CN102586753A - Mocvd设备的清洁方法 - Google Patents

Mocvd设备的清洁方法 Download PDF

Info

Publication number
CN102586753A
CN102586753A CN201210077038XA CN201210077038A CN102586753A CN 102586753 A CN102586753 A CN 102586753A CN 201210077038X A CN201210077038X A CN 201210077038XA CN 201210077038 A CN201210077038 A CN 201210077038A CN 102586753 A CN102586753 A CN 102586753A
Authority
CN
China
Prior art keywords
reaction chamber
clean air
plasma
cleaning method
mocvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210077038XA
Other languages
English (en)
Inventor
尹志尧
杜志游
孟双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Fabrication Equipment Inc Shanghai
Pearl Kogyo Co Ltd
Original Assignee
Advanced Micro Fabrication Equipment Inc Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Fabrication Equipment Inc Shanghai filed Critical Advanced Micro Fabrication Equipment Inc Shanghai
Priority to CN201210077038XA priority Critical patent/CN102586753A/zh
Publication of CN102586753A publication Critical patent/CN102586753A/zh
Priority to TW101144503A priority patent/TW201340174A/zh
Pending legal-status Critical Current

Links

Images

Abstract

一种MOCVD设备的清洁方法,具体包括:向所述反应腔通入清洁气体,所述清洁气体至少包括Ar,利用所述等离子体处理装置将所述清洁气体等离子体化;在所述反应腔顶部形成负偏压,使得所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而除去位于所述反应腔顶部的残余沉积物。由于所述清洁方法不需要反应腔降温,减少了两次MOCVD工艺之间的等待时间,使得MOCVD设备的生产效率和产能能大幅提高;且由于Ar的等离子体与金属不会发生化学反应,不会对反应腔内壁的材料造成腐蚀。

