WO2021208680A1 - 半导体制造方法及多片式沉积设备 - Google Patents

半导体制造方法及多片式沉积设备 Download PDF

Info

Publication number
WO2021208680A1
WO2021208680A1 PCT/CN2021/082445 CN2021082445W WO2021208680A1 WO 2021208680 A1 WO2021208680 A1 WO 2021208680A1 CN 2021082445 W CN2021082445 W CN 2021082445W WO 2021208680 A1 WO2021208680 A1 WO 2021208680A1
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
chip
gas
round
equipment
Prior art date
Application number
PCT/CN2021/082445
Other languages
English (en)
French (fr)
Inventor
曾祥栋
段贤坤
任若晨
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/472,825 priority Critical patent/US20210407796A1/en
Publication of WO2021208680A1 publication Critical patent/WO2021208680A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45593Recirculation of reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67213Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one ion or electron beam chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Definitions

  • This application relates to the field of semiconductor manufacturing methods, and in particular to a semiconductor manufacturing method and multi-chip deposition equipment.
  • the volume of equipment used for substrate deposition is gradually expanding.
  • Large-volume deposition equipment that is, multi-chip deposition equipment, can perform deposition processes on a large number of substrates at a time, and its deposition efficiency is higher.
  • a radio frequency compensation function is usually used to shorten the generation time of radio frequency in a multi-chip deposition device.
  • the embodiments of the present application provide a semiconductor manufacturing method and a multi-chip deposition device.
  • the auxiliary gas is passed through the multi-chip deposition device during the first round of the deposition process and the second round of the deposition process, and converted into The plasma method increases the amount of residual charges in the multi-chip deposition equipment, thereby shortening the generation time of the radio frequency required by the deposition process, and thereby improving the deposition efficiency of the substrate.
  • an embodiment of the present application provides a semiconductor manufacturing method, which is applied to a multi-chip deposition device, including: performing a first round of deposition process on a substrate in the multi-chip deposition device; completing the first round of deposition After the process, the substrate is taken out; the auxiliary gas is passed into the multi-chip deposition equipment, and the auxiliary gas is used to form plasma; the substrate to be deposited is placed in the multi-chip deposition equipment; the lining in the multi-chip deposition equipment At the end of the second round of deposition process.
  • the multi-chip deposition equipment performs one round of the deposition process, and the number of substrates that need to be transferred is large. Even if two adjacent rounds of the deposition process are performed continuously, the waiting time (such as the transfer time of the silicon wafer) , Pressure change time and gas purge processing time) is still very long, that is, the amount of residual charge remaining in the multi-chip deposition equipment after the RF power supply is turned off in the first round of deposition process is very small, and the second round of deposition process takes a long time. Generate radio frequency (due to the long waiting time, the residual charge in the multi-chip deposition equipment is too small, even through the radio frequency compensation function, the radio frequency generation time is very long).
  • the auxiliary gas is passed into the plasma during the waiting time interval to increase the amount of residual charges in the multi-chip deposition equipment.
  • the multi-chip deposition equipment The internal residual charge is large, and the radio frequency required for the deposition process can be quickly generated, which greatly speeds up the radio frequency generation time, thereby improving the deposition efficiency of the substrate.
  • the first round of the deposition process includes: passing the first precursor into the multi-chip deposition equipment within the second preset time, and turning on the radio frequency power supply to ionize the first precursor to form plasma; Purge gas is introduced into the deposition equipment for purging treatment.
  • the second round of deposition process includes: in the third preset time, pass the second precursor into the multi-chip deposition equipment, and turn on the radio frequency power supply to ionize the second precursor to form plasma; Purge gas is introduced into the deposition equipment for purging treatment.
  • passing auxiliary gas into the multi-chip deposition equipment and forming plasma with the auxiliary gas includes: passing auxiliary gas into the multi-chip deposition equipment; turning on the radio frequency power within the first preset time to ionize the auxiliary gas The gas forms a plasma.
  • the multi-chip deposition device is also used to perform multiple rounds of the deposition process;
  • An auxiliary gas is introduced into the multi-chip deposition equipment within a set time, and the auxiliary gas is used to form a plasma.
  • the auxiliary gas includes at least one of the following gases: oxygen and ozone.
  • the method further includes: The purge gas is used for purge processing.
  • the multi-chip deposition equipment is purged before the second round of deposition process.
  • the time of the purge treatment is greater than 5 seconds and less than 1 minute.
  • the pressure of the multi-chip deposition equipment is less than 1 torr; when the substrate is put into or taken out of the multi-chip deposition equipment, the pressure in the multi-chip deposition equipment is stronger than 760 torr. .
  • the embodiment of the present application also provides a multi-chip deposition equipment, which is applied to the above semiconductor manufacturing method, and includes: an air inlet pipe for passing gas into the deposition equipment in a multi-chip type, wherein the gas includes a purge gas, Auxiliary gas or precursor; exhaust pipe, used to exhaust the gas in the multi-chip deposition equipment; radio frequency power supply, used to provide radio frequency for the multi-chip deposition equipment; controller, used to complete the first step in the multi-chip deposition equipment After one round of the deposition process and before the start of the second round of the deposition process, the air inlet pipe is controlled to pass auxiliary gas into the multi-chip deposition device within a first preset time and the radio frequency power supply is turned on.
  • an air inlet pipe for passing gas into the deposition equipment in a multi-chip type, wherein the gas includes a purge gas, Auxiliary gas or precursor
  • exhaust pipe used to exhaust the gas in the multi-chip deposition equipment
  • radio frequency power supply used to provide radio frequency for the multi-
  • the present application passes through the auxiliary gas during the waiting time interval of the two rounds of deposition process to convert it into plasma, thereby increasing the number of residual charges in the multi-chip deposition equipment.
  • the number of residual charges in the multi-chip deposition equipment is large, and the radio frequency required for the deposition process can be quickly generated, which greatly accelerates the radio frequency generation time, thereby improving the deposition efficiency of the substrate.
  • controller further includes a purge module, which is used to pass purge gas into the multi-chip deposition equipment for purging treatment after the first preset time and before the start of the second round of the deposition process.
  • the air inlet pipe specifically includes: a first air inlet pipe, a third air inlet pipe, and a fourth air inlet pipe; wherein the first air inlet pipe is used to pass auxiliary gas into the multi-chip deposition equipment; the second air inlet pipe The gas pipeline is used to pass the precursor into the multi-plate deposition equipment; the third gas inlet pipe is used to pass the purge gas into the multi-plate deposition equipment.
  • the multi-sheet deposition equipment further includes: a detection device for detecting the pressure of the multi-sheet deposition equipment; and a pressure adjusting device for adjusting the pressure of the multi-sheet deposition equipment.
  • the embodiment of the application improves the process flow of the deposition process of the multi-chip deposition equipment, by passing the auxiliary gas in the time interval between the first round of the deposition process and the second round of the deposition process in the multi-chip deposition equipment. It is converted into a plasma method to increase the amount of residual charges in the multi-chip deposition equipment, thereby shortening the generation time of the radio frequency required for the deposition process, and thereby improving the deposition efficiency of the substrate.
  • FIG. 1 is a flowchart of a semiconductor manufacturing method related to an embodiment of this application
  • FIG. 2 is a schematic diagram of a multi-chip deposition device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of shortening the radio frequency generation time involved in an embodiment of the application
  • FIG. 4 is a schematic diagram of a substrate involved in an embodiment of the application being added to a multi-chip deposition device
  • FIG. 5 is a schematic diagram of a state of a multi-chip deposition device corresponding to no pre-processing step in a semiconductor manufacturing method in an embodiment of the application;
  • FIG. 6 is a schematic diagram of the state of the multi-chip deposition equipment corresponding to the preprocessing step in the semiconductor manufacturing method in an embodiment of the application;
  • FIG. 7 is a flowchart of a semiconductor manufacturing method according to another embodiment of the application.
