基于制备低聚物所用组分的重量百分率)制成:
丙烯酸酯(例如HEA):约1至约3wt.%
芳族异氰酸酯(例如TDA):约1至约2wt%
脂族异氰酸酯(例如IPDI):约4至约6wt%
多元醇(例如P2010):约40至约60wt%
催化剂(例如DBTDL):约0.01至约0.05wt%
抑制剂(例如BHT):约0.05至约0.10wt%。
在本发明的优选方面中,除了约40至约60wt%的低聚物A以外,可固组合物的各组分可以包括(基于可固化组合物的重量百分率):
稀释单体(例如Photomer4066):约35至约45wt%;
光引发剂(例如ChivacureTPO):约1.00至约2.00wt%;
抗氧化剂(例如Irganox1035):约0.25至约0.75wt%;
粘着促进剂(例如A-189):约0.8至约1.0wt%
(对上述各个百分率进行选择,从而组合物总量为100wt%)。
本发明更优选的实施方式可以提供如下:
上述初级涂层也被称为CR初级涂层。
可辐射固化涂层P
低聚物P在可固化组合物中的用量可以根据所需性质而发生变化,其用量基于可辐射固化组合物的重量百分率适于在约20至80wt%的范围内,更适于在约30至70wt%的范围内,优选在约40至60wt%的范围内。
一种或多种反应性单体稀释剂也可被添加到可固化组合物中,这种稀释剂是本领域公知的。本领域公知且可用在低聚物制备中的各种稀释剂包括,但不限于,烷氧基化的被烷基取代的苯酚丙烯酸酯,诸如乙氧基化的壬基苯酚丙烯酸酯(ENPA)、丙氧基化的壬基苯酚丙烯酸酯(PNPA);乙烯基单体,诸如乙烯基己内酰胺(nVC)、丙烯酸异癸酯(IDA)、丙烯酸2-乙基-己酯(EHA)、丙烯酸二乙二醇乙基己酯(DEGEHA)、丙烯酸异冰片酯(IBOA)、三丙二醇二丙烯酸酯(TPGDA)、己二醇二丙烯酸酯(HDDA)、三羟甲基丙烷三丙烯酸酯(TMPTA)、烷氧基化的三羟甲基丙烷三丙烯酸酯以及烷氧基化的双酚A二丙烯酸酯,诸如乙氧基化的双酚A二丙烯酸酯(EO-BPADA)、Photomer4066、SR504D和SR306。优选地,SR504D和/或Photomer4066(第一稀释剂)和SR306(第二稀释剂)的混合物被用作稀释组分。
稀释剂在可固化组合物中的总量可以根据所需性质发生变化,其用量基于可辐射固化组合物的重量百分率适于在约20至80wt%的范围内,更适于在约30至70wt%的范围内,优选在约40至60wt%的范围内。稀释组分适于包括相对于第二稀释剂过量的第一稀释剂,其用量比为约20-80:1(20-80份的第一稀释剂对1份的第二稀释剂),适于为约40-60:1(40-60份的第一稀释剂对1份的第二稀释剂)。
可固化组合物还适于包含一种或多种光引发剂。这种组分是本领域公知的。光引发剂存在时,其在可固化组合物中的含量在约0.2wt%至约5wt%的范围内,优选在约0.5wt%至约3wt%的范围内。优选的光引发剂是Irgacure819。
可以用在可固化组合物中的另一组分是抗氧化剂。这种组分是本领域公知的。抗氧化剂存在时,其在可固化组合物中的含量在约0.1wt%至约2wt%的范围内,适于在约0.25至约0.75wt%的范围内。优选的抗氧化剂是Irganox1035。
适于包含在可固化组合物中的另一组分是粘着促进剂,正如该名称所暗示的,其会增强固化涂层对光纤的粘着作用。这种组分是本领域公知的。粘着促进剂存在时,其在可固化组合物中的含量在约0.2wt%至约2wt%的范围内,适于在约0.8至约1.0wt%的范围内。优选的粘着促进剂是A-189。
可以将前述组分混合在一起,从而形成可辐射固化涂层。适当地,将低聚物、稀释单体、光引发剂和抗氧化剂混合,然后在70℃下加热约1小时,从而溶解所有粉末原料。然后,将温度降低到不超过55℃,接着加入粘着促进剂,并将各组分混合约30分钟。
以下实施例为本发明可固化涂层组合物的说明性实例。
可辐射固化涂层组合物
可固化涂层组合物
上述初级涂层被称为P初级涂层。
可辐射固化涂层CA/CR
低聚物CA/CR在可固化组合物中的用量可以根据所需性质而发生变化,其用量基于可辐射固化组合物的重量百分率适于在约20至80wt%的范围内,更适于在约30至70wt%的范围内,优选在约40至60wt%的范围内。
一种或多种反应性单体稀释剂也可被添加到可固化组合物中,这种稀释剂是本领域公知的。本领域公知且可用在低聚物制备中的各种稀释剂包括,但不限于,烷氧基化的被烷基取代的苯酚丙烯酸酯,诸如乙氧基化的壬基苯酚丙烯酸酯(ENPA)、丙氧基化的壬基苯酚丙烯酸酯(PNPA);乙烯基单体,诸如乙烯基己内酰胺(nVC)、丙烯酸异癸酯(IDA)、丙烯酸2-乙基-己酯(EHA)、丙烯酸二乙二醇乙基己酯(DEGEHA)、丙烯酸异冰片酯(IBOA)、三丙二醇二丙烯酸酯(TPGDA)、己二醇二丙烯酸酯(HDDA)、三羟甲基丙烷三丙烯酸酯(TMPTA)、烷氧基化的三羟甲基丙烷三丙烯酸酯以及烷氧基化的双酚A二丙烯酸酯,诸如乙氧基化的双酚A二丙烯酸酯(EO-BPADA)。优选地,Photomer4066被用作稀释组分。稀释剂在可固化组合物中的总量可以根据所需性质发生变化,其用量基于可辐射固化组合物的重量百分率适于在约20至80wt%的范围内,更适于在约30至70wt%的范围内,优选在约40至60wt%的范围内。
可固化组合物还适于包含一种或多种光引发剂。这种组分是本领域公知的。光引发剂存在时,其在可固化组合物中的含量在约O.5wt%至约3wt%的范围内,优选在约1wt%至约2wt%的范围内。优选的光引发剂是ChivacureTPO。
可以用在可固化组合物中的另一组分是抗氧化剂。这种组分是本领域公知的。抗氧化剂存在时,其在可固化组合物中的含量在约0.2wt%至约1wt%的范围内。优选的抗氧化剂是Irganox1035。
可以用在可固化组合物中的另一组分是抗氧化剂。这种组分是本领域公知的。抗氧化剂存在时,其在可固化组合物中的含量在约0.2wt%至约1wt%的范围内。优选的抗氧化剂是Irganox1035。
适于包含在可固化组合物中的另一组分是粘着促进剂,正如该名称所暗示的,其会增强固化涂层对光纤的粘着作用。这种组分是本领域公知的。粘着促进剂存在时,其在可固化组合物中的含量在约O.5wt%至约2wt%的范围内。优选的粘着促进剂是A-189。
可以将前述组分混合在一起,从而形成可辐射固化涂层。适当地,将低聚物、稀释单体、光引发剂和抗氧化剂混合,然后在70℃下加热约1小时,从而溶解所有粉末原料。然后,将温度控制在不超过55℃,接着加入粘着促进剂,并将各组分混合约30分钟。
在本发明的优选方面中,低聚物CA/CR可以由如下组分(基于制备低聚物所用组分的重量百分率)制成:
丙烯酸酯(例如HEA):约1至约3wt.%
芳族异氰酸酯(例如TDA):约1至约2wt%
脂族异氰酸酯(例如IPDI):约4至约6wt%
多元醇(例如P2010):约40至约60wt%
催化剂(例如Coscat83):约0.01至约0.05wt%
抑制剂(例如BHT):约0.05至约0.10wt%。
在本发明的优选方面中,除了约40至约60wt%的低聚物以外,可固组合物的各组分可以包括(基于可固化组合物的重量百分率):
稀释单体(例如Photomer4066):约35至约45wt%;
光引发剂(例如ChivacureTPO):约1.00至约2.00wt%;
抗氧化剂(例如Irganox1035):约0.25至约0.75wt%;
粘着促进剂(例如A-189):约0.8至约1.0wt%
(上述用量可被调整,从而达到100wt%)。
本发明这个方面的更优选的实施方式可以提供如下:
上述初级涂层也被称为CA/CR初级涂层。
低聚物H和可辐射固化涂层H
这个部分阐述了低聚物H的组合物以及含有低聚物H和其它成分的可辐射固化涂层H。
以下表示未固化的初级涂层,其包含满足低聚物H各参数的低聚物。
可辐射固化初级涂层H