Description

MOCVD设备的清洁方法
技术领域
本发明涉及半导体制造领域,特别涉及一种MOCVD设备的清洁方法。
背景技术
目前,金属有机化合物化学气相沉积(MOCVD)工艺是一种常见的用于形成第III族元素和第V族元素化合物的工艺。MOCVD工艺通常是在一个具有较高温度的MOCVD反应腔内进行,所述MOCVD反应腔内通入有包含第III族元素的第一反应气体和包含有第V族元素的第二反应气体,且所述MOCVD反应腔内的基座上具有基片,所述第一反应气体和第二反应气体在较高温度的基片表面进行反应,在所述基片表面形成第III族元素和第V族元素化合物薄膜。
但是,利用MOCVD工艺在所述基片表面形成薄膜的同时,还会在反应腔的内壁、气体喷淋头表面、基座表面形成残余沉积物。这些残余沉积物会在反应腔内产生杂质,并可能从附着处剥落下来,最终可能落在待处理的基片上,使得所述基片表面生成的薄膜产生缺陷,影响最终形成的半导体器件的电学性能。因而,在经过一段时间的MOCVD薄膜沉积工艺后,必须停止沉积工艺,利用一个反应腔清洁工艺将所述反应腔内的残余沉积物清除掉。
目前,业内常用的反应腔清洁工艺通常为“手工清洁”,具体包括:停止MOCVD工艺,将反应腔内部温度降低到一定的温度;打开反应腔,移除基片;利用刷子将附着在反应腔的内壁、气体喷淋头表面的残余沉积物从其附着表面刷下来,并移除反应腔;将附着有残余沉积物的基座从反应腔内取出,并置换上新的、干净的基座。但是利用所述清洁方法必须要停止原薄膜沉积工艺,等到反应腔内的温度下降到适合于手工清理的温度时才能打开反应腔进行清洁,且在清洁工艺完成后所述反应腔还需要升温至特定的反应温度用于进行MOCVD工艺。由于MOCVD设备在手工清洁时不能沉积薄膜,而所述降温、升温过程又需要耗费大量的时间,使得MOCVD设备的生产效率和产能不能最大化的利用。且由于所述清洁方法为手工清洁,不仅需要操作人员亲自动手清除残余沉积物,增加了操作人员的工作强度,而且每次清洁的程度都不一致,可能因为操作人员的失误使得残余沉积物未清理干净,残余沉积物最终可能会落在后续待处理的基片上,使得对应基片表面生成的薄膜产生缺陷,影响最终形成的半导体器件的电学性能。
发明内容
本发明解决的问题是提出一种MOCVD设备的清洁方法,能自动地清洁MOCVD反应腔顶部的残余沉积物,且不会对MOCVD反应腔内壁的材料造成损耗。
为解决上述问题,本发明技术方案提供了一种MOCVD设备的清洁方法,所述MOCVD设备包括反应腔、等离子体处理装置,所述清洁方法包括:
向所述反应腔通入清洁气体,所述清洁气体至少包括Ar,利用所述等离子体处理装置将所述清洁气体等离子体化;
在所述反应腔顶部形成负偏压,使得所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而除去位于所述反应腔顶部的残余沉积物。
可选的,所述清洁气体还包括He、Ne、Kr、Xe、Rn、N2其中的一种或几种。
可选的,Ar占所述清洁气体的摩尔百分比含量大于等于10%。
可选的,Ar占所述清洁气体的摩尔百分比含量大于等于30%。
可选的,所述等离子体处理装置为电容耦合等离子体处理装置或电感耦合等离子体处理装置。
可选的,所述电容耦合等离子体处理装置包括第一电极,所述第一电极位于所述反应腔顶部,且射频信号施加在所述第一电极上,在反应腔内形成高频电场,所述高频电场使所述反应腔内的清洁气体形成等离子体,且所述第一电极感应产生负的自偏压,所述负的自偏压使所述清洁气体的等离子体被加速并轰击所述反应腔顶部。
可选的,将所述射频信号施加在所述第一电极上的同时,还将负偏压施加在所述第一电极上。
可选的,所述射频信号的功率范围为1kW~5kW。
可选的,所述反应腔顶部具有气体喷淋头,所述气体喷淋头作为所述电容耦合等离子体处理装置的第一电极,所述清洁气体的等离子体轰击所述气体喷淋头表面以除去所述气体喷淋头表面的残余沉积物。
可选的,所述电感耦合等离子体处理装置包括位于所述反应腔侧壁的电感线圈,将射频信号施加在所述电感线圈上,使得反应腔内形成高频电场,所述高频电场使所述反应腔内的清洁气体形成等离子体。
可选的,将负偏压施加在所述反应腔的顶部,使得所述清洁气体的等离子体被加速并轰击所述反应腔顶部。
可选的,所述反应腔顶部具有气体喷淋头,将所述负偏压施加所述气体喷淋头上,使得所述清洁气体的等离子体轰击所述气体喷淋头表面以除去所述气体喷淋头表面的残余沉积物。