  • the equipment used in substrate deposition is divided into single-chip deposition equipment and multi-chip deposition equipment.
  • multi-chip deposition equipment can perform deposition processes on a larger number of substrates at a time.
  • the deposition efficiency is higher.
  • a radio frequency compensation function is usually used to shorten the generation time of radio frequency in a multi-chip deposition device.
  • the design of the chip deposition equipment (each time the deposition process needs to be transported >100 substrates), even if each batch of processes are executed continuously, the interval time (substrate transport + pressure change in non-process main steps + gas after main process steps) The purge treatment) is more than 60 minutes, and the interval time of the monolithic deposition equipment is generally less than 7 minutes. As a result, the amount of residual charge in the multi-chip deposition equipment is greatly reduced. Even if the radio frequency compensation function is used to shorten the generation time of the radio frequency, the generation time of the radio frequency is still very long, which seriously affects the deposition efficiency of the multi-chip deposition equipment, thereby reducing the lining. The deposition efficiency of the bottom.
  • the embodiments of the present application provide a semiconductor manufacturing method, which is applied to a multi-chip deposition device, including: performing a first round of deposition process on a substrate in the multi-chip deposition device; completing the first round of deposition process Then take out the substrate; pass the auxiliary gas into the multi-chip deposition equipment, and use the auxiliary gas to form plasma; put the substrate to be deposited into the multi-chip deposition equipment; for the substrate in the multi-chip deposition equipment Carry out the second round of deposition process.
  • FIG. 1 for the specific flow chart
  • FIG. 2 for the equipment diagram of the multi-chip deposition equipment
  • Step a01 providing a multi-chip deposition device for the deposition process
  • the multi-chip deposition device 100 includes:
  • the reaction chamber 101 is used for placing a substrate placed in a multi-chip deposition device, and for performing a deposition process on a plurality of substrates in the multi-chip deposition device. Since the substrate undergoes the deposition process in the reaction chamber 101, those skilled in the art will know that the gas subsequently introduced into the multi-chip deposition apparatus 100 is actually introduced into the reaction chamber 101.
  • the substrate includes: wafers, silicon wafers, and other raw materials used for the deposition process. Specifically, when the substrate is located in the reaction chamber 101 and the radio frequency power is turned on, the deposition process is performed on the substrate located in the reaction chamber 101.
  • the container of the multi-chip deposition device 100 is larger, and its reaction chamber 101 can accommodate more substrates.
  • the multi-chip deposition device disclosed in this embodiment can not only be applied to depositing multiple substrates, but it is clear to those skilled in the art that the multi-chip deposition device can also be applied to depositing a single substrate.
  • the multi-chip deposition apparatus disclosed in the embodiment does not constitute a limitation corresponding to the number of substrates used for it.
  • the gas inlet pipe 102 is used to pass gas into the multi-chip deposition device 100.
  • the gas introduced through the gas inlet pipe 102 includes the precursors required for the deposition process (including the first precursor required for the first round of the deposition process and the second precursor required for the second round of the deposition process), the first round of deposition
  • the auxiliary gas and the purge gas used for purging between the process and the second round of deposition process wherein, the purge gas includes at least one of N2 or inert gas; the precursor is required to be deposited on the substrate Gaseous material; the auxiliary gas includes at least one of oxygen or ozone.
  • the intake duct 102 includes: a first intake duct 112, a second intake duct 132, and a third intake duct 142.
  • the first gas inlet pipe 112 is used to pass auxiliary gas into the multi-chip deposition apparatus 100; when the multi-chip deposition apparatus 100 During the deposition process, the second gas inlet pipe 132 is used to pass the precursor into the multi-plate deposition device 100; the third gas inlet pipe 142 is used to pass purge gas into the multi-plate deposition device 100.
  • the air inlet duct 102 may further include a fourth air inlet duct 122, which is used to pass in protective gas for maintaining the multi-chip deposition apparatus 100.
  • the shielding gas is N2 or an inert gas; in other embodiments, the shielding gas may also be a cleaning gas for cleaning multi-chip deposition equipment, such as hydrogen fluoride.
  • the exhaust pipe 103 is used to exhaust the gas in the multi-chip deposition apparatus 100.
  • a radio frequency power supply (not shown in the figure) is used to provide radio frequency for the multi-chip deposition apparatus 100.
  • the controller (not shown in the figure) is used to control the air inlet pipe 102 to the multiple wafers within a first preset time after the first round of the deposition process of the multi-sheet deposition apparatus 100 is completed and before the second round of the deposition process starts.
  • the auxiliary gas is introduced into the deposition apparatus 100 and the radio frequency power is turned on. Wherein, in the first preset time, the auxiliary gas is converted into plasma, thereby increasing the residual charge of the reaction chamber 101, thereby shortening the time taken for subsequent radio frequency generation.
  • the X-axis represents the turn-on time of the RF power supply
  • the Y-axis represents the amount of charge in the reaction chamber. It is assumed that when the amount of charge in the reaction chamber reaches e0, the radio frequency required for the deposition process is generated, and the precursor is ionized to form a plasma for deposition on the substrate.
  • Curve 201 indicates that when the initial charge of the reaction chamber is 0 (that is, the initial point of the curve is 0), after turning on the radio frequency power, after time t2 (abscissa of point A in curve 201), the charge in the reaction chamber reaches e0 At this time, the time t2 has elapsed since the radio frequency power was turned on to the radio frequency generation.
  • Curve 202 indicates that when the initial charge of the reaction chamber is e1 (that is, the initial point of the curve is C), after turning on the RF power, after time t1 (abscissa of point B of curve 202), the charge in the reaction chamber reaches e0 At this time, the time t1 has elapsed since the radio frequency power was turned on to the radio frequency generation. Comparing the curve 201 and the curve 202, it can be seen that when the amount of initial charge in the reaction chamber is higher, the time from turning on the radio frequency power supply to radio frequency generation is shorter.
  • step a02 is a deposition process step, and step a02 specifically includes: step a12, step a22, and step a32, which are specifically as follows:
  • step a12 the substrate is placed in a multi-chip deposition equipment.
  • a plurality of substrates 110 are stacked in a carrier device 120, and the substrate 110 is added to the multi-chip deposition apparatus 100 through the carrier device 120.
  • the multi-chip deposition apparatus 100 deposits multiple substrates 110 in one round of the deposition process. This results in that even if two rounds of the deposition process are performed continuously, the transfer and stacking of the substrate 110 takes a lot of time, resulting in multiple substrates.
  • the residual charge in the reaction chamber of the deposition device 100 is lost, that is, at the beginning of the next round of deposition process, the initial charge in the reaction chamber of the multi-chip deposition device 100 is small, which delays the time of radio frequency generation, thereby affecting the production of substrate products. out.
  • the pressure in the multi-chip deposition apparatus 100 is greater than or equal to 760 torr.
  • step a22 a deposition process is performed on the substrate.
  • the first round of deposition process is performed on the substrate. It should be noted that the first round of deposition process performed by the multi-chip deposition device 100 on the substrate 110 does not specifically refer to the first round of deposition process after the substrate 110 is placed in the multi-chip deposition device 100, but a multi-chip deposition process. Any round of deposition process performed by the deposition apparatus 100 on the substrate 110 can be regarded as the first round of deposition process.
  • the first precursor is introduced into the reaction chamber 101, and the radio frequency power is turned on to ionize the first precursor in the reaction chamber 101 to form a plasma.
  • the radio frequency required for the deposition process is generated in the reaction chamber 101.
  • the radio frequency power supply is turned off, the deposited substrate is taken out, and a purge gas is introduced into the reaction chamber 101 for purge processing.