适当地,示例性可辐射固化涂层H可以包含:15-98wt%、优选20-80wt%、更优选30-70wt%的至少一种低聚物H(其具有约500或更高的分子量);0-85wt%、优选5-70wt%、更优选10-60wt%、最优选15-60wt%的一种或多种反应性稀释剂;0.1-20wt%、优选0.5-15wt%、更优选1-10wt%、最优选2-8wt%的一种或多种光引发剂;以及0-5wt%的添加剂。
如果需要,任意一种未固化涂层中还可以包含一种或多种着色剂。着色剂可以是颜料或染料,但优选是染料。
固化本文所述未固化涂层的方法是本领域公知的,其包括电子束(EB)和紫外光(UV)。优选地,UV光被用于固化涂层。
通常在光纤拉伸之后,立即将本文所述初级涂层涂敷于该玻璃光纤上,然后固化。然后,可以采用次级涂层覆盖被固化的初级涂层,该次级涂层也适于进行辐射固化。适当的次级涂层是可商购的。可辐射固化次级涂层可以是任何可商购的光纤用可辐射固化次级涂层。这种可商购的可辐射固化次级涂层可得自DSMDesotechInc.以及其它公司,其包括但不限于Hexion、Luvantix和PhiChem。
如果需要,可以将油墨材料涂敷到被涂布的光纤上,从而识别光纤组装体中的纤维。纤维组装体通常包含缆线(可以含有松套纤维)、条带或二者。条带通常通过如下制成:将多条被涂布的光纤与基质材料结合在一起。
本文所述的被固化的初级涂层适于具有以下各段中描述的性质。
本文中所述未被固化的涂层在23℃下的零剪切粘度适于为约1帕斯卡·s或更高,更适于为约2帕斯卡·s或更高,甚至更适于为约3帕斯卡·s或更高。这个粘度还优选为约20帕斯卡·s或更低,更优选为约12帕斯卡·s或更低,甚至更优选为约9帕斯卡·s或更低,最优选为约7帕斯卡·s或更低。
本文中所述涂层的折射率优选为约1.48或更高,更优选为约1.51或更高。
被固化初级涂层的断裂伸长率适于大于约50%,优选大于约60%,更优选至少为约100%,但优选不超过约400%。这个断裂伸长率可分别在5mm/min、50mm/min或500mm/min的速度下测量,优选在50mm/min下测量。
在初级涂层的固化膜上测定的平衡模量优选为约2MPa或更低,优选为约1.5MPa或更低,更优选为约1.2MPa或更低,甚至更优选为约1.0MPa或更低,最优选为约0.8MPa或更低。适当地,该数值为约0.1MPa或更高,更适于为约0.3MPa或更高。
被固化初级涂层的Tg(在DMA曲线上被定义为峰tanδ)适于为约0℃或更低,更适于为约-15℃或更低,最适于为约-25℃或更低,其中Tg优选为约-55℃或更高。
按如下所述方法可以测量涂层的粘度和弹性。
稳态依从性(Je)连同零剪切粘度(η0)一起主要决定了未固化涂层组合物的流变行为。零剪切粘度是液体粘性行为的量度,稳态依从性测量液体的弹性。高弹性液体是不利的,因为在操作过程中存在问题。关于这些流变参数以及它们的相互关系的详细描述,可参照C.W.Macosko编著的书籍“Rheology:principles,measurementsandapplications”(VCH发行,1994)的第109-133页,该参考文献通过引用插入本文。尽管这两个参数都是在低剪切速率下测定,但是它们决定了在宽范围剪切速率下的整条流动曲线。
从实验上来看,很难精确地测定稳态依从性,因为它需要在非常低的剪切速率下和/或频率下(当进行动态测量时)进行液体弹性测量。作为非常近似的近似值,液体弹性可在固定的较低损耗模量G’’数值(例如在100Pa)下由剪切储能模量G’来确定(对液体未固化涂层进行动态机械测量)。G’的数值越高,意味着液体的弹性越强。发现,在100Pa的损耗模量G’’下,剪切储能模量G’小于0.8Pa的未固化涂层容易处理。优选地,G’在G’’=100Pa时小于0.6Pa,甚至更优选小于0.5Pa,最优选小于0.4Pa。
作为实例,在由68.5wt%的低聚物、28.5wt%的壬基苯酚丙烯酸酯(SR504)单体稀释剂和3wt%的Irgacure184光引发剂组成的组合物中,聚醚氨基甲酸酯-丙烯酸酯低聚物CA/CR(含有2,6-TDI)被测量时,其G’在G’’=100Pa时为0.8Pa或更小。
作为与零剪切粘度非常近似的近似值,发现可以采用在20℃以及在10rad/s的角频率下的动态粘度作为未固化液体的粘度的量度。在这个方面,粘度适于为约1帕斯卡·s或更高,更适于为约2帕斯卡·s或更高,甚至更适于为约3帕斯卡·s或更高。优选地,这个粘度可以为约100帕斯卡·s或更低,更优选为约20帕斯卡·s或更低,最优选为约8帕斯卡·s或更低。
以下实施例进一步阐述本发明,但其不应被认为以任何方式限制本发明的范围。
实施例
用于液体涂层和固化膜的第一套测试方法
拉伸强度、伸长率和模量的测试方法:
采用InstronModel4201万能测试仪测试固化样品的拉伸性质(拉伸强度、断裂伸长率和模量)。用于测试的样品通过如下制备:采用FusionUV处理器固化75μm的材料薄膜。样品在氮气氛、1.0J/cm2下固化。从薄膜上切下宽0.5英寸、长5英寸的测试样条。采用千分尺测量各个样品的精确厚度。
对于相对较软的涂层(例如模量小于约10MPa的那些涂层),对涂层进行刮样,然后在玻璃板上固化,接着用手术刀从玻璃板上切下单个样条。Instron中使用2-lb负载单元,模量在2.5%伸长率下进行计算,其中对应力-应变曲线进行最小平方拟合。在测试前,将固化膜在23.0±0.1℃和50.0±0.5%的相对湿度下调节最少1小时。
对于相对较硬的涂层,在Mylar膜上对涂层进行刮样,然后采用ThwingAlbert0.5英寸的精确样品切割器切下样品。Instron中使用20-lb负载单元,模量在2.5%伸长率下由在该点的割线进行计算。在测试前,将固化膜在23.0±0.1℃和50.0±0.5%的相对湿度下调节16小时。
为了测定样品,夹具长度为2英寸,十字头速度为1.00英寸/分钟。所有测试在23.0±0.1℃的温度下和50.0±0.5%的相对湿度下进行。所有测量结果由至少6个测试样的平均值来确定。
DMA测试方法
动态机械分析(DMA)采用由RheometricScientificInc制造的RSA-II仪器在测试样品上进行。将一块自由薄膜样品(通常长约36mm,宽12mm,厚0.075mm)安装在该仪器的夹具之间,然后使温度起始为80℃,并保持在该温度下约5分钟。在80℃下进行均热处理的后期,对样品进行拉伸,比其原始长度长约2.5%。而且在这段时间内,将样品的标识、尺寸以及特定测试方法等各种信息输入该仪器附带的个人电脑的软件(RSIOrchestrator)中。
在1.0弧度/秒的频率下进行所有测试,其中:动态温度步长方法的步长为2℃;浸泡(soak)时间为5-10秒;初始应变为约0.001(ΔL/L);激活自动应力和自动应变选项。自动应力被设定是为确保样品在整个测试过程中处于拉伸作用力下,自动应变被设定是为允许应变在样品通过玻璃化转变变得更软时增加。在均热5分钟后,将样品烘箱的温度以20℃的步长降低,直到达到起始温度(通常为-80℃或-60℃)。在测试前,将测试的最终温度输入软件,结果样品的数据由玻璃区域通过过渡区域到达橡胶区域。
开始测试,并使其完成。在测试完成后,E’=拉伸储能模量、E’’=拉伸损耗模量和tanδ相对于温度的谱图都出现在计算机屏幕上。采用软件程序对各个曲线上的数据点进行平滑处理。在这幅图中,确定了三个代表玻璃转化的点:
1)在拉伸储能模量E’=1000MPa时的温度;
2)在拉伸储能模量E’=100MPa时的温度;
3)在tanδ曲线上的峰温。如果tanδ曲线包含一个以上波峰,那么测量各个波峰的温度。该条曲线上获得的一个额外数值是橡胶区域中拉伸储能模量E’的最小值。这个数值被报道为平衡模量,E0
干粘着性和湿粘着性的测量方法
采用InstronModel4201万能测试仪测试干粘着性和湿粘着性。在抛光的TLC玻璃板上刮下75μm的薄膜,并采用FusionUV处理器固化。样品在氮气氛、1.0J/cm2下固化。