可选的,所述反应腔内具有用于承载基片的基座,向所述反应腔通入清洁气体之前,将所述基座上的基片移出反应腔。
与现有技术相比,本发明技术方案具有以下优点:
所述MOCVD设备的清洁方法通过将至少包括Ar的清洁气体形成等离子体,并使所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而除去位于所述反应腔顶部的残余沉积物。由于Ar形成的等离子体带有正电荷,当所述反应腔顶部具有负偏压时,利用所述负偏压使得所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而自动的除去位于所述反应腔顶部的残余沉积物,不需要手工清洁;且由于所述自动清洁工艺不需要反应腔降温,减少了两次MOCVD工艺之间的等待时间,使得MOCVD设备的生产效率和产能能大幅提高;且由于Ar形成的等离子体与金属不会发生化学反应,不会对反应腔内壁的材料造成腐蚀。
进一步的,当所述等离子体处理装置为电容耦合等离子体处理装置时,由于电容耦合形成的高频电场会使得第一电极感应产生负的自偏压,所述负的自偏压使所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而除去所述反应腔顶部表面的残余沉积物。由于通过调整射频信号的功率和频率可调整所述自偏压的大小,不需要在第一电极上施加偏压,降低了MOCVD设备的复杂度。
附图说明
图1是本发明实施例的MOCVD设备的清洁方法的流程示意图;
图2为本发明实施例的实施所述清洁方法的一种MOCVD设备的结构示意图;
图3为本发明实施例的实施所述清洁方法的另一种MOCVD设备的结构示意图;
图4为本发明实施例的实施所述清洁方法的另一种MOCVD设备的结构示意图。
具体实施方式
正如背景技术中提到,由于手工清洁MOCVD反应腔内壁的残余沉积物不仅需要耗费大量的时间,使得MOCVD设备的生产效率和产能不能最大化的利用,且手工清洁每次清洁的程度都不一致,可能因为操作人员的失误使得残余沉积物未清理干净。此外,发明人发现,位于基片上方的反应腔顶部的残余沉积物最容易落在待处理的基片上,容易使得基片表面生成的薄膜产生缺陷。因此,需要一种新的MOCVD设备的清洁方法来清除MOCVD反应腔内壁,特别是能够自动的清除位于所述基片上方的反应腔顶部的残余沉积物,使得在后续工艺中不会有残余沉积物落在待处理的基片上,且清洁所耗费的时间短。
发明人经过研究,提出了一种MOCVD设备的清洁方法,所述MOCVD设备包括反应腔,所述反应腔内具有等离子体处理装置,所述清洁方法具体包括:向所述反应腔通入清洁气体,所述清洁气体至少包括Ar,利用所述等离子体处理装置将所述清洁气体等离子体化;在所述反应腔顶部形成负偏压,使得所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而除去位于所述反应腔顶部的残余沉积物。由于本发明实施例将Ar的等离子体轰击所述反应腔顶部,从而除去位于所述反应腔顶部的残余沉积物,既能自动地除去位于所述反应腔顶部的残余沉积物,又不需要打开反应腔进行清洁,没有让反应腔升温和降温的过程,与现有工艺相比节约了时间,还不会对MOCVD反应腔内壁的材料造成损耗。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施的限制。
请参考图1,为本发明实施例的MOCVD设备的清洁方法的流程示意图,具体包括:
步骤S101,利用MOCVD设备在基片上形成薄膜后,将所述MOCVD设备内的基座上的基片移出所述反应腔;
步骤S102,向所述反应腔通入清洁气体,所述清洁气体为Ar、N2两者的混合物,利用所述等离子体处理装置将所述清洁气体等离子体化;
步骤S103,在所述反应腔顶部形成负偏压,使得所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而除去位于所述反应腔顶部的残余沉积物。
具体的,执行步骤S101,利用MOCVD设备在基片上形成薄膜后,将所述MOCVD设备内的基座上的基片移出所述反应腔。
为了防止在清洁过程中从反应腔顶部轰击下来的残余沉积物落在基片上,当利用所述MOCVD设备在基片上形成薄膜后,在通入清洁气体之前,将所述MOCVD设备内的基座上的基片移出所述反应腔。
执行步骤S102,向所述反应腔通入清洁气体,所述清洁气体为Ar、N2两者的混合物,利用所述等离子体处理装置将所述清洁气体等离子体化。