  • the second preset time refers to the time required to complete the first round of deposition process of the substrate in the reaction chamber 101 when the radio frequency is turned on.
  • the pressure of the reaction chamber 101 is less than 1 torr.
  • Step a32 purging treatment.
  • a purge gas is passed into the reaction chamber 101 for purge processing.
  • a purge gas By passing a purge gas into the reaction chamber 101, the gas generated by the deposition process in the reaction chamber 101 is replaced, and the remaining gas is prevented from affecting the next round of the deposition process.
  • step a32 After the execution of step a32 is completed, that is, the execution of step a02 is completed, the multi-chip deposition apparatus 100 completes the first round of deposition process steps; before the multi-chip deposition apparatus 100 performs the second round of deposition process steps, that is, the multi-chip deposition apparatus 100 performs Between the two rounds of deposition process steps, it also includes:
  • Step a03 passing auxiliary gas into the multi-chip deposition equipment, and forming plasma with the auxiliary gas.
  • ionizing auxiliary gas to form plasma is to increase the amount of residual charges in the multi-chip deposition equipment.
  • the plasma will also be affected accordingly. Generate residual charge, by increasing the total amount of residual charge in the multi-chip deposition device, the rate of radio frequency generation in the multi-chip deposition device can be accelerated.
  • step a03 If step a03 is not performed, the state corresponding to each step of the reaction chamber 101 is shown in the flow chart of FIG. 5, and the details are as follows:
  • Figure (a1) shows that the multi-chip deposition equipment has not yet started the deposition process, there is no residual charge and plasma in the reaction chamber 101, the RF power supply is turned off, and the electrode 302 is in a non-working state.
  • Figure (a2) shows that when the multi-chip deposition equipment is undergoing the deposition process, the radio frequency power is turned on at this time, and the radio frequency power is applied to the reaction chamber 101 through the electrode 302, and the reaction chamber 101 is full of precursors 301 in the plasma state.
  • the multi-chip deposition equipment Since the multi-chip deposition equipment performs one round of deposition process, the number of substrates that need to be transferred is large, even if two adjacent rounds of deposition process are performed continuously, its waiting time (silicon wafer transfer time, pressure change time and gas purge processing time) It is also very long, that is, the amount of residual charge remaining in the reaction chamber 101 of the multi-chip deposition device after the radio frequency power is turned off in the first round of the deposition process is very small. That is, in the process from the radio frequency power off shown in Figure (a3) to the radio frequency power on shown in Figure (a2), the equipment of the multi-chip deposition equipment is too large, which will cause the change from Figure (a3) to Figure (a4), and then To the middle process of picture (a2).
  • step a03 the state corresponding to each step of the reaction chamber 101 is as follows with reference to the flow chart of FIG. 6:
  • the auxiliary gas is introduced into the multi-chip deposition equipment.
  • This embodiment uses oxygen as an example for detailed description.
  • Figure (b4) shows that oxygen is introduced into the reaction chamber 101 and the radio frequency power is turned on to ionize the oxygen to form an oxygen plasma 305. After a preset time, turn off the RF power supply. At this time, the residual charge 303 in the reaction chamber 101 does not decrease, forming a state of the reaction chamber 101 similar to Figure (b3) and Figure (b5). In the next round of deposition process, due to The amount of residual charge 303 in the reaction chamber 101 is relatively large, and radio frequency can be generated relatively easily.
  • step a03 After the execution of step a03 is completed, proceed to step a02.
  • the introduced precursor is the second precursor, and the second round of deposition process is performed on the substrate in the multi-chip deposition apparatus 100, where the third preset time is It refers to the time it takes to turn on the radio frequency to complete the first round of the deposition process of the substrate in the reaction chamber 101.
  • first precursor and the second precursor may be the same or different. If the first precursor and the second precursor are the same, it means that the first and second rounds of deposition process are deposited on the substrate The same material; if the first precursor is different from the second precursor, it means that the first round of deposition process and the second round of deposition process deposit different materials on the substrate.
  • this embodiment does not limit the relationship between the second preset time (used to execute the first round of deposition process) and the third preset time (used to execute the second round of deposition process), and those skilled in the art should be clear.
  • the setting of the second preset time and the third preset time are specifically set according to the difference of the deposition precursor.
  • the first round of deposition process and the second round of deposition process may be multiple deposition processes performed on the same batch of substrates or deposition processes performed on different batches of substrates.
  • the multi-chip deposition apparatus 100 is also used to perform multiple rounds of deposition process; Between two rounds of the deposition process performed by the chip deposition apparatus 100, an auxiliary gas is introduced into the reaction chamber 101 of the multi-chip deposition apparatus 100 and the radio frequency power is turned on to ionize the auxiliary gas to form plasma; after a first preset time, Turn off the RF power supply.
  • first round of deposition process and the second round of deposition process introduced in this embodiment do not refer to the first round of deposition process and the second round of deposition process; it should be clear to those skilled in the art that multiple wafers In the deposition apparatus 100, any round of the deposition process during the deposition process can be used as the first round of deposition process, and the next round of deposition process is used as the second round of deposition process, as long as it involves adding a pretreatment step between the two rounds of deposition process. All should fall within the scope of protection of this patent.
  • the auxiliary gas is introduced into the plasma deposition interval of the multi-chip deposition equipment and converted into plasma to increase the amount of residual charges in the multi-chip deposition equipment, thereby shortening the deposition process.
  • the required radio frequency generation time thereby improving the deposition efficiency of the substrate.
  • Another embodiment of the present application relates to a semiconductor manufacturing method. This embodiment is substantially the same as the previous embodiment, except that the process of this embodiment has been further optimized.
  • step a01 a multi-chip deposition device for the deposition process is provided.
  • Step a02 a deposition process step, specifically includes: step a12, step a22, and step a32. Specifically, in step a12, the substrate is placed in a multi-chip deposition device; in step a22, a deposition process is performed on the substrate; and in step a32, a purging process is performed.
  • Step a03 a preprocessing step is performed, and after the preprocessing step, the radio frequency power supply is turned off.
  • step a02 continues to execute step a02 after step a01 is executed, while in this embodiment, after step a01 is executed, step a03 is executed first, and then step a02 is executed.
  • the first round of the deposition process of the multi-chip deposition equipment also includes: performing a pretreatment step, passing auxiliary gas into the reaction chamber 101 and turning on the radio frequency power supply to ionize the auxiliary gas to form plasma; After that, turn off the RF power supply.
  • the generation time of the radio frequency required for the first round of deposition process is shortened, thereby improving the deposition efficiency of the substrate.
  • This embodiment further includes step b04 after performing step a03 in each round and before performing step a02.
  • Step b04 purging treatment.
  • a purge gas is passed into the reaction chamber 101 for purge processing.
  • the process is similar to step a32, but there are specific requirements for the purge time in step b04, and the purge treatment time is greater than 5 seconds and less than 1 minute.
  • the auxiliary gas is passed in and converted into plasma to increase the amount of residual charges in the reaction chamber 101 of the multi-chip deposition equipment.
  • the reaction chamber 101 of the multi-chip deposition device is purged before the deposition process.
  • multi-chip deposition device provides a multi-chip deposition device.
  • the multi-chip deposition device is described by taking a furnace tube device as an example. The implementation details of the multi-chip deposition device of this embodiment will be described below. Specific instructions.
  • the multi-chip deposition apparatus 100 includes: a reaction chamber 101 for performing a deposition process on a substrate, and:
  • the gas inlet pipe 102 is used to pass gas into the multi-plate deposition apparatus 100, where the gas includes a purge gas, auxiliary gas or precursor; the exhaust pipe 103 is used to remove the gas in the multi-plate deposition apparatus 100 Discharge; RF power supply (not shown in the figure), applied to the multi-chip deposition apparatus 100, used to provide radio frequency for the multi-chip deposition apparatus 100; controller (not shown in the figure), used in the multi-chip deposition apparatus 100 After the deposition apparatus 100 completes the first round of the deposition process, and before the second round of the deposition process starts, the gas inlet pipe 102 is controlled to pass auxiliary gas into the multi-chip deposition apparatus 100 within a first preset time and the radio frequency power is turned on.