样品在23±0.1℃的温度下和50.0±0.5%的相对湿度下调节至少7天。调节后,沿着刮样的方向用手术刀切下8个长6英寸、宽1英寸的样条。在四个样条上涂敷滑石薄层。从玻璃上剥下每个样品的头一英寸。将玻璃固定在Instron的水平支撑台上,其中,样品的固定端邻近被附着在支撑台上且被直接定位在十字头下方的滑轮。导线系在样品的剥离端上,其沿着样条移动,然后以垂直于样条的方向通过滑轮移动。导线的自由端被夹在Instron的上部钳夹上,然后使其活动。继续进行测试,直到平均作用力数值(以克作用力/英寸)变成相对恒定为止。十字头速度为10英寸/分钟。干粘着性为四个样品的平均值。
然后,将剩余的四个样品在23±0.1℃的温度下和95.0±0.5%的相对湿度下调节24天。将一薄层聚乙烯/水浆液涂敷到样品的表面上。然后如前段进行测试。湿粘着性为四个样品的平均值。
水敏感度
固化一层组合物,从而得到被UV固化的涂层测试条带(1.5英寸×1.5英寸×0.6密耳)。称重测试条带,然后将其置于含有去离子水的小瓶中,随后被储存在23℃下3周。定期,例如在30分钟、1小时、2小时、3小时、6小时、1天、2天、3天、7天、14天和21天时,从小瓶中取出样品,并用纸巾将其轻轻拍干,然后重新称重。水吸收百分率被报道为100×(浸渍后的重量-浸渍前的重量)/(浸渍前的重量)。最高水吸收是三周浸渍过程中所达到的最高水吸收数值。3周结束后,将测试样品在60℃的烘箱中干燥1小时,在干燥器中冷却15分钟,然后重新称重。水可提取物的百分率被报道为100×(浸渍前的重量-干燥后的重量)/(浸渍前的重量)。水敏感度被报道为|最高水吸收|+|水可提取物|。测试三个测试样条以提高测试精度。
折射率
采用BeckeLine方法确定固化组合物的折射率,这需要使由固化组合物上精细切割下的样条的折射率与折射性质已知的浸渍液体相匹配。该测试在显微镜下进行,其中测试在23℃下,并采用波长为589nm的光线。
粘度
采用PhysicaMC10粘度仪测量粘度。检查测试样品,如果存在过量气泡,那么采取各种措施去除气泡。在这个阶段不需除去全部气泡,因为装载样品的动作会引入一些气泡。
所使用的仪器安装有常规Z3系统。使用注射器按量配给17cc将样品装载到一次性的铝杯中。检查杯中的样品,如果含有过量气泡,那么通过直接手段(诸如离心)去除该气泡,或者允许放置足够时间以允许气泡从液体本体中去除。液体顶表面上的气泡是可接受的。
铅垂(bob)被轻轻装在测试杯的液体中,杯子和铅垂被安装到仪器中。样品的温度与循环液体的温度通过等待5分钟来平衡。然后,旋转速度被设定至所需数值,该数值会产生所需剪切速率。本领域普通技术人员根据预期样品的粘度范围会容易地确定剪切速率的所需数值。剪切速率通常为50秒-1或100秒-1
从仪表盘上读取粘度数值,如果粘度数值在15秒内仅发生轻微变化(相对变化小于2%),那么测量完成。如果不是这样,那么可能是温度未达到平衡数值,或者是材料由于剪切发生变化。如果是后种情况,那么需要在不同剪切速率下进行进一步测定,从而定义样品的粘度性质。所报道的结果是三个测试样品的平均粘度。所报道的结果要么以厘泊(cps)计要么以毫帕斯卡·秒(mPa·s)计,它们是等同的。
根据如下配方合成可辐射固化初级涂层H的样品:
以下表示未固化的初级涂层H,其包含满足低聚物H各参数的低聚物。
可辐射固化初级涂层
根据以上测试方法测定H初级涂层的粘度、拉伸性质和DMA性质。以下是结果:
H初级涂层的测试结果
用于液体涂层和涂层膜的第二套测试方法
确定在20℃下的动态粘度和在剪切损耗模量G’’=100Pa下的“剪切储能模量”(也 被称为液体弹性)G’
由动态机械测量确定未固化涂层组合物在10rad/s下的动态剪切粘度η(10rad/s,20℃))以及在G’’=100Pa下的液体弹性G’。这些动态机械测量采用RheometricScientific(现在的TA仪器)的ARES-LS流变仪进行,其中该流变仪安装有双程200-2000g*cm作用力平衡扭距传感器(rebalancetorquetransducer)、25mm的Invar平行板、氮气烘箱以及液氮冷却设备。
在实验开始时,树脂样品在室温下被加载到流变仪的平行板之间。板-板间距被设定为1.6mm。关闭气体烘箱后,样品用氮气冲洗约5分钟。
实验通过如下进行:采用100-0.1rad/s之间的角频率(3个频率/10,以降序测量)以5℃的温度间隔进行等温频率扫描,从20℃开始,并且以5℃的步长降低温度,直到样品变得对于仪器来说太硬不能测量(对于所述样品,这个极限通常在约-20℃和约-30℃之间)。在频率扫描开始时,应变幅度被设定为2%。为了精确测定粘度和相角,必须注意动态扭距幅度应高于0.5g*cm。随着测量频率的降低,扭距也降低。因此,在接近上述下限时,应变增大至5%,并在下一步中增大至20%以保持扭距高于所允许的最小数值0.5g*cm。通常,在20%的应变幅度下测量在20℃和10rad/s下的动态粘度以及在100Pa的损耗模量G’’下的剪切储能模量G’。
剪切储能模量G’、损耗模量G’’、动态模量G*=(G’2+G”2)0.5、动态粘度η*=ω*G*和相角(δ)被集中作为角频率的函数。从结果中除去动态扭距小于0.5g*cm的数据点。
由20℃下测定的频率扫描获得在10rad/s下的动态粘度。G’’=100Pa时的G’通过如下由在测量介于100和200Pa之间的G’’数值的最高温下的频率扫描获得:将logG’vslogG’’由两个最小频率的数据点线性外推至G’’=100Pa。在多数情况下,这个结果可由在10℃或0℃下的频率扫描获得。
测定固化涂层的剪切模量G’(1rad/s,23℃)
利用RheometricsRDA-2动态机械分析仪采用动态机械分析测量固化涂层的模量。为了这个目的,如‘Steemanc.s.,Macromolecules,Vol.37,No.18,2004,p7001-7007’(该文献通过引用插入本文)中详细描述的将100微米厚的液体涂层置于两个直径为9.5mm的石英平板之间。该涂层通过UV光线(25mW/cm2)照射60秒完全固化,然后采用所附参考文献中描述的方法监测模量。在固化后,在完全固化的样品上采用10%的应变幅度进行频率扫描。由这个频率扫描,得到频率为1rad/s时的剪切储能模量G’的数值。通过如下近似计算得到固化涂层的拉伸模量E:3×剪切储能模量G’的数值。
DMA测量
根据标准ASTMD5026-95a“StandardTestMethodforMeasuringtheDynamicMechanicalPropertiesofPlasticsinTension”在如下条件下通过拉紧的DMTA来测定本发明涂层的平衡模量。
在以下测试条件下实施温度扫描测量:
测试片:矩形条带
夹具间的长度:18-22mm
宽度:4mm
厚度:约90μm
设备:测试在来自Rheometrics型RSA2(RheometricsSolidsAnalyserII)的DMTA仪上进行
频率:1rad/s
初始应变:0.15%
温度范围:从-130℃开始,加热至250℃
升温速度:5℃/min
自动应力:静态作用力+动态力
初始静态作用力:0.9N
静态作用力>动态作用力10%
自动应变
所施加的最大应变:2%
所允许的最小作用力:0.05N
所允许的最大作用力:1.4N
应变调节量:当前应变的10%
尺寸测量片:厚度:采用MT30B型Heidehain电子厚度测量仪测量,分辨率为1μm。宽度:采用MITUTOYO显微镜测量,分辨率为1μm。
所有设备采用ISO9001进行校准。
在DMTA测量中,其为动态测量,测量如下模量:剪切储能模量E’,损耗模量E’’和动态模量E*(根据如下关系E*=(E’2+E”2)1/2)。
在以上详述的条件下在1rad/s频率下测定的DMTA曲线(温度介于10和100℃之间)中的剪切储能模量E’的最小值被认为时涂层的平衡模量。在DMTA曲线中,23℃下的剪切储能模量E’’被记为E’23。
实施例I-VI和实验A-D
表1表示各实施例和实验的粘度和模量(未固化涂层和固化涂层)
根据上述内-外合成(inside-outsynthesis)进行氨基甲酸酯丙烯酸酯低聚物的合成。采用50%的TDI和50%的IPDI制备三种嵌段低聚物,TDI在低聚物的中间(T/I)以及TDI在末端(I/T),后者具有较高的粘度。用于合成氨基甲酸酯-丙烯酸酯低聚物的多元醇具有约2000、4000和6000g/mol的分子量,其用所用数值表示。表1中(1)、(2)和(3)表示用于构成氨基甲酸酯-丙烯酸酯低聚物的多元醇片段的个数。