在本实施例中,利用MOCVD设备的气体喷淋头将清洁气体通入到反应腔中,所述清洁气体为Ar和N2的混合物。由于现有技术的MOCVD反应腔侧壁、顶部、气体喷淋头的材料一般为铝合金、不锈钢等,所述铝合金、不锈钢很容易受到如Cl、F等元素的等离子体的腐蚀。但本发明实施例中使用的清洁气体为Ar、N2,由于Ar、N2形成的等离子体不容易与铝合金、不锈钢发生反应,因此利用所述Ar、N2作为清洁气体不会对MOCVD反应腔内壁的材料造成损耗。在其他实施例,所述清洁气体至少包括Ar,还可以包括He、Ne、Kr、Xe、Rn、N2其中的一种或几种。所述He、Ne、Kr、Xe、Rn形成的等离子体也不容易与铝合金、不锈钢发生反应,所述He、Ne、Kr、Xe、Rn作为清洁气体不会对MOCVD反应腔内壁的材料造成损耗。
其中,由于Ar的原子质量较大,轰击反应腔顶部时的动能较大,清洁效果较好,成本相对较低,当所述清洁气体为Ar和所述几种气体的混合气体时,Ar占所述清洁气体的摩尔百分比含量大于等于10%。在其他实施例中,为了到达较佳的清洁效果,Ar占所述清洁气体的摩尔百分比含量大于等于30%。
所述等离子体处理装置为电容耦合等离子体处理装置或电感耦合等离子体处理装置。在本实施例中,所述等离子体处理装置为电容耦合等离子体处理装置,包括位于所述反应腔顶部的第一电极,所述第一电极通过射频匹配器与射频供应源相连接。请参考图2,为本发明实施例的MOCVD设备的结构示意图,包括:反应腔110,所述反应腔110包括侧壁111、底部112和顶部113;位于所述反应腔110内部的一个或多个基座150,所述基座150用于承载待处理的基片(未图示);位于反应腔110侧壁或底部且与抽气泵140相连接的排气口141,利用所述排气口141将多余的气体和剥落的残余沉积物排出反应腔110;位于所述反应腔的顶部表面的气体喷淋头120,所述气体喷淋头120用于向反应腔110输送反应气体或清洁气体,且所述气体喷淋头120作为所述电容耦合等离子体处理装置的第一电极,射频供应源122通过射频匹配器121与所述气体喷淋头120相连接。当射频供应源122产生的射频信号施加在所述气体喷淋头120上,在所述反应腔110内形成高频电场,所述高频电场使所述反应腔110内的清洁气体形成等离子体。
在另一实施例中,请参考图3,当气体喷淋头220位于所述MOCVD反应腔的侧壁211上时,由于位于所述反应腔顶部的残余沉积物最容易落在待处理的基片上,因此,需要利用清洁气体的等离子体将位于反应腔顶部的残余沉积物除去。在本实施例中,所述反应腔顶部213为电容耦合等离子体处理装置的第一电极,所述反应腔顶部213的材料为导电材料,如铝合金、不锈钢等。所述反应腔顶部213通过射频匹配器221与射频供应源222相连接。当射频供应源222产生的射频信号施加在所述反应腔顶部213上,在所述反应腔210内形成高频电场,所述高频电场使所述反应腔210内的清洁气体形成等离子体。
在另一实施例中,所述等离子体处理装置为电感耦合等离子体处理装置。请参考图4,所述电感耦合等离子体处理装置包括位于所述反应腔侧壁311的电感线圈330,所述电感线圈330通过射频匹配器331与射频供应源332相连接。且所述MOCVD反应腔顶部313的气体喷淋头320与偏压源325电连接。在其他实施例中,当所述MOCVD反应腔的气体喷淋头位于所述反应腔侧壁上时,所述MOCVD反应腔顶部与偏压源电连接。当射频供应源332产生的射频信号施加在所述电感线圈330上,在所述反应腔310内形成高频电场,所述高频电场使所述反应腔310内的清洁气体形成等离子。
执行步骤S103,在所述反应腔顶部形成负偏压,使得所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而除去位于所述反应腔顶部的残余沉积物。
在本实施例中,请参考图2,由于所述等离子体处理装置为电容耦合等离子体处理装置,当射频供应源122产生的射频信号施加在所述气体喷淋头120上,等离子体电容耦合会使得与射频供应源122相连接的气体喷淋头120上感应产生负的自偏压。由于所述Ar和N2在被等离子体化后形成的等离子体都带有正电荷,利用所述负的自偏压,可以将所述反应腔内的清洁气体的等离子体加速后轰击所述反应腔顶部113,从而除去位于所述气体喷淋头120表面的残余沉积物。在其他实施例中,当所述清洁气体包括He、Ne、Kr、Xe、Rn时,由于所述He、Ne、Kr、Xe、Rn在被等离子体化后形成的等离子体也都带有正电荷,利用所述负的自偏压,可以将所述反应腔内的清洁气体的等离子体加速后轰击所述反应腔顶部,从而除去位于所述气体喷淋头表面的残余沉积物。且通过控制所述射频供应源122产生的射频信号的频率和功率,可以控制所述第一电极上产生的自偏压的大小,从而可以调节所述清洁气体的等离子体轰击到气体喷淋头120表面时的能量的大小,从而可以控制对所述残余沉积物的清洁程度和清洁时间。所述射频供应源122的功率范围为1kW~5kW。所述射频供应源122的频率大于或等于13MHZ,例如13.56MHZ、27MHZ、60MHZ、100MHZ、120MHZ等。