  • the gas includes the precursor required for the deposition process, the auxiliary gas passed between the deposition process steps, and the purge gas used for purging.
  • the precursor includes a gaseous material that needs to be deposited on the substrate;
  • the auxiliary gas includes at least one of oxygen or ozone.
  • the intake duct 102 includes: a first intake duct 112, a second intake duct 132, and a third intake duct 142.
  • the first gas inlet pipe 112 is used to pass auxiliary gas into the multi-chip deposition apparatus 100; when the multi-chip deposition apparatus 100 During the deposition process, the second gas inlet pipe 132 is used to pass the precursor into the multi-chip deposition apparatus 100.
  • the third gas inlet pipe 142 is used to pass purge gas into the multi-chip deposition apparatus 100.
  • the air inlet pipe 102 may further include a fourth air inlet pipe 122, and the fourth air inlet pipe 122 is used to pass in protective gas for maintaining the multi-chip deposition apparatus 100.
  • the shielding gas is N2 or an inert gas; in other embodiments, the shielding gas may also be a cleaning gas for cleaning the multi-chip deposition apparatus 100, such as hydrogen fluoride.
  • the radio frequency power is attached to the electrode on the reaction chamber 101; during the deposition process, when the radio frequency power is turned on, the precursor in the reaction chamber 101 is gradually ionized and converted into plasma. Between two rounds of deposition processes, when the radio frequency power is turned on, the auxiliary gas in the reaction chamber 101 is converted into plasma. After the radio frequency power is turned off, a large amount of residual charge is left in the reaction chamber 101, thereby reducing the deposition process required during the deposition process. The generation time of the radio frequency, thereby submitting the substrate deposition efficiency.
  • the controller further includes: a purge module (not shown in the figure).
  • a purge module (not shown in the figure) is used for the first preset time, before the deposition process starts, purge gas is introduced into the reaction chamber 101 for purge processing.
  • the time of the purge treatment is greater than 5 seconds and less than 1 minute.
  • the multi-chip deposition equipment further includes a detection device, which is used to detect the pressure of the reaction chamber.
  • the pressure adjusting device is used to adjust the pressure of the reaction chamber. Specifically, when the substrate is undergoing a deposition process in the reaction chamber, the pressure of the reaction chamber is adjusted to be less than 1 torr; when the substrate is added or taken out of the multi-chip deposition equipment, the pressure of the multi-chip deposition equipment is adjusted to be greater than 760 torr.
  • the embodiments of the present application provide the following installation methods of the detection device and the pressure adjustment device, which are specifically as follows:
  • Method 1 Adjust the pressure of the multi-chip deposition device 100 manually: This method requires an additional display panel to be installed, and the detection device is connected to the display panel. After the detection device detects the pressure in the multi-chip deposition device 100 The specific value of the pressure in the deposition apparatus 100 is displayed on the display panel, and the staff refers to the value, and if the pressure in the multi-chip deposition apparatus 100 needs to be adjusted, the pressure adjusting device is controlled to adjust the pressure in the multi-chip deposition apparatus 100.
  • Method 2 Automatic adjustment by the multi-chip deposition device 100:
  • the detection device and the pressure adjustment device are both connected to the controller, and the detection device detects the pressure in the multi-chip deposition device 100 in real time, and the detection device detects the multi-chip deposition device. After the pressure in the deposition device 100 exceeds or falls below the preset value, it sends a control signal to the controller. After receiving the control signal, the controller controls the pressure adjustment device to adjust the pressure in the multi-chip deposition device 100.
  • modules involved in this embodiment are all logical modules.
  • a logical unit can be a physical unit, a part of a physical unit, or multiple physical units. The combination of units is realized.
  • this embodiment does not introduce units that are not closely related to solving the technical problems proposed by this application, but this does not indicate that there are no other units in this embodiment.
  • the auxiliary gas is introduced to convert it into plasma during the waiting time interval, thereby increasing the amount of residual charges in the reaction chamber.
  • the amount of residual charges in the reaction chamber is relatively large, which can quickly
  • the radio frequency required for the deposition process is generated, which greatly accelerates the radio frequency generation time, thereby improving the deposition efficiency of the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本申请实施例提供了一种半导体制造方法及多片式沉积设备,半导体制造方法包括:对多片式沉积设备(100)内的衬底(110)进行第一轮沉积工艺;完成第一轮沉积工艺后取出衬底(110);向多片式沉积设备(100)中通入辅助气体,并以辅助气体形成等离子体;向多片式沉积设备(100)中放入待沉积的衬底(110);对多片式沉积设备(100)内的衬底(110)进行第二轮沉积工艺。通过在沉积工艺的等待时间的时间间隔内,通入辅助气体使其转换成等离子体,从而增加多片式沉积设备(100)内残留电荷的数量,在第二轮沉积工艺开始时,多片式沉积设备(100)内残留电荷数量较多,能很快产生所需的射频,极大地加快了射频的产生时间,从而提高了衬底(110)的生产效率。

Description

半导体制造方法及多片式沉积设备
交叉引用
本申请引用于2020年4月13日递交的名称为“半导体制造方法及多片式沉积设备”的第202010287337.0号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及半导体制造方法领域,特别涉及一种半导体制造方法及多片式沉积设备。
背景技术
目前,应用于衬底沉积的设备的容积逐渐扩大,大容积的沉积设备即多片式沉积设备能一次对数量较多的衬底进行沉积工艺,其沉积效率更高。相关技术中通常采用射频补偿功能来缩短多片式沉积设备中射频的产生时间。
然而,申请人发现,对于多片式沉积设备而言,即使对每批次衬底的沉积工艺连续进行,每批次衬底的沉积工艺之间的间隔时间远远大于单片式沉积设备,导致了沉积设备内的残留电荷数量大量减少,即便采用射频补偿功能缩短射频的产生时间,射频的产生时间仍然很长,严重影响了多片式沉积设备的沉积效率,从而降低了衬底的沉积效率。
发明内容
本申请实施例提供一种半导体制造方法及多片式沉积设备,通过在多片式沉积设备进行第一轮沉积工艺和第二轮沉积工艺的时间间隔中通入辅助气体,并将其转换成等离子体的方式来增加多片式沉积设备中残留电荷的数量,从而 缩短沉积工艺所需的射频的产生时间,进而提高衬底的沉积效率。
为解决上述技术问题,本申请实施例提供了一种半导体制造方法,应用于多片式沉积设备,包括:对多片式沉积设备内的衬底进行第一轮沉积工艺;完成第一轮沉积工艺后取出衬底;向多片式沉积设备中通入辅助气体,并以辅助气体形成等离子体;向多片式沉积设备中放入待沉积的衬底;对多片式沉积设备内的衬底进行第二轮沉积工艺。
由于多片式沉积设备的容积大,多片式沉积设备进行一轮沉积工艺,需要传送的衬底的数量较多,即使相邻两轮沉积工艺连续进行,其等待时间(例如硅片传送时间、压力变化时间和气体吹扫处理时间)依然很长,即第一轮沉积工艺关闭射频电源后多片式沉积设备内剩余的残留电荷数量很少,第二轮沉积工艺需要较长的时间才能产生射频(由于等待时间过长,多片式沉积设备内残留电荷数量过少,即使通过射频补偿功能,射频产生的时间很长)。本申请实施例通过在等待时间的时间间隔内,通入辅助气体使其转换成等离子体,从而增加多片式沉积设备内残留电荷数量,在第二轮沉积工艺开始时,多片式沉积设备内残留电荷数量较多,能很快产生沉积工艺所需的射频,极大地加快了射频产生时间,从而提高了衬底的沉积效率。
另外,第一轮沉积工艺包括:在第二预设时间内,向多片式沉积设备中通入第一前驱物,并开启射频电源,以将第一前驱物电离形成等离子体;向多片式沉积设备中通入吹扫气体进行吹扫处理。
另外,第二轮沉积工艺包括:在第三预设时间内,向多片式沉积设备中通入第二前驱物,并开启射频电源,以将第二前驱物电离形成等离子体;向多片式沉积设备中通入吹扫气体进行吹扫处理。
另外,向多片式沉积设备中通入辅助气体,并以辅助气体形成等离子体,包括:向多片式沉积设备中通入辅助气体;在第一预设时间内开启射频电源,以电离辅助气体形成等离子体。
另外,对衬底进行第二轮沉积工艺之后,还包括:多片式沉积设备还用于执行多轮沉积工艺;在多片式沉积设备进行两轮沉积工艺之间,在所述第一预设时间内向所述多片式沉积设备中通入辅助气体,并以所述辅助气体形成等离子体。
另外,辅助气体包括以下气体中的至少一种:氧气、臭氧。
另外,在向多片式沉积设备中通入辅助气体,并以辅助气体形成等离子体之后,且在对多片式沉积设备内的衬底进行第二轮沉积工艺之前,还包括:通入吹扫气体进行吹扫处理。为了防止残留的辅助气体对衬底的生产造成影响,在进行第二轮沉积工艺前,对多片式沉积设备进行吹扫处理。
另外,吹扫处理的时间大于5秒且小于1分钟。通过合理规划吹扫时间,保证多片式沉积设备内的辅助气体被吹扫干净,且不影响沉积工艺的效率。
另外,衬底在多片式沉积设备中进行沉积工艺时,多片式沉积设备的压强小于1torr;当衬底放入或取出多片式沉积设备时,多片式沉积设备内的压强大于760torr。
本申请实施例还提供了一种多片式沉积设备,应用于上述半导体制造方法,包括:进气管道,用于多片式向沉积设备中通入气体,其中,其中气体包括吹扫气体、辅助气体或前驱物;排气管道,用于将多片式沉积设备中的气体排出;射频电源,用于为多片式沉积设备提供射频;控制器,用于在多片式沉积设备完成第一轮沉积工艺后,以及第二轮沉积工艺开始前,在第一预设时间 内控制进气管道向多片式沉积设备中通入辅助气体并开启射频电源。
与相关技术相比,本申请通过在两轮沉积工艺的等待时间的时间间隔内,通入辅助气体使其转换成等离子体,从而增加多片式沉积设备内残留电荷数量,在第二轮沉积工艺开始时,多片式沉积设备内残留电荷数量较多,能很快产生沉积工艺所需的射频,极大地加快了射频产生时间,从而提高了衬底的沉积效率。
另外,控制器还包括:吹扫模块,用于第一预设时间之后,且第二轮沉积工艺开始前,向多片式沉积设备中通入吹扫气体进行吹扫处理。
另外,进气管道具体包括:第一进气管道、第三进气管道和第四进气管道;其中,第一进气管道用于向多片式沉积设备中通入辅助气体;第二进气管道用于向多片式沉积设备中通入前驱物;第三进气管道用于向多片式沉积设备中通入吹扫气体。
另外,多片式沉积设备,还包括:检测装置,用于检测多片式沉积设备的压强;压强调节装置,用于调节多片式沉积设备的压强。
本申请实施例对多片式沉积设备进行沉积工艺的工艺流程进行改进,通过在多片式沉积设备内进行第一轮沉积工艺和第二轮沉积工艺的时间间隔内通入辅助气体并将其转换成等离子体的方式来增加多片式沉积设备中残留电荷的数量,从而缩短沉积工艺所需的射频的产生时间,进而提高衬底的沉积效率。
附图说明
图1为本申请一实施例涉及的半导体制造方法的流程图;
图2为本申请一实施例提供的多片式沉积设备的示意图;