涂层的制法:68.5wt%的低聚物、28.5wt%的ENPA(得自Sartomer的SR504)单体稀释剂、3wt%的Irgacure184光引发剂(得自Ciba)。
制备数种低聚物,并测试其在模型配制品中对粘弹性的影响以及对固化模量的影响。
表1
上表表示了一项令人惊讶的发现/益处,即当将二异氰酸酯(TDI和IPDI)混合以制备低聚物(本发明的实例)时,其固化模量与仅采用一种异氰酸酯(TDI)制备同样的低聚物(对比例,不是本发明的实例)相比更低。
上述结果表明,与仅采用TDI相比,当采用技术级别的TDI和IPDI的混合物时固化涂层的弹性行为(在多数情况下,粘度也降低)降低且模量降低。
实施例VII和VIII
根据下表2制备其它涂层组合物(用量以wt%计)
表2
根据上述内-外方法制备低聚物。所述涂层组合物具有明显的牛顿行为。
在25℃下,组合物I和II的粘度分别为约5.1帕斯卡·s和5.0帕斯卡·s。平衡模量(E’)分别为约1MPa和0.9MPa。Tg分别为-36℃和-33℃。
拉丝塔模拟器
过去光纤涂层的开发过程中,首先测定所有新开发的初级涂层和次级涂层的固化膜性质,然后在纤维拉丝塔上进行评估。除了所有涂层需要被拉伸以外,由于成本较高且过程困难,估计在拉丝塔上对其中的至多30%进行了测试。从开始配制涂层到其被涂敷到光纤上花费的时间通常为约6个月,这使产品开发周期明显变慢。
在光纤用辐射固化涂层领域中,已知初级涂层或次级涂层被涂敷到玻璃纤维上时,其性质通常不同于同种涂层固化膜的平膜性质。据称这是因为纤维涂层和平膜涂层之间的样品尺寸、几何性质、UV强度曝光量、所获得UV总曝光量、加工速度、基材的温度、固化温度以及可能氮气惰化条件的不同造成的。
为了使涂层开发途径更可靠以及周转时间更短,已经开发了一种提供与纤维制造厂商所用类似固化条件的设备。这种类型的替换应用和固化设备需要简单易行、维修成本较低,并且具有重复性能。这种设备的名称为“拉丝塔模拟器”,此后缩写为“DTS”。所述拉丝塔模拟器是基于对实际玻璃纤维拉丝塔组件的详细检测定制并建造的。所有尺寸(灯的位置、涂胶台的距离、涂胶台和UV灯的间距等)与玻璃纤维拉丝塔相同。这有助于模拟纤维拉伸工业中所用加工条件。
一种已知DTS安装有5盏FusionF600灯,两盏用于上部涂胶台,三盏用于下部涂胶台。各个涂胶台中的第二盏灯可以以在15-135°之间的各种角度上旋转,这允许更详细的研究固化性质。
用于已知DTS的“芯”是130.0±1.0μm不锈钢导线。由不同供应商提供的具有不同设计的纤维拉伸涂覆器可用于评估。这种结构使得涂敷光纤涂层的条件与工业制造场所实际存在的条件类似。
拉丝塔模拟器已被用于扩展到对光纤上的可辐射固化涂层进行分析。2003年,P.A.M.Steeman,J.J.M.Slot,H.G.H.vanMelick,A.A.F.v.d.Ven,H.Cao和R.Johnson在第52届IWCS会议上p.246(2003)报道了测定初级涂层原位模量的方法,所述初级涂层原位模量可用于表示涂层的强度、固化度和在不同环境下的纤维性能。2004年,Steeman等人(P.A.M.Steeman,W.Zoetelief,H.Cao,andM.Bulters,第53届IWCS会议,p.532(2004))报道了光纤涂层的流变高剪切图谱怎样用于预测在较高拉伸速度下的涂层的加工性能。拉丝塔模拟器可用于进一步研究光纤上初级涂层和次级涂层的性质。
以下这些测试方法可用于导线上的初级涂层和光纤上的涂层:
测试方法
初级涂层的反应丙烯酸酯不饱和度的百分率(其被简称为初级涂层%RAU)的测试 方法:
通过FTIR采用金刚石ART附件来测定光纤或金属导线上内部初级涂层上的固化程度。FTIR仪器的参数包括:100co-added扫描,4cm-1分辨率,DTGS探测仪,光谱范围为4000-650cm-1,为了改善信噪比将默认镜速率(mirrorvelocity)降低约25%。需要两个光谱,一个是对应于纤维或导线上的涂层的未固化液体涂料的光谱,另一个是纤维或导线上的内部初级涂层的光谱。
将接触粘合剂(contactcement)薄膜涂在3密耳厚的Mylar膜的1英寸见方的中心区域上。在接触粘合剂发粘以后,将一条光纤或导线置于其上。将样品置于低功率光学显微镜下方。用锋利的手术刀从玻璃上切下纤维或导线上的涂层。然后沿着纤维或导线的顶部纵向向下切割约1厘米的涂层,确保切割是干净的,并且外部涂层未掺入到初级涂层中。然后,将涂层在接触粘合剂上展开,从而邻近玻璃或导线的初级涂层以平膜形式暴露。初级涂层暴露的区域上,玻璃纤维或导线断掉。
在涂料完全覆盖金刚石表面以后获得液体涂料的光谱。如果可能,所述液体应当与涂布纤维或导线所用液体为同一批次,最低要求是它们必须是同一配方。光谱的最终形式为吸收谱。将在Mylar膜上的被暴露初级涂层置于金刚石的中心,其中纤维或导线的轴向平行于红外线的方向。应当在样品的背面施加压力,从而确保其与晶体接触良好。所得光谱不应含有接触粘合剂的任何吸收谱。如果观察到接触粘合剂,那么应当制备新样品。重要的是在制备样品后立即测定光谱,而不是在所有样品制备都完成以后制备多个测试样并测定光谱。光谱的最终形式为吸收谱。
对于液体涂层和固化涂层,测量在810cm-1处的丙烯酸酯双键波峰以及在750-780cm-1区域内的对照波峰的峰面积。采用基线技术测定峰面积,其中基线被选定为各峰任意一侧上吸光率最小值的切线。然后确定波峰以下和基线以上的面积。对于液体样品和固化样品,积分的上下限不完全相同但是类似,尤其对于对照波峰
测定液体样品和固化样品二者的丙烯酸酯峰面积与对照峰面积的比值。固化度(表示为被反应的丙烯酸酯不饱和基团的百分率(%RAU))根据以下方程计算:
% RAU = ( R L - R F ) x 100 R L
其中,RL是液体样品的面积比,RF是固化的初级涂层的面积比。
初级涂层的原位模量
通过这种测试方法测量双重涂布(软质初级涂层和硬质次级涂层)的玻璃纤维或金属线纤维上的初级涂层的原位模量。对于这项测试,可以在Steeman,P.A.M.,Slot,J.J.M.,Melick,N.G.H.van,Ven,A.A.F.vande,Cao,H.&Johnson,R.(2003)中找到详细的讨论。可以根据在第52届InternationalWireandCableSymposium(IWCS,Philadelphia,USA,2003年11月10-13),论文41中阐述的过程对光纤的初级涂层的原位模量测试进行机械分析。
为了制备样品,在距纤维末端约2cm处用剥离工具剥离下长度较短(约2mm)的涂层。被剥离的涂层边缘到纤维末端精确地测量8mm然后切开纤维从而形成另一端。然后将8mm的被涂布纤维部分插入金属样品固定器中,如文章[1]的图6中所示。将被涂布的纤维置于固定器的微型管内,所述微型管由两个半圆柱形的凹槽组成,所制成的直径近乎与标准纤维的外径(~245μm)相等。将螺丝拧紧后纤维也被夹紧;次级涂层表面上的夹力是均匀的,并且涂层中未出现明显变形。然后,将带有纤维的固定器安装在DMA(动态机械分析)仪上:RheometricsSolidsAnalyzer(RSA-II)。用底部夹具夹住金属固定器。紧固顶部夹具,向被涂布纤维的顶部施压从而压紧涂层。固定器和纤维必须竖直。对于各个样品,应当使纤维未被嵌入的部分的长度恒定;我们的测试中长度为6mm。调节应变偏移量(strainoffset)直到轴向预张力接近0(-1g~1g)。
选定剪切夹心几何装置来测定初级涂层的剪切模量G。根据如下方程计算得到的剪切夹心测试的样品宽度W为0.24mm
W = ( R p - R f ) π Ln ( R p / R f )