在其他实施例中,所述气体喷淋头120还可以与一偏压源(未图示)电连接。所述偏压源给所述气体喷淋头120施加一个负偏压,所述负偏压可以与射频信号产生的自偏压一起共同调节所述清洁气体的等离子体轰击到气体喷淋头120表面时的能量的大小。
在另一实施例中,请参考图3,当射频供应源222产生的射频信号施加在所述反应腔顶部213上,等离子体电容耦合会使得与射频供应源222相连接的反应腔顶部213上感应产生负的自偏压。由于所述Ar和N2在被等离子体化后形成的等离子体都带有正电荷,利用所述负的自偏压,可以将所述反应腔内的清洁气体的等离子体加速后轰击所述反应腔顶部,从而除去位于所述反应腔顶部213表面的残余沉积物。在其他实施例中,当所述清洁气体包括He、Ne、Kr、Xe、Rn时,由于所述He、Ne、Kr、Xe、Rn在被等离子体化后形成的等离子体也都带有正电荷,利用所述负的自偏压,可以将所述反应腔内的清洁气体的等离子体加速后轰击所述反应腔顶部,从而除去位于所述气体喷淋头表面的残余沉积物。且通过控制所述射频供应源222产生的射频信号的频率和功率,可以控制所述反应腔顶部213产生的自偏压的大小,从而可以调节所述清洁气体的等离子体轰击到反应腔顶部213表面时的能量的大小,从而可以控制对所述残余沉积物的清洁程度和清洁时间。所述射频供应源222的功率范围为1kW~5kW。所述射频供应源222的频率大于或等于13MHZ,例如13.56MHZ、27MHZ、60MHZ、100MHZ、120MHZ等。
在另一实施例中,请参考图4,由于利用电感耦合等离子体处理装置已将清洁气体等离子体化,利用所述偏压源325,控制所述施加在MOCVD反应腔顶部313的气体喷淋头320上的负偏压。由于所述Ar和N2在被等离子体化后形成的等离子体都带有正电荷,利用所述负偏压,可以将所述反应腔内的清洁气体的等离子体加速后轰击所述反应腔顶部313,从而除去位于所述反应腔顶部313的气体喷淋头320表面的残余沉积物。在其他实施例中,当所述清洁气体包括He、Ne、Kr、Xe、Rn时,由于所述He、Ne、Kr、Xe、Rn在被等离子体化后形成的等离子体也都带有正电荷,利用所述负的自偏压,可以将所述反应腔内的清洁气体的等离子体加速后轰击所述反应腔顶部,从而除去位于所述气体喷淋头表面的残余沉积物。
此外,在利用清洁气体的等离子体轰击所述反应腔顶部的同时,利用抽气泵将多余的清洁气体和剥落的残余沉积物从排气口排出,从而能自动地清除所述反应腔内剥落的残余沉积物。
综上,本发明实施例的清洁方法通过将至少包括Ar的清洁气体形成等离子体,并使所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而除去位于所述反应腔顶部的残余沉积物。由于Ar的等离子体带有正电荷,当所述反应腔顶部具有负偏压时,利用所述负偏压使得所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而自动的除去位于所述反应腔顶部的残余沉积物,不需要手工清洁;且由于所述自动清洁工艺不需要反应腔降温,减少了两次MOCVD工艺之间的等待时间,使得MOCVD设备的生产效率和产能能大幅提高;且由于Ar的等离子体与金属不会发生化学反应,不会对反应腔内壁的材料造成腐蚀。
进一步的,当所述等离子体处理装置为电容耦合等离子体处理装置时,由于电容耦合形成的高频电场会使得第一电极感应产生负的自偏压,所述负的自偏压使所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而除去所述反应腔顶部表面的残余沉积物。由于通过调整射频信号的功率和频率可调整所述自偏压的大小,不需要在第一电极上施加偏压,降低了MOCVD设备的复杂度。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (13)