图3为本申请一实施例中涉及的缩短射频产生时间的原理图;
图4为本申请一实施例中涉及的衬底加入多片式沉积设备的示意图;
图5为本申请一实施例中半导体制造方法中不进行预处理步骤对应的多片式沉积设备状态示意图;
图6为本申请一实施例中半导体制造方法中进行预处理步骤对应的多片式沉积设备状态示意图;
图7为本申请另一实施例涉及的半导体制造方法的流程图。
具体实施方式
目前,应用于衬底沉积的设备分为单片式沉积设备和多片式沉积设备,相对于单片式沉积设备,多片式沉积设备能一次对数量较多的衬底进行沉积工艺,其沉积效率更高。相关技术中通常采用射频补偿功能来缩短多片式沉积设备中射频的产生时间。
然而,申请人发现,多片式沉积设备的反应空间远远大于一般单片式沉积设备的反应空间,因此,相较于单片式沉积设备而言,多片式沉积设备就是大容积的沉积设备。且对于多片式沉积设备而言,即使对每批次衬底的沉积工艺连续进行,每批次衬底的沉积工艺之间的间隔时间远远大于单片式沉积设备,具体地,因多片式沉积设备的设计(每次进行沉积工艺需传送>100片衬底),既使每批次工艺连续执行,其间隔时间(衬底传送+非工艺主步骤压力变化+工艺主步骤后气体吹扫处理)均大于60分钟,而单片式沉积设备的间隔时间一般小于7分钟。导致了多片式沉积设备内的残留电荷数量大量减少,即便采用射频补偿功能缩短射频的产生时间,射频的产生时间仍然很长,严重影响了多片式沉积设备的沉积效率,从而降低了衬底的沉积效率。
为解决上述问题,本申请实施例提供了一种半导体制造方法,应用于多 片式沉积设备,包括:对多片式沉积设备内的衬底进行第一轮沉积工艺;完成第一轮沉积工艺后取出衬底;向多片式沉积设备中通入辅助气体,并以辅助气体形成等离子体;向多片式沉积设备中放入待沉积的衬底;对多片式沉积设备内的衬底进行第二轮沉积工艺。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合,相互引用。
下面对本实施例的半导体制造方法的实现细节进行具体说明。
本实施例的一种半导体制造方法,其具体流程图参考图1,多片式沉积设备的设备图参考图2,其流程包括:
步骤a01,提供用于沉积工艺的多片式沉积设备,多片式沉积设备100包括:
反应室101,用于放置放入多片式沉积设备的衬底,并且用于对多片式沉积设备内的多片衬底进行沉积工艺。由于衬底在反应室101内进行沉积工艺,本领域技术人员清楚,后续向多片式沉积设备100中通入的气体,实际是通入了反应室101中。衬底包括:晶圆、硅片等用于进行沉积工艺的原材料。具体地,当衬底位于反应室101中,且射频电源开启后,对位于反应室101中的衬底进行沉积工艺。
需要说明的是,相较于单片式沉积设备,多片式沉积设备100的容器体积更大,其反应室101能容纳更多的衬底。且本实施例公开的多片式沉积设备,不仅仅可以应用于对多片衬底进行沉积,本领域技术人员清楚,多片式沉积设备也可以应用于对单片衬底进行沉积,即本实施例公开的多片式沉积设备并不对应用于其的衬底数量构成限定。
进气管道102,用于向多片式沉积设备100中通入气体。
通过进气管道102通入的气体包括沉积工艺所需的前驱物(包括第一轮沉积工艺所需的第一前驱物和第二轮沉积工艺所需的第二前驱物)、第一轮沉积工艺和第二轮沉积工艺之间通入的辅助气体和用于吹扫的吹扫气体;其中,吹扫气体至少包括N2或惰性气体的至少一种;前驱物为需要在衬底上沉积的气态材料;辅助气体包括氧气或臭氧的至少一种。
具体地,进气管道102包括:第一进气管道112、第二进气管道132和第三进气管道142。
当多片式沉积设备100进行第一轮沉积工艺和第二轮沉积工艺之间,第一进气管道112用于向多片式沉积设备100中通入辅助气体;当多片式沉积设备100进行沉积工艺时,第二进气管道132用于向多片式沉积设备100中通入前驱物;第三进气管道142用于向多片式沉积设备100中通入吹扫气体。
还需要说明的是,在本实施例中,进气管道102可以还包括第四进气管道122,第四进气管道122用于通入保护气体用于保养多片式沉积设备100,在本实施例中,保护气体为N2或惰性气体;在其他实施例中,保护气体也可以为清洗多片式沉积设备的清洗气体,例如氟化氢。
排气管道103,用于将多片式沉积设备100中的气体排出。
射频电源(图中未示出),用于为多片式沉积设备100提供射频。
控制器(图中未示出),用于在多片式沉积设备100完成第一轮沉积工艺后,第二轮沉积工艺开始前,在第一预设时间内控制进气管道102向多片式沉积设备100中通入辅助气体并开启射频电源。其中,在第一预设时间内,辅助气体转化为等离子体,从而增加反应室101残留电荷,进而缩短后续射频产生所花费的时间。
通过残留电荷的数量缩短射频产生时间的原理,参考图3:
图3中X轴表示射频电源的开启时间,Y轴表示反应室中的电荷量。假设当反应室中的电荷量达到e0时,沉积工艺所需的射频产生,并将前驱物电离形成等离子体,用于对衬底的沉积。
曲线201表示当反应室的初始电荷量为0时(即曲线的初始点为O),开启射频电源后,经过时间t2(曲线201中A点的横坐标),反应室中的电荷量达到e0,此时开启射频电源到射频产生经过了时间t2。曲线202表示当反应室的初始电荷量为e1时(即曲线的初始点为C),开启射频电源后,经过时间t1(曲线202种B点的横坐标),反应室中的电荷量达到e0,此时开启射频电源到射频产生经过了时间t1。对比曲线201和曲线202,可以看出,当反应室中初始电荷的电荷量越高,开启射频电源到射频的产生时间越短。
继续参考图1,步骤a02为沉积工艺步骤,步骤a02具体包括:步骤a12、步骤a22和步骤a32,具体如下:
步骤a12,将衬底置于多片式沉积设备中。
参考图4,将多片衬底110叠放在承载装置120中,通过承载装置120将衬底110加入到多片式沉积设备100中。多片式沉积设备100在一轮沉积工 艺中对多片衬底110进行沉积,这样便导致了即使两轮沉积工艺连续进行,衬底110的传送和叠放也需要花费大量时间,导致多片式沉积设备100反应室中残留电荷的流失,即下一轮沉积工艺开始时,多片式沉积设备100反应室中的初始电荷量较小,延缓射频产生的时间,从而影响衬底产品的产出。
需要说明的是,衬底110放入或取出多片式沉积设备100时,多片式沉积设备100内的压强大于或等于760torr。
步骤a22,对衬底进行沉积工艺。
具体地,对衬底进行第一轮沉积工艺。需要说明的是,多片式沉积设备100对衬底110进行的第一轮沉积工艺并不是特指对基底110放入多片式沉积设备100后的第一轮沉积工艺,而是多片式沉积设备100对基底110进行的任意一轮沉积工艺都可以视为第一轮沉积工艺。
向反应室101中通入第一前驱物,并开启射频电源,将反应室101中的第一前驱物电离形成等离子体。当等离子的数量达到一定程度时,反应室101中产生沉积工艺所需的射频。经过第二预设时间后,关闭射频电源,取出完成沉积的衬底,并向反应室101中通入吹扫气体进行吹扫处理。其中,第二预设时间是指开启射频到衬底在反应室101完成第一轮沉积工艺所需要花费的时间。
需要说明的是,在反应室101中对衬底进行沉积工艺时,反应室101的压强小于1torr。
步骤a32,吹扫处理。
具体地,向反应室101中通入吹扫气体进行吹扫处理。通过向反应室101中通入吹扫气体,从而替换掉反应室101中由于沉积工艺所产生的气体,避免剩余气体对下一轮沉积工艺造成影响。
步骤a32执行完成后,即步骤a02执行完成,多片式沉积设备100完成第一轮沉积工艺步骤;在多片式沉积设备100进行第二轮沉积工艺步骤前,即多片式沉积设备100进行两轮沉积工艺步骤之间,还包括:
步骤a03,向多片式沉积设备中通入辅助气体,并以辅助气体形成等离子体。
需要说明的是,电离辅助气体形成等离子体的目的是为了增加多片式沉积设备中的残留电荷数量,本领域人员可以理解的是,由于多片式沉积设备中形成了等离子体,也相应会生成残留电荷,通过增加多片式沉积设备内的残留电荷的总量,可以加快多片式沉积设备中射频的产生速率。
若不执行步骤a03,反应室101各步骤对应的状态,参考图5流程所示,具体如下:
图(a1)表示多片式沉积设备还没开始进行沉积工艺,反应室101中并没有残留电荷和等离子体,射频电源关闭,电极302处于非工作状态。
图(a2)表示多片式沉积设备被进行沉积工艺时,此时射频电源处于开启状态,射频电源通过电极302施加在反应室101上,反应室101中布满等离子体态的前驱物301。
由于图(a1)中的反应室101中没有残留电荷,因此由图(a1)到图(a2),即第一轮射频的产生时间长。
沉积工艺执行完成后,关闭射频电源,对反应室101中剩余的等离子体进行吹扫,此时反应室101靠近电极302的侧壁上还存在由于等离子体生成而生成的残留电荷303,即图(a3)所示。
由于多片式沉积设备进行一轮沉积工艺,需要传送的衬底的数量多,即 使相邻两轮沉积工艺连续进行,其等待时间(硅片传送时间、压力变化时间和气体吹扫处理时间)也很长,即第一轮沉积工艺关闭射频电源后多片式沉积设备的反应室101内剩余的残留电荷数量很少。即在图(a3)示意的射频电源关闭到图(a2)示意的射频电源开启的过程中,由于多片式沉积设备的设备过大,会造成由图(a3)到图(a4),再到图(a2)的中间过程。具体地,由于等待时间较长,反应室101中的残留电荷数量逐渐变少,残留电荷的数量变成如图(a4)所示的少量电荷304,此时由图(a4)再到图(a2)的过程,由于初始电荷数量较少,相当于图(a1)到图(a2)的过程,即后续过程中的射频的产生时间依然很长。