其中,Rf和Rp分别为裸纤和初级涂层的外径。对于上述计算,所用标准纤维的几何尺寸为:Rf=62.5μm和Rp=92.5μm。对于剪切夹心几何形状,输入:样品的长度为8mm(嵌入的长度),厚度为0.03mm(初级涂层厚度)。该测试在室温(约23℃)下进行。所用测试频率为1.0弧度/秒。剪切应变ε被设定为0.05。为了测定剪切储能模量G进行动态时间扫描获得4个数据点。所报道的G为所有数据点的平均值。
然后,根据文章[1]中描述的校正方法对所测量的剪切模量G进行校正。校正是在被嵌入部分和未被嵌入部分中考虑玻璃拉伸的影响。在校正过程中,需要输入裸线的拉伸模量(Ef)。对于玻璃纤维,Ef为70GPa。对于使用不锈钢S314的金属纤维,Ef为120GPa。采用实际的Rf数值和Rp数值进一步调整被校正的G值。对于玻璃纤维,纤维的几何尺寸Rf和Rp采用PK2400FiberGeometrySystem测定。对于使用直径为130μm的不锈钢S314的金属纤维,Rf为65μm,Rp在显微镜下测量。最后,根据E=3G计算纤维上的初级涂层的原位模量E(拉伸剪切储能模量)。所报道的E为3个测试样品的平均值。
用于初级涂层和次级涂层的Tg测量的原位DMA:
通过这种测试方法测量双重涂布的玻璃纤维或金属线纤维上的初级涂层和次级涂层的玻璃化转变温度(Tg)。这些玻璃化转变温度被称为“管Tg”。
为了制备样品,通过如下由被涂布纤维的一端将长约2cm的涂层以完整涂层管的形式从纤维上剥离下来:首先将被涂布纤维的末端顺着剥离工具浸入液N2中至少10秒,然而通过快速移动剥离涂层管,同时所述涂层仍为硬质。
DMA仪器(动态机械分析):使用流变固体分析仪(RSA-II)。对于RSA-II,RSAII的两个夹具之间的间距可被扩大至1mm。首先通过调节应变偏移量将该间距调节至最小水平。由金属板制成并且在开口端通过螺丝合拢和紧固的简易样品支撑台被用于从涂层管的下端紧紧持有该涂层管。使固定器滑入底部夹具的中心,然后夹紧该夹具。用镊子,将涂层管弄直,从而处于通过上部夹具的垂直位置。闭合并夹紧所述上部夹具。关闭烘箱,并将烘箱的温度设定为高于次级涂层的Tg或100℃,其中液氮为温度控制介质。当烘箱温度达到上述温度时,调节应变偏移量,直到预张力在0g至0.3g的范围内。
在DMA的动态温度台阶测试中,测试频率被设定为1.0弧度/秒;应变为5E-3;温度增量为2℃,浸泡时间为10秒。
几何形状被选定为圆柱形。几何尺寸的设置与次级涂层原位模量测试中所用尺寸相同。样品长度为金属固定器的上部边缘和下部夹具之间的涂层管的长度,在本测试中为11mm。直径(D)根据以下方程被计算为0.16mm:
D = 2 × R s 2 - R p 2
其中Rs和Rp分别为次级涂层和初级涂层的外径。对于上述计算,所用标准纤维的几何尺寸为:Rs=122.5μm和Rp=92.5μm。
从起始温度(在本测试中为100℃)开始,进行动态温度台阶测试,直到温度低于初级涂层的Tg或-80℃。测试后,从tanδ曲线得到的波峰被报道为初级涂层Tg(相应于较低温度)和次级涂层Tg(相应于较高温度)。注意到,所测量的玻璃化转变温度,尤其是初级玻璃化转变温度,应当被认为是纤维涂层的玻璃化转变温度的相对值,这是因为涂层管的复杂结构会造成tanδ偏移。
拉丝塔模拟器实例
采用拉丝塔模拟器将本发明所要求保护的初级涂层和商业上获得的可辐射固化次级涂层的各种组合物涂敷到导线上。所述导线以五种不同的线速度运行:750米/分钟、1200米/分钟、1500米/分钟、1800米/分钟和2100米/分钟。
以湿/干模式或湿/湿模式实施拉伸。湿/干模式意指,湿涂敷液体初级涂层,然后使液体初级涂层固化成导线上的固层。初级涂层固化后,涂敷次级涂层,然后也进行固化。湿/湿模式意指,湿涂敷液体初级涂层,然后湿涂敷次级涂层,接着对初级涂层和次级涂层二者进行固化。
测定初级涂层和次级涂层的性质,并报道如下:初始%RAU,以及在非受控光源下、在85℃/85%RH下老化一个月后的%RAU。初级涂层固化后,涂敷次级涂层。
对初级涂层P、初级涂层CA、初级涂层CR、初级涂层BJ和初级涂层H以及商业上获得的可辐射固化次级涂层进行多次操作。
测定导线上固化的初级涂层的初始%RAU、初始原位模量和初始管Tg。然后将被涂布的导线在85℃和85%的相对湿度下老化一个月。然后测定导线上的固化初级涂层的%RAU、原位模量以及老化后的管Tg。
拉丝塔模拟器的设置条件为:
-使用Zeidl模具,对于1°使用S99,对于2°使用S105。
-速度为:750米/分钟、1000米/分钟、1200米/分钟、1500米/分钟、1800米/分钟和2100米/分钟。
-在湿/干工艺中使用5盏灯;在湿/湿工艺中使用3盏灯。
-(2)对于1°涂层在100%下使用600W/英寸2DFusionUV灯。
-(3)对于2°涂层在100%下使用600W/英寸2DFusionUV灯。
-两个涂层的温度为30℃。模具也被设定为30℃。
-每个模具中二氧化碳的水平为7升/min。
-每盏灯中氮气的含量为20升/min。
-对于1°涂层,压力在25m/min下为1bar,并且递增至在1000m/min下为3bar。
-对于2°涂层,压力在25m/min下为1bar,并且递增至在1000m/min下为4bar。
发现在导线上被固化的可辐射固化初级涂层P具有如下性质:
因此,可以描述并要求保护被第一层和第二层涂布的导线,其中,所述第一层是固化的本发明所要求保护的可辐射固化初级涂层,其与所述导线的外表面接触,所述第二层是被固化的可辐射固化次级涂层,其与所述初级涂层的外表面接触,
其中,所述导线上的所述被固化的初级涂层在初始固化后以及在85℃和85%相对湿度下老化一个月后具有如下性质:
A)%RAU为约84%至约99%;
B)原位模量介于约0.15MPa和约0.60MPa之间;并且
C)管Tg为约-25℃至约-55℃。
采用上述信息,还可以描述并要求保护被第一层和第二层涂布的光纤,其中,所述第一层是被固化的本发明所要求保护的可辐射固化初级涂层,其与所述导线的外表面接触,并且所述第二层是被固化的可辐射固化次级涂层,其与所述初级涂层的外表面接触,
其中,所述光纤上的所述被固化的初级涂层在初始固化后以及在85℃和85%相对湿度下老化一个月后具有如下性质:
A)%RAU为约84%至约99%;
B)原位模量介于约0.15MPa和约0.60MPa之间;并且
C)管Tg为约-25℃至约-55℃。
可辐射固化次级涂层可以是任何商业上获得的光纤用可辐射固化次级涂层。上述商业上获得的可辐射固化次级涂层可得自DSMDesotechInc.以及其它公司,包括但不限于Hexion、Luvantix和PhiChem。
本发明中提到的所有参考文献(包括出版物、专利申请和专利)通过引用插入本文,就像每篇参考文献单独地并具体地通过引用插入本文以及以整体方式并入本文一样。
除非本文另有指明,或与上下文明显矛盾,描述本发明的上下文中(尤其在权利要求书的上下文中)使用的术语“一个”、“一种”和“所述”以及类似提法应当被理解为既包括单数又包括复数。除非另有声明,术语“包括”、“具有”、“包含”和“含有”被理解为开放术语(即意指“包括,但不限于”)。除非本文另有指明,本文中数值范围的叙述仅仅用作该范围内每个单独的值的速记方法,并且每个单独的值被包括进说明书,就像它们被单独列在说明书中一样。本文所述的所有方法都可以以任何合适的顺序来进行,除非本文另有指明,或与上下文明显矛盾。除非另有指明,本文提供的任何及所有例子,或者示例性的语言(例如,“诸如”)仅用来更好地阐述本发明,而非对发明范围加以限制。说明书中任何语句都不应被解释为:表示对本发明的实施来说必要的、不要求保护的要素。
本文中描述了本发明的优选实施方式,其包括发明人已知用来实施本发明的最佳方式。当然,在阅读前述说明书的基础上,对这些优选实施方式中的改动对于本领域普通技术人员来说将是明显的。本发明的发明人预见了本领域技术人员合适地采用此类改动,并且发明人预期本发明可以以除了本文具体描述的方式之外的方式被实现。因此,只要适用法律允许,本发明包括对所附权利要求中提到的主题进行的所有改动和等同物。此外,所有可能的变化中,上面提到的要素的任何组合都被包括进本发明,除非本文另有指明,或与上下文明显矛盾。