1.一种MOCVD设备的清洁方法,所述MOCVD设备包括反应腔、等离子体处理装置,其特征在于,包括:
向所述反应腔通入清洁气体,所述清洁气体至少包括Ar,利用所述等离子体处理装置将所述清洁气体等离子体化;
在所述反应腔顶部形成负偏压,使得所述清洁气体的等离子体被加速并轰击所述反应腔顶部,从而除去位于所述反应腔顶部的残余沉积物。
2.如权利要求1所述的MOCVD设备的清洁方法,其特征在于,所述清洁气体还包括He、Ne、Kr、Xe、Rn、N2其中的一种或几种。
3.如权利要求2所述的MOCVD设备的清洁方法,其特征在于,Ar占所述清洁气体的摩尔百分比含量大于等于10%。
4.如权利要求2所述的MOCVD设备的清洁方法,其特征在于,Ar占所述清洁气体的摩尔百分比含量大于等于30%。
5.如权利要求1所述的MOCVD设备的清洁方法,其特征在于,所述等离子体处理装置为电容耦合等离子体处理装置或电感耦合等离子体处理装置。
6.如权利要求5所述的MOCVD设备的清洁方法,其特征在于,所述电容耦合等离子体处理装置包括第一电极,所述第一电极位于所述反应腔顶部,且射频信号施加在所述第一电极上,在反应腔内形成高频电场,所述高频电场使所述反应腔内的清洁气体形成等离子体,且所述第一电极感应产生负的自偏压,所述负的自偏压使所述清洁气体的等离子体被加速并轰击所述反应腔顶部。
7.如权利要求6所述的MOCVD设备的清洁方法,其特征在于,将所述射频信号施加在所述第一电极上的同时,还将负偏压施加在所述第一电极上。
8.如权利要求6所述的MOCVD设备的清洁方法,其特征在于,所述射频信号的功率范围为1kW~5kW。
9.如权利要求6所述的MOCVD设备的清洁方法,其特征在于,所述反应腔顶部具有气体喷淋头,所述气体喷淋头作为所述电容耦合等离子体处理装置的第一电极,所述清洁气体的等离子体轰击所述气体喷淋头表面以除去所述气体喷淋头表面的残余沉积物。
10.如权利要求5所述的MOCVD设备的清洁方法,其特征在于,所述电感耦合等离子体处理装置包括位于所述反应腔侧壁的电感线圈,将射频信号施加在所述电感线圈上,使得反应腔内形成高频电场,所述高频电场使所述反应腔内的清洁气体形成等离子体。
11.如权利要求10所述的MOCVD设备的清洁方法,其特征在于,将负偏压施加在所述反应腔的顶部,使得所述清洁气体的等离子体被加速并轰击所述反应腔顶部。
12.如权利要求10所述的MOCVD设备的清洁方法,其特征在于,所述反应腔顶部具有气体喷淋头,将所述负偏压施加所述气体喷淋头上,使得所述清洁气体的等离子体轰击所述气体喷淋头表面以除去所述气体喷淋头表面的残余沉积物。
13.如权利要求1所述的MOCVD设备的清洁方法,其特征在于,所述反应腔内具有用于承载基片的基座,向所述反应腔通入清洁气体之前,将所述基座上的基片移出反应腔。
CN201210077038XA 2012-03-21 2012-03-21 Mocvd设备的清洁方法 Pending CN102586753A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210077038XA CN102586753A (zh) 2012-03-21 2012-03-21 Mocvd设备的清洁方法
TW101144503A TW201340174A (zh) 2012-03-21 2012-11-28 一種mocvd設備的清潔方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210077038XA CN102586753A (zh) 2012-03-21 2012-03-21 Mocvd设备的清洁方法