若执行步骤a03,反应室101各步骤对应的状态,参考图6流程所示具体如下:
在两轮沉积工艺步骤之间,即图(b3)再到图(b2)的过程中,向多片式沉积设备中通入辅助气体,本实施例以氧气为例进行详细描述。
图(b4)表示向反应室101中通入氧气并开启射频电源,以电离氧气形成氧气等离子体305。经过预设时间后,关闭射频电源,此时反应室101中残留电荷303并没有减少,形成类似图(b3)的图(b5)状的反应室101状态,在下一轮进行沉积工艺时,由于反应室101中的残留电荷303的量比较多,能够较为容易的产生射频。
步骤a03执行完成后,继续执行步骤a02,此时通入的前驱物为第二前驱物,对多片式沉积设备100中的衬底进行第二轮沉积工艺,其中,第三预设时间是指开启射频到衬底在反应室101完成第一轮沉积工艺所需要花费的时间。
需要说明的是,第一前驱物与第二前驱物可以相同也可以不同,若第一 前驱物与第二前驱物相同,则表示第一轮沉积工艺和第二轮沉积工艺向衬底上沉积相同的材料;若第一前驱物与第二前驱物不同,则表示第一轮沉积工艺和第二轮沉积工艺向衬底上沉积不同的材料。另外,本实施例中并不对第二预设时间(用于执行第一轮沉积工艺)和第三预设时间(用于执行第二轮沉积工艺)的关系进行限定,本领域技术人员应该清楚,第二预设时间和第三预设时间的设置为根据沉积前驱物的不同进行具体设置的。还需要说明的是,第一轮沉积工艺和第二轮沉积工艺可以为对同一批次的衬底进行的多次沉积工艺或对不同批次的衬底进行的沉积工艺。
需要说明的是,在本实施例中,对多片式沉积设备100内的衬底进行第二轮沉积工艺之后,还包括:多片式沉积设备100还用于执行多轮沉积工艺;在多片式沉积设备100进行两轮沉积工艺之间,向多片式沉积设备100的反应室101中通入辅助气体并开启射频电源,以电离辅助气体形成等离子体;经过第一预设时间后,关闭射频电源。
还需要说明的是,在本实施例中介绍的第一轮沉积工艺和第二轮沉积工艺,并不是指代第一轮沉积工艺和第二轮沉积工艺;本领域技术人员应该清楚,多片式沉积设备100在沉积过程中任意一轮沉积工艺都可以作为第一轮沉积工艺,而下一轮沉积工艺作为第二轮沉积工艺,只要涉及到在两轮沉积工艺之间加入预处理步骤,都应该属于本专利的保护范围内。
上面各种步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其流程的核心设计都在该专利的保护范围内。
本实施例通过在多片式沉积设备进行等离子体沉积的间隔时间中通入辅助气体,并将其转换成等离子体的方式来增加多片式沉积设备中残留电荷的数量,从而缩短沉积工艺所需的射频的产生时间,进而提高衬底的沉积效率。
本申请另一实施例涉及一种半导体制造方法,本实施例与前一实施例大致相同,不同之处在于:本实施例方式流程有了更进一步地优化。
下面对本实施例的半导体制造方法的实现细节进行具体说明。与前一实施例相同或相应的部分,以下将不做详细赘述。
步骤a01,提供用于沉积工艺的多片式沉积设备。
步骤a02,沉积工艺步骤,具体包括:步骤a12、步骤a22和步骤a32。具体地,步骤a12,将衬底至于多片式沉积设备中;步骤a22,对衬底进行沉积工艺;步骤a32,吹扫处理。
步骤a03,进行预处理步骤,预处理步骤之后,关闭射频电源。
与上述实施例不同的是,上述实施例在步骤a01执行完后,继续执行步骤a02,而在本实施例中,步骤a01执行完后,先执行步骤a03,再执行步骤a02。
即在多片式沉积设备第一轮进行沉积工艺步骤之前,还包括:进行预处理步骤,向反应室101中通入辅助气体并开启射频电源,以电离辅助气体形成等离子体;在预处理步骤之后,关闭射频电源。
通过增加多片式沉积设备的反应室101内残留电荷数量的方式,来缩短第一轮沉积工艺所需的射频的产生时间,进而提高衬底的沉积效率。
本实施例在每轮执行完步骤a03之后,执行步骤a02之前,还包括步骤b04。
步骤b04,吹扫处理。
具体地,向反应室101中通入吹扫气体进行吹扫处理。其工艺过程类似于步骤a32,但是步骤b04中对吹扫的时间有具体要求,吹扫处理的时间大于5秒且小于1分钟。通过合理规划吹扫时间,保证多片式沉积设备内的辅助气体被吹扫干净,且不影响沉积工艺的整体效率。
上面各种步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其流程的核心设计都在该专利的保护范围内。
本实施例在多片式沉积设备进行第一轮沉积工艺前,同样通过通入辅助气体,并使其转化为等离子体,从而增加多片式沉积设备的反应室101内残留电荷数量的方式,以缩短第一轮沉积工艺所需的射频的产生时间,进而提高衬底的沉积效率。同时,为了防止残留的辅助气体对衬底的生产造成影响,在进行沉积工艺前,对多片式沉积设备的反应室101进行吹扫处理。
本申请又一实施例提供了一种多片式沉积设备,在本实施例中,多片式沉积设备以炉管设备为例进行说明,下面对本实施例的多片式沉积设备的实现细节进行具体说明。
参考图2,多片式沉积设备100包括:用于衬底进行沉积工艺的反应室101,以及:
进气管道102,用于向多片式沉积设备100中通入气体,其中,气体包括吹扫气体、辅助气体或前驱物;排气管道103,用于将多片式沉积设备100中的气体排出;射频电源(图中未示出),施加在多片式沉积设备100上,用于为多片式沉积设备100提供射频;控制器(图中未示出),用于在多片式沉积设 备100完成第一轮沉积工艺后,第二轮沉积工艺开始前,在第一预设时间内控制进气管道102向多片式沉积设备100中通入辅助气体并开启射频电源。
在本实施例中,气体包括沉积工艺所需的前驱物、沉积工艺步骤之间通入的辅助气体和用于吹扫的吹扫气体。其中,前驱物包括为需要在衬底上沉积的气态材料;辅助气体包括氧气或臭氧的至少一种。
具体地,进气管道102包括:第一进气管道112、第二进气管道132和第三进气管道142。
当多片式沉积设备100进行第一轮沉积工艺和第二轮沉积工艺之间,第一进气管道112用于向多片式沉积设备100中通入辅助气体;当多片式沉积设备100进行沉积工艺时,第二进气管道132用于向多片式沉积设备100中通入前驱物。第三进气管道142用于向多片式沉积设备100中通入吹扫气体。
需要说明的是,在本实施例中,进气管道102可以还包括第四进气管道122,第四进气管道122用于通入保护气体用于保养多片式沉积设备100,在本实施例中,保护气体为N2或惰性气体;在其他实施例中,保护气体也可以为清洗多片式沉积设备100的清洗气体,例如氟化氢。
具体地,射频电源通过附加在反应室101上的电极上;在沉积工艺过程中,当射频电源开启时,反应室101中的前驱物逐渐电离转化成等离子体。在两轮沉积工艺间,当射频电源开启时,反应室101中的辅助气体转化成等离子体,关闭射频电源后,使得反应室101中有大量残留电荷,从而缩减沉积工艺时,沉积工艺所需的射频的产生时间,从而提交衬底沉积效率。
在本实施例中,控制器还包括:吹扫模块(图中未示出)。吹扫模块(图中未示出)用于第一预设时间后,在沉积工艺开始前,向反应室101中通入吹 扫气体进行吹扫处理。具体地,吹扫处理的时间大于5秒且小于1分钟。通过合理规划吹扫时间,保证多片式沉积设备100内的辅助气体被吹扫干净,且不影响沉积工艺的工作效率。
需要说明的是,在其他实施例中,多片式沉积设备还包括:检测装置,检测装置用于检测反应室的压强。压强调节装置,用于调节反应室的压强。具体地,当衬底在反应室中进行沉积工艺时,调节反应室的压强小于1torr;当衬底加入或取出多片式沉积设备时,调节多片式沉积设备的压强大于760torr。
本申请实施例给出以下检测装置和压强调节装置的安装方式,具体如下:
方式一:通过人工手动的方式对多片式沉积设备100的压强进行调节:该方式需要额外安装一个显示面板,检测装置连接显示面板,检测装置在检测到多片式沉积设备100内的压强后通过显示面板显示沉积设备100内的压强的具体数值,工作人员参照数值,若需要对多片式沉积设备100内的压强进行调整,则控制压强调节装置调节多片式沉积设备100内的压强。
方式二:通过多片式沉积设备100自动进行调节:该方式检测装置和压强调节装置都连接在控制器上,检测装置实时检测多片式沉积设备100内的压强,检测装置检测到多片式沉积设备100内的压强超过或低于预设值后,向控制器发送控制信号,控制器在接收到控制信号后,控制压强调节装置调节多片式沉积设备100内的压强。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实 施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
由于上述实施例与本实施例相互对应,因此本实施例可与上述实施例互相配合实施。上述实施例中提到的相关技术细节在本实施例中依然有效,在上述实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
本实施例通过在等待时间的时间间隔内,通入辅助气体使其转换成等离子体,从而增加反应室内残留电荷数量,在下一轮沉积工艺开始时,反应室内残留电荷数量较多,能很快产生沉积工艺所需的射频,极大地加快了射频产生时间,从而提高了衬底的沉积效率。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (12)