Claims (8)

1.一种可辐射固化初级涂层组合物,其包含至少一种氨基甲酸酯(甲基)丙烯酸酯官能化的低聚物和光引发剂,
其中,所述氨基甲酸酯(甲基)丙烯酸酯低聚物包含(甲基)丙烯酸酯基团、至少一个多元醇主链和氨基甲酸酯基团,其中使用催化剂来促进形成所述低聚物的反应,并且所述催化剂是二丁基二月桂酸锡催化剂或有机铋催化剂,
其中,所述多元醇主链是聚醚、聚酯、聚烃、聚碳酸酯或其混合物,
其中,占所述氨基甲酸酯基团总数的15%或更多的所述氨基甲酸酯基团源自2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯二者,这通过使用含10wt%或更多的2,6-甲苯二异氰酸酯和50wt%或更多的2,4-甲苯二异氰酸酯的甲苯二异氰酸酯混合物来实现,
其中,占所述氨基甲酸酯基团总数的40%或更多的所述氨基甲酸酯基团源自环状的或支化的脂族异氰酸酯,
其中,所述氨基甲酸酯(甲基)丙烯酸酯低聚物是所述组合物中唯一存在的低聚物,
其中,所述氨基甲酸酯(甲基)丙烯酸酯官能化的低聚物的数均分子量至少为4000g/mol,但小于或等于15000g/mol,
其中,所述可辐射固化初级涂层组合物的剪切储能模量G’在剪切损耗模量G”=100Pa下测量时小于或等于0.8Pa,
其中,所述可辐射固化初级涂层组合物在10rad/s和20℃下的粘度为2帕斯卡·秒至8帕斯卡·秒,
其中,所述可辐射固化初级涂层组合物具有1.48或更高的折射率,
其中,所述可辐射固化初级涂层组合物的固化膜具有小于或等于1.0MPa的平衡模量,并且
当所述可辐射固化初级涂层组合物用于涂敷在750米/分钟和2100米/分钟之间的线速度下拉丝的玻璃光纤并且在之后固化时,在光纤上固化的所述可辐射固化初级涂层组合物在初始固化后以及在85℃和85%的相对湿度下老化一个月后具有如下性质:
A)RAU%为84%至99%,
B)原位模量介于0.15MPa和0.60MPa之间,和
C)管Tg为-25℃至-55℃。
2.如权利要求1所述的可辐射固化初级涂层组合物,其中,所述环状的或支化的脂族异氰酸酯是C4-C20二异氰酸酯。
3.如权利要求1所述的可辐射固化初级涂层组合物,其中,所述脂族异氰酸酯是异佛尔酮二异氰酸酯。
4.如权利要求1所述的可辐射固化初级涂层组合物,其中,所述催化剂为有机铋催化剂。
5.如权利要求1所述的可辐射固化初级涂层组合物,其中,所述聚酯是聚丙二醇(PPG)。
6.一种采用可辐射固化初级涂层涂布玻璃纤维的方法,所述方法包括:
a)操作玻璃拉丝塔从而制成玻璃光纤,所述玻璃拉丝塔在介于750米/分钟和2100米/分钟之间的线速度下操作;
b)将权利要求1所述可辐射固化初级涂层组合物涂敷到所述光纤的表面上;
c)可选施加辐射以使权利要求1所述的可辐射固化初级涂层组合物实现固化。
7.一种被第一层和第二层涂布的导线,其中,所述第一层是被固化的权利要求1的可辐射固化初级涂层组合物,其与所述导线的外表面接触,并且所述第二层是被固化的可辐射固化次级涂层,其与所述初级涂层组合物的外表面接触,
其中,所述导线上被固化的初级涂层组合物在初始固化后以及在85℃和85%的相对湿度下老化一个月后具有如下性质:
A)RAU%为84%至99%;
B)原位模量介于0.15MPa和0.60MPa之间;和
C)管Tg为-25℃至-55℃。
8.一种被第一层和第二层涂布的光纤,其中,所述第一层是被固化的权利要求1的可辐射固化初级涂层组合物,其与所述光纤的外表面接触,并且所述第二层是被固化的可辐射固化次级涂层,其与所述初级涂层组合物的外表面接触,
其中,所述光纤上被固化的初级涂层组合物在初始固化后以及在85℃和85%的相对湿度下老化一个月后具有如下性质:
A)RAU%为84%至99%;
B)原位模量介于0.15MPa和0.60MPa之间;和
C)管Tg为-25℃至-55℃。
CN201310090691.4A 2006-12-14 2007-12-13 光纤上的d1363bt可辐射固化初级涂层 Expired - Fee Related CN103232175B (zh)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US87472106P 2006-12-14 2006-12-14
US87471906P 2006-12-14 2006-12-14
US87472206P 2006-12-14 2006-12-14
US87473006P 2006-12-14 2006-12-14
US60/874,722 2006-12-14
US60/874,719 2006-12-14
US60/874,721 2006-12-14
US60/874,730 2006-12-14
US97463107P 2007-09-24 2007-09-24
US60/974,631 2007-09-24
CNA200780041391XA CN101535196A (zh) 2006-12-14 2007-12-13 光纤上的d1363bt可辐射固化初级涂层