Publications (1)

Publication Number Publication Date
CN102586753A true CN102586753A (zh) 2012-07-18

Family

ID=46475969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210077038XA Pending CN102586753A (zh) 2012-03-21 2012-03-21 Mocvd设备的清洁方法

Country Status (2)

Country Link
CN (1) CN102586753A (zh)
TW (1) TW201340174A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899636A (zh) * 2012-09-26 2013-01-30 中微半导体设备(上海)有限公司 一种原位清洁mocvd反应腔室的方法
CN102899635A (zh) * 2012-09-26 2013-01-30 中微半导体设备(上海)有限公司 一种原位清洁mocvd反应腔室的方法
CN105374655A (zh) * 2014-08-25 2016-03-02 汉辰科技股份有限公司 离子布植方法与离子布植机
CN105986244A (zh) * 2015-02-16 2016-10-05 中微半导体设备(上海)有限公司 一种化学气相沉积装置及其清洁方法
WO2017035926A1 (zh) * 2015-09-01 2017-03-09 沈阳拓荆科技有限公司 一种射频等离子体设备匹配器
CN106609358A (zh) * 2015-10-27 2017-05-03 中微半导体设备(上海)有限公司 一种化学气相沉积装置及其清洁方法
WO2021208680A1 (zh) * 2020-04-13 2021-10-21 长鑫存储技术有限公司 半导体制造方法及多片式沉积设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619265A1 (en) * 2004-07-15 2006-01-25 Sub-One Technology, Inc. Method and system for coating internal surfaces of prefabricated process piping in the field
CN102011097A (zh) * 2010-12-17 2011-04-13 中微半导体设备(上海)有限公司 一种清除第ⅲ族元素和第v族元素化合物沉积物残余的方法
CN102108495A (zh) * 2010-12-17 2011-06-29 中微半导体设备(上海)有限公司 一种第ⅲ族元素和第v族元素化合物薄膜生长反应腔的清洁方法
CN102117733A (zh) * 2009-11-18 2011-07-06 东京毅力科创株式会社 基板处理装置及其清洁方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529274A (ja) * 1991-07-25 1993-02-05 Mitsubishi Electric Corp 半導体製造装置およびそのクリーニング方法
US5983906A (en) * 1997-01-24 1999-11-16 Applied Materials, Inc. Methods and apparatus for a cleaning process in a high temperature, corrosive, plasma environment
JP4355046B2 (ja) * 1999-03-17 2009-10-28 キヤノンアネルバ株式会社 クリーニング方法及び基板処理装置
JP4860336B2 (ja) * 2006-04-24 2012-01-25 バキュームプロダクツ株式会社 真空処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619265A1 (en) * 2004-07-15 2006-01-25 Sub-One Technology, Inc. Method and system for coating internal surfaces of prefabricated process piping in the field
CN102117733A (zh) * 2009-11-18 2011-07-06 东京毅力科创株式会社 基板处理装置及其清洁方法
CN102011097A (zh) * 2010-12-17 2011-04-13 中微半导体设备(上海)有限公司 一种清除第ⅲ族元素和第v族元素化合物沉积物残余的方法
CN102108495A (zh) * 2010-12-17 2011-06-29 中微半导体设备(上海)有限公司 一种第ⅲ族元素和第v族元素化合物薄膜生长反应腔的清洁方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899636A (zh) * 2012-09-26 2013-01-30 中微半导体设备(上海)有限公司 一种原位清洁mocvd反应腔室的方法
CN102899635A (zh) * 2012-09-26 2013-01-30 中微半导体设备(上海)有限公司 一种原位清洁mocvd反应腔室的方法
CN102899635B (zh) * 2012-09-26 2015-12-02 中微半导体设备(上海)有限公司 一种原位清洁mocvd反应腔室的方法
CN102899636B (zh) * 2012-09-26 2015-12-09 中微半导体设备(上海)有限公司 一种原位清洁mocvd反应腔室的方法
TWI614366B (zh) * 2012-09-26 2018-02-11 原位清潔mocvd反應腔室的方法
CN105374655A (zh) * 2014-08-25 2016-03-02 汉辰科技股份有限公司 离子布植方法与离子布植机
CN105986244A (zh) * 2015-02-16 2016-10-05 中微半导体设备(上海)有限公司 一种化学气相沉积装置及其清洁方法
CN105986244B (zh) * 2015-02-16 2019-01-01 中微半导体设备(上海)有限公司 一种化学气相沉积装置及其清洁方法
WO2017035926A1 (zh) * 2015-09-01 2017-03-09 沈阳拓荆科技有限公司 一种射频等离子体设备匹配器
CN106609358A (zh) * 2015-10-27 2017-05-03 中微半导体设备(上海)有限公司 一种化学气相沉积装置及其清洁方法
CN106609358B (zh) * 2015-10-27 2018-12-18 中微半导体设备(上海)有限公司 一种化学气相沉积装置及其清洁方法
WO2021208680A1 (zh) * 2020-04-13 2021-10-21 长鑫存储技术有限公司 半导体制造方法及多片式沉积设备

Also Published As

Publication number Publication date
TWI502631B (zh) 2015-10-01
TW201340174A (zh) 2013-10-01

Similar Documents

Publication Publication Date Title
CN102586753A (zh) Mocvd设备的清洁方法
US9034198B2 (en) Plasma etching method
KR101513752B1 (ko) 기판 프로세싱을 위한 방법 및 장치
US9892951B2 (en) Method of controlling adherence of microparticles to substrate to be processed, and processing apparatus
US10622193B2 (en) Plasma etching apparatus
CN106067417A (zh) 蚀刻有机膜的方法
CN104576453A (zh) 等离子体处理方法和等离子体处理装置
CN110534403B (zh) 硅衬底上沉积氮化铝薄膜的方法和硅片
EP3580369A1 (en) Paste method to reduce defects in dielectric sputtering
CN1777977A (zh) 成膜方法
JP3983557B2 (ja) 誘導結合型プラズマ処理装置
CN102615068A (zh) Mocvd设备的清洁方法
CN202717836U (zh) 预清洗工艺腔室
JP2011238747A (ja) プラズマcvd成膜装置および高周波電圧の印加方法
CN210683938U (zh) 异质结太阳能电池在线连续镀膜设备
TWI387398B (zh) 製造真空電漿處理之工件的方法與真空電漿處理工件的系統
CN102446833A (zh) 一种降低双大马士革氮化硅工艺颗粒的处理方法
KR20140001023A (ko) 반도체 제조장비용 ain 히터의 클리닝 장치 및 클리닝 방법
EP1039501A2 (en) Apparatus and method for production of electronic devices
JP5896419B2 (ja) プラズマ処理装置およびそのクリーニング方法
KR20240014442A (ko) 에칭 방법 및 플라즈마 처리 장치
JP2001160537A (ja) 電子デバイスの製造装置および電子デバイスの製造方法
JP2022033440A (ja) スパッタリングによる窒化アルミニウム膜の製造方法
US20180350571A1 (en) Selective in-situ cleaning of high-k films from processing chamber using reactive gas precursor
KR100724215B1 (ko) Pecvd teos 산화막 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120718