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA200780041391XA Division CN101535196A (zh) 2006-12-14 2007-12-13 光纤上的d1363bt可辐射固化初级涂层

Publications (2)

Publication Number Publication Date
CN103232175A CN103232175A (zh) 2013-08-07
CN103232175B true CN103232175B (zh) 2016-05-11

Family

ID=39231049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310090691.4A Expired - Fee Related CN103232175B (zh) 2006-12-14 2007-12-13 光纤上的d1363bt可辐射固化初级涂层

Country Status (8)

Country Link
US (3) US20080226916A1 (zh)
EP (1) EP2089333B1 (zh)
JP (2) JP2010509451A (zh)
KR (1) KR101155015B1 (zh)
CN (1) CN103232175B (zh)
AT (1) ATE498593T1 (zh)
DE (1) DE602007012575D1 (zh)
WO (1) WO2008076299A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557484B (zh) * 2006-12-14 2015-02-25 帝斯曼知识产权资产管理有限公司 光纤上的d1364 bt次级涂层
WO2008076297A1 (en) * 2006-12-14 2008-06-26 Dsm Ip Assets B.V. D1378 ca radiation curable primary coating for optical fiber
RU2439010C2 (ru) * 2006-12-14 2012-01-10 ДСМ Ай Пи ЭССЕТС Б.В. Отверждаемое излучением первичное покрытие d1379 p для оптического волокна
DK2473455T3 (en) 2009-10-09 2016-08-01 Dsm Ip Assets Bv Radiation-curable COATING FOR OPTICAL FIBER
EP2484647A1 (en) * 2009-10-09 2012-08-08 DSM IP Assets B.V. Radiation curable supercoatings for multi-mode optical fiber
CN101906268B (zh) * 2010-03-15 2012-09-26 湖南松井新材料有限公司 涂料组合物及包含其的光纤
JP5515070B2 (ja) 2010-06-30 2014-06-11 ディーエスエム アイピー アセッツ ビー.ブイ. D1492液体bapo光開始剤および放射線硬化性組成物におけるその使用
KR20130020790A (ko) 2010-06-30 2013-02-28 디에스엠 아이피 어셋츠 비.브이. D1479 안정한 액체 비스(아실)포스핀 광 개시제 및 방사선 경화성 조성물에서 이의 용도
US9322991B2 (en) * 2014-02-03 2016-04-26 Corning Incorporated Primary coating compositions with reinforcing polymer
US9708491B2 (en) * 2014-06-04 2017-07-18 Corning Incorporated Optical fiber coating and composition
US9891379B2 (en) 2014-11-14 2018-02-13 Corning Incorporated Optical fiber coating compositions with acrylic polymers
CN104479536B (zh) * 2014-11-28 2017-02-08 广东四方威凯新材料有限公司 一种可厚膜施工的可重涂紫外光固化涂料及其制备方法
US20160177092A1 (en) * 2014-12-18 2016-06-23 Corning Incorporated Optical fiber coating composition with non-reactive reinforcing agent
KR20180035839A (ko) 2015-07-27 2018-04-06 쓰리엠 이노베이티브 프로퍼티즈 컴파니 코팅된 목재 베니어
JP6699493B2 (ja) 2016-10-03 2020-05-27 住友電気工業株式会社 光ファイバ心線
US20180127593A1 (en) * 2016-11-08 2018-05-10 Corning Incorporated Fiber coatings with low modulus and high critical stress
JP2018077303A (ja) * 2016-11-08 2018-05-17 住友電気工業株式会社 光ファイバ心線
JP7111432B2 (ja) * 2017-06-02 2022-08-02 コベストロ (ネザーランズ) ビー.ブイ. 光ファイバー用耐熱放射線硬化性コーティング
JP2019045517A (ja) 2017-08-29 2019-03-22 住友電気工業株式会社 光ファイバ
CN107987786B (zh) * 2017-12-14 2020-11-06 黑龙江省科学院石油化学研究院 一种低玻璃化转变温度紫外光固化胶粘剂及其制备方法
CA3119820A1 (en) * 2019-01-11 2020-07-16 Allnex Belgium S.A. Curable resin composition
CN114207063B (zh) 2019-07-31 2023-07-25 科思创(荷兰)有限公司 具有多功能长臂低聚物的涂覆光纤用辐射固化组合物
WO2021076434A1 (en) * 2019-10-14 2021-04-22 Corning Incorporated Polymer-based portion, adhesive, foldable apparatus, and methods of making
EP4127005A1 (en) 2020-04-03 2023-02-08 Covestro (Netherlands) B.V. Self-healing oligomers and the use thereof
JP2023520782A (ja) 2020-04-03 2023-05-19 コベストロ (ネザーランズ) ビー.ヴィー. 自己修復型光ファイバとその製造に使用される組成物
CN115515784A (zh) 2020-04-03 2022-12-23 科思创(荷兰)有限公司 多层光学器件
CN116472175A (zh) * 2020-09-03 2023-07-21 巴斯夫欧洲公司 反应性聚氨酯弹性体
KR20220063812A (ko) * 2020-11-09 2022-05-18 삼성디스플레이 주식회사 수지 조성물, 접착 부재, 및 그 접착 부재를 포함하는 표시장치
CN112812265B (zh) * 2020-12-31 2023-03-28 安庆飞凯新材料有限公司 聚氨酯丙烯酸酯低聚物及其制备方法、涂料组合物及其应用
US20240052196A1 (en) * 2021-02-22 2024-02-15 Covestro (Netherlands) B.V. Process for providing low gloss coatings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1246874A (zh) * 1997-12-12 2000-03-08 伯顿化学股份有限公司 经涂覆的光导纤维
CN1409734A (zh) * 1999-10-15 2003-04-09 Dsm有限公司 辐射固化的涂料组合物
CN1651533A (zh) * 2004-01-13 2005-08-10 上海飞凯光电材料有限公司 辐射固化涂料及其应用
JP3871048B2 (ja) * 2002-12-03 2007-01-24 信越化学工業株式会社 液状放射線硬化型樹脂組成物、光ファイバ用被覆組成物、及び光ファイバ

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849462A (en) * 1983-11-10 1989-07-18 Desoto, Inc. Ultraviolet-curable coatings for optical glass fibers having improved adhesion
US4720529A (en) * 1985-03-29 1988-01-19 Nippon Telegraph And Telephone Corporation UV-ray curable polyurethane composition and coated optical fiber
US4707076A (en) * 1985-04-12 1987-11-17 Ensign-Bickford Industries, Inc. Coating compositions for optical fibers
NL8702395A (nl) * 1987-10-08 1989-05-01 Philips Nv Optische vezel voorzien van een kunststofbedekking.
CA1330022C (en) * 1987-12-28 1994-06-07 Shigeo Masuda Plastic-coated optical transmission fiber and an estimating method thereof
US4900126A (en) * 1988-06-30 1990-02-13 American Telephone & Telegraph Co. Bonded array of transmission media
CA1321671C (en) * 1989-05-11 1993-08-24 Paul J. Shustack Ultraviolet radiation-curable coatings for optical fibers and optical fibers coated therewith
US5536529A (en) * 1989-05-11 1996-07-16 Borden, Inc. Ultraviolet radiation-curable coatings for optical fibers and optical fibers coated therewith
US5352712A (en) * 1989-05-11 1994-10-04 Borden, Inc. Ultraviolet radiation-curable coatings for optical fibers
US4962992A (en) * 1989-05-15 1990-10-16 At&T Bell Laboratories Optical transmission media and methods of making same
US5104433A (en) * 1989-05-15 1992-04-14 At&T Bell Laboratories Method of making optical fiber
CA1341128C (en) * 1989-06-27 2000-10-24 Borden Chemical, Inc. Optical fiber array
US5219896A (en) * 1989-09-06 1993-06-15 Stamicarbon, B.V. Primary coatings for optical glass fibers including poly(carbonate-urethane) acrylates
JP2836285B2 (ja) * 1991-04-19 1998-12-14 住友電気工業株式会社 被覆光ファイバ
US5182784A (en) * 1991-07-19 1993-01-26 Owens-Corning Fiberglas Technology, Inc. Optical fiber or filament reinforcement coating
GB9121655D0 (en) * 1991-10-11 1991-11-27 Ici Plc Optical fibre coating
US5616630A (en) * 1993-02-05 1997-04-01 Lord Corporation Ester/urethane acrylate hybrid oligomers
US5366527A (en) * 1993-04-05 1994-11-22 Corning Incorporated Method and apparatus for coating optical waveguide fibers
US5498751A (en) * 1993-09-03 1996-03-12 Cps Chemical Company, Inc. Organotin catalyzed transesterification
US5664041A (en) * 1993-12-07 1997-09-02 Dsm Desotech, Inc. Coating system for glass adhesion retention
US5502147A (en) * 1993-12-21 1996-03-26 Bayer Corporation Aliphatic rim elastomers
US5408564A (en) * 1994-06-27 1995-04-18 Siecor Corporation Strippable tight buffered optical waveguide
JPH0860090A (ja) * 1994-08-16 1996-03-05 Nippon Parkerizing Co Ltd アミン触媒硬化型塗料および塗装方法
US5696179A (en) * 1994-10-19 1997-12-09 Dsm, N.V. Silane oligomer and radiation curable coating composition containing the oligomer
CA2236667A1 (en) * 1995-11-03 1997-05-09 Dsm N.V. A solvent-free, radiation-curable, optical glass fiber coating composition and solvent-free method for making a solvent-free, radiation-curable, optical glass fiber coating composition
US5908874A (en) * 1996-06-18 1999-06-01 3M Innovative Properties Company Polymerizable compositions containing fluorochemicals to reduce melting temperature
AU4969697A (en) * 1996-11-08 1998-06-03 Dsm N.V. Radiation-curable optical glass fiber coating compositions, coated optical glass fibers, and optical glass fiber assemblies
CN1094908C (zh) * 1997-01-20 2002-11-27 住友电气工业株式会社 带有被覆层的光纤维及其制造方法
CN1105925C (zh) * 1997-01-24 2003-04-16 博登化学公司 带有可剥离的底涂层的涂覆光纤及其制作与使用的方法
JPH1111986A (ja) * 1997-04-25 1999-01-19 Takeda Chem Ind Ltd 光ファイバ被覆用樹脂組成物
US6197422B1 (en) * 1997-05-06 2001-03-06 Dsm, N.V. Ribbon assemblies and radiation-curable ink compositions for use in forming the ribbon assemblies
US6130980A (en) * 1997-05-06 2000-10-10 Dsm N.V. Ribbon assemblies and ink coating compositions for use in forming the ribbon assemblies
EP1408017A3 (en) 1997-05-06 2006-01-11 DSM IP Assets B.V. Radiation curable ink compositions
US6023547A (en) * 1997-06-09 2000-02-08 Dsm N.V. Radiation curable composition comprising a urethane oligomer having a polyester backbone
US6187835B1 (en) * 1997-06-18 2001-02-13 Dsm N.V. Radiation-curable optical fiber coatings having reduced yellowing and fast cure speed
JPH11181041A (ja) * 1997-12-18 1999-07-06 Hitachi Chem Co Ltd 光硬化性樹脂組成物及び塗料
US6042943A (en) * 1998-03-23 2000-03-28 Alvin C. Levy & Associates, Inc. Optical fiber containing a radiation curable primary coating composition
JPH11279240A (ja) * 1998-03-30 1999-10-12 Hitachi Chem Co Ltd 光硬化性樹脂組成物及び塗料
US6110593A (en) * 1998-05-21 2000-08-29 Dsm N.V. Radiation-curable optical fiber primary coating system
US6323255B1 (en) * 1998-09-30 2001-11-27 Dsm N.V. Radiation-curable composition
KR100505858B1 (ko) * 1999-04-01 2005-08-04 보든 케미칼, 인코포레이티드 광조사 경화형 봉함 재료를 함유하는 광섬유 리본
JP2000302829A (ja) * 1999-04-23 2000-10-31 Jsr Corp 液状硬化性樹脂組成物およびその硬化物
JP2000351817A (ja) * 1999-06-09 2000-12-19 Shin Etsu Chem Co Ltd 光硬化性樹脂組成物及び光ファイバー用被覆材
US7091257B2 (en) * 1999-07-27 2006-08-15 Alcatel Radiation-curable composition with simultaneous color formation during cure
US6630242B1 (en) * 1999-07-30 2003-10-07 Dsm N.V. Radiation-curable composition with simultaneous color formation during cure
JP4029563B2 (ja) * 1999-12-09 2008-01-09 大日本インキ化学工業株式会社 光ファイバー被覆用樹脂組成物及び光ファイバー若しくはユニット
US20020099110A1 (en) * 1999-12-30 2002-07-25 Tyson Norlin Radiation-curable coating composition
US6775451B1 (en) * 1999-12-30 2004-08-10 Corning Incorporated Secondary coating composition for optical fibers
US6438306B1 (en) * 2000-04-07 2002-08-20 Dsm N.V. Radiation curable resin composition
US6584263B2 (en) * 2000-07-26 2003-06-24 Corning Incorporated Optical fiber coating compositions and coated optical fibers
EP1209132A1 (en) * 2000-11-22 2002-05-29 Dsm N.V. Coated optical fibers, primary coating composition, method for curing, as well as an assembly and a method for measuring
US7706659B2 (en) * 2000-11-22 2010-04-27 Dsm Ip Assets B.V. Coated optical fibers
US7067564B2 (en) * 2000-11-22 2006-06-27 Dsm Ip Assets B.V. Coated optical fibers
US6534618B1 (en) * 2000-11-27 2003-03-18 Corning Incorporated Methods of drying optical fiber coatings
EP1385893A2 (en) * 2001-01-11 2004-02-04 DSM IP Assets B.V. Radiation curable coating composition
KR100910080B1 (ko) * 2001-01-12 2009-07-30 디에스엠 아이피 어셋츠 비.브이. 방사선 경화성 조성물 및 그것으로 코팅된 생성물
US6707977B2 (en) * 2001-03-15 2004-03-16 Corning Incorporated All fiber polarization mode dispersion compensator
US6523215B2 (en) * 2001-04-04 2003-02-25 Saint-Gobain Abrasives Technology Company Polishing pad and system
JP4288453B2 (ja) * 2001-05-18 2009-07-01 信越化学工業株式会社 メチルフェニルポリシロキサンジオール及びその製造方法、並びに液状放射線硬化型樹脂組成物、光ファイバ用被覆組成物及び光ファイバ
DE10229519A1 (de) * 2001-07-10 2003-01-30 Henkel Kgaa Reaktive Polyurethane mit einem geringen Gehalt an monomeren Diisocyanaten
JP5106730B2 (ja) * 2001-09-27 2012-12-26 Dic株式会社 光硬化型樹脂組成物及び該組成物を用いた光ファイバ素線及び光ファイバテープ心線
US7276543B2 (en) * 2001-10-09 2007-10-02 Dsm Ip Assets B.V. Radiation curable resin composition
DE60332094D1 (de) * 2002-02-22 2010-05-27 Masimo Corp Aktive pulsspektrophotometrie
US20040022511A1 (en) * 2002-04-24 2004-02-05 Eekelen Jan Van Coated optical fibers
US7238386B2 (en) * 2002-05-09 2007-07-03 Hexion Specialty Chemicals, Inc. Methods for making and using point lump-free compositions and products coated with point lump-free compositions
DE10259673A1 (de) * 2002-12-18 2004-07-01 Basf Ag Verfahren zur Herstellung von strahlungshärtbaren Urethan(meth)acrylaten
US20040209994A1 (en) * 2002-12-19 2004-10-21 Matthew Terwillegar Polyester oligomers
JP3900279B2 (ja) * 2003-01-16 2007-04-04 信越化学工業株式会社 液状放射線硬化型樹脂組成物、光ファイバ用被覆組成物及び光ファイバ
US6862392B2 (en) * 2003-06-04 2005-03-01 Corning Incorporated Coated optical fiber and curable compositions suitable for coating optical fiber
WO2005103175A1 (en) * 2004-04-22 2005-11-03 Jsr Corporation Low refractive index coating composition
DK1749229T3 (da) * 2004-05-24 2009-08-17 Prysmian Spa Fremgangsmåde og anordning til fremstilling af et optisk kabel
US7268172B2 (en) 2004-10-15 2007-09-11 Bayer Materialscience Llc Radiation curable compositions
DE102004053186A1 (de) * 2004-11-04 2006-05-11 Bayer Materialscience Ag Niederviskose, wässrige, strahlenhärtbare Urethan-Bindemitteldispersionen mit hohen Festkörpergehalten
US8389653B2 (en) * 2006-03-30 2013-03-05 Basf Corporation Method of catalyzing a reaction to form a urethane coating and a complex for use in the method
RU2439010C2 (ru) * 2006-12-14 2012-01-10 ДСМ Ай Пи ЭССЕТС Б.В. Отверждаемое излучением первичное покрытие d1379 p для оптического волокна
WO2008076297A1 (en) * 2006-12-14 2008-06-26 Dsm Ip Assets B.V. D1378 ca radiation curable primary coating for optical fiber
ATE503732T1 (de) * 2006-12-14 2011-04-15 Dsm Ip Assets Bv Strahlungshärtbare d 1368 cr-grundierbeschichtung für optische fasern
CN104395369B (zh) * 2012-04-25 2017-03-15 陶氏环球技术有限责任公司 使用硫代氨基甲酸酯铋盐或硫代碳酸酯铋盐作为催化剂制备的聚氨酯
US20160260519A1 (en) * 2013-09-26 2016-09-08 Polyone Corporation Sustainable poly(vinyl halide) mixtures for thin-film applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1246874A (zh) * 1997-12-12 2000-03-08 伯顿化学股份有限公司 经涂覆的光导纤维
CN1409734A (zh) * 1999-10-15 2003-04-09 Dsm有限公司 辐射固化的涂料组合物
JP3871048B2 (ja) * 2002-12-03 2007-01-24 信越化学工業株式会社 液状放射線硬化型樹脂組成物、光ファイバ用被覆組成物、及び光ファイバ
CN1651533A (zh) * 2004-01-13 2005-08-10 上海飞凯光电材料有限公司 辐射固化涂料及其应用

Also Published As

Publication number Publication date
EP2089333A1 (en) 2009-08-19
US20080226916A1 (en) 2008-09-18
CN103232175A (zh) 2013-08-07
JP2010509451A (ja) 2010-03-25
ATE498593T1 (de) 2011-03-15
WO2008076299A1 (en) 2008-06-26
DE602007012575D1 (de) 2011-03-31
US20140099063A1 (en) 2014-04-10
US20160326398A1 (en) 2016-11-10
KR101155015B1 (ko) 2012-06-14
KR20090079922A (ko) 2009-07-22
EP2089333B1 (en) 2011-02-16
JP2014132075A (ja) 2014-07-17

Similar Documents

Publication Publication Date Title
CN103232175B (zh) 光纤上的d1363bt可辐射固化初级涂层
CN101535203B (zh) 光纤用d1365bj可辐射固化初级涂层
CN101535198B (zh) 用于光纤的d1368 cr可辐射固化初级涂层
CN101535202B (zh) 光纤上的d1379 p可辐射固化初级涂层
CN101535199B (zh) 用于光纤的d1378ca可辐射固化初级涂层
CN101535204B (zh) 光纤用d1369d可辐射固化次级涂层
CN101535201B (zh) 光纤用d1370r可辐射固化次级涂层

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160511

Termination date: 20201213

CF01 Termination of patent right due to non-payment of annual fee