  1. 一种半导体制造方法,应用于多片式沉积设备,其特征在于,包括:
    对所述多片式沉积设备内的衬底进行第一轮沉积工艺;
    完成第一轮沉积工艺后取出所述衬底;
    向所述多片式沉积设备中通入辅助气体,并以所述辅助气体形成等离子体;
    向所述多片式沉积设备中放入待沉积的衬底;
    对所述多片式沉积设备内的衬底进行第二轮沉积工艺。
  2. 如权利要求1所述的半导体制造方法,其特征在于,所述第一轮沉积工艺包括:
    在第二预设时间内,向所述多片式沉积设备中通入第一前驱物,并开启射频电源,以将所述第一前驱物电离形成等离子体;
    向所述多片式沉积设备中通入吹扫气体进行吹扫处理。
  3. 如权利要求1所述的半导体制造方法,其特征在于,所述第二轮沉积工艺包括:
    在第三预设时间内,向所述多片式沉积设备中通入第二前驱物,并开启射频电源,以将所述第二前驱物电离形成等离子体;
    向所述多片式沉积设备中通入吹扫气体进行吹扫处理。
  4. 如权利要求1所述的半导体制造方法,其特征在于,所述向所述多片式沉积设备中通入辅助气体,并以所述辅助气体形成等离子体,包括:
    向所述多片式沉积设备中通入辅助气体;
    在第一预设时间内开启射频电源,以电离所述辅助气体形成等离子体。
  5. 如权利要求4所述的半导体制造方法,其特征在于,对所述衬底进行第二轮 沉积工艺之后,还包括:
    所述多片式沉积设备还用于执行多轮沉积工艺;
    在所述多片式沉积设备进行任意两轮沉积工艺之间,在所述第一预设时间内向所述多片式沉积设备中通入辅助气体,并以所述辅助气体形成等离子体。
  6. 如权利要求1-5中任一项所述的半导体制造方法,其特征在于,所述辅助气体包括以下气体中的至少一种:氧气、臭氧。
  7. 如权利要求1所述的半导体制造方法,其特征在于,在所述向所述多片式沉积设备中通入辅助气体,并以所述辅助气体形成等离子体之后,且在所述对所述多片式沉积设备内的衬底进行第二轮沉积工艺之前,还包括:通入吹扫气体进行吹扫处理。
  8. 如权利要求2、3或7所述的半导体制造方法,其特征在于,所述吹扫处理的时间大于5秒且小于1分钟。
  9. 一种多片式沉积设备,其特征在于,包括:
    进气管道,用于向所述多片式沉积设备中通入气体,其中所述气体包括吹扫气体、辅助气体或前驱物;
    排气管道,用于将所述多片式沉积设备中的所述气体排出;
    射频电源,用于为所述多片式沉积设备提供射频;
    控制器,用于在所述多片式沉积设备完成第一轮沉积工艺后,以及第二轮沉积工艺开始前,在第一预设时间内控制所述进气管道向所述多片式沉积设备中通入所述辅助气体并开启所述射频电源。
  10. 如权利要求9所述的多片式沉积设备,其特征在于,控制器还包括:
    吹扫模块,用于所述第一预设时间之后,且所述第二轮沉积工艺开始前, 向所述多片式沉积设备中通入吹扫气体进行吹扫处理。
  11. 如权利要求9所述的多片式沉积设备,其特征在于,所述进气管道至少包括:
    第一进气管道、第二进气管道和第三进气管道;
    其中,所述第一进气管道用于向所述多片式沉积设备中通入所述辅助气体;所述第二进气管道用于向所述多片式沉积设备中通入所述前驱物;所述第三进气管道用于向所述多片式沉积设备中通入吹扫气体。
  12. 如权利要求9所述的多片式沉积设备,其特征在于,所述多片式沉积设备还包括:检测装置,用于检测所述多片式沉积设备内的压强;压强调节装置,用于调节所述多片式沉积设备内的压强。
PCT/CN2021/082445 2020-04-13 2021-03-23 半导体制造方法及多片式沉积设备 WO2021208680A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/472,825 US20210407796A1 (en) 2020-04-13 2021-09-13 Method for manufacturing semiconductor and multi-piece deposition device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010287337.0A CN113529057B (zh) 2020-04-13 2020-04-13 半导体制造方法及多片式沉积设备
CN202010287337.0 2020-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/472,825 Continuation US20210407796A1 (en) 2020-04-13 2021-09-13 Method for manufacturing semiconductor and multi-piece deposition device

Publications (1)

Publication Number Publication Date
WO2021208680A1 true WO2021208680A1 (zh) 2021-10-21

Family

ID=78084066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082445 WO2021208680A1 (zh) 2020-04-13 2021-03-23 半导体制造方法及多片式沉积设备

Country Status (3)

Country Link
US (1) US20210407796A1 (zh)
CN (1) CN113529057B (zh)
WO (1) WO2021208680A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4202158C1 (zh) * 1992-01-27 1993-07-22 Siemens Ag, 8000 Muenchen, De
US20030015292A1 (en) * 2001-08-16 2003-01-23 Hwang Chul Ju Apparatus for fabricating a semiconductor device
US20040106302A1 (en) * 2002-12-03 2004-06-03 Bong-Jun Jang Method for forming PE-TEOS layer of semiconductor integrated circuit device
CN101413111A (zh) * 2007-10-16 2009-04-22 东京毅力科创株式会社 成膜装置及其使用方法
CN101476114A (zh) * 2009-01-23 2009-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体设备腔室维护前预处理的方法
CN102586753A (zh) * 2012-03-21 2012-07-18 中微半导体设备(上海)有限公司 Mocvd设备的清洁方法
TWI380393B (zh) * 2009-05-15 2012-12-21 Advanced Micro Fab Equip Inc

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257180B2 (ja) * 1993-09-21 2002-02-18 ソニー株式会社 成膜方法
US5386798A (en) * 1993-10-06 1995-02-07 Martin Marietta Energy Systems, Inc. Method for continuous control of composition and doping of pulsed laser deposited films
CN1276993C (zh) * 2002-07-09 2006-09-27 统宝光电股份有限公司 利用等离子体化学气相沉积法沉积薄膜的方法
JP4059792B2 (ja) * 2003-03-12 2008-03-12 川崎マイクロエレクトロニクス株式会社 半導体製造方法
US20070209930A1 (en) * 2006-03-09 2007-09-13 Applied Materials, Inc. Apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
CN101202207A (zh) * 2006-12-12 2008-06-18 联华电子股份有限公司 可去除累积在基底上的电荷的连续沉积多层膜的方法
US7659184B2 (en) * 2008-02-25 2010-02-09 Applied Materials, Inc. Plasma immersion ion implantation process with chamber seasoning and seasoning layer plasma discharging for wafer dechucking
US7994019B1 (en) * 2010-04-01 2011-08-09 Applied Materials, Inc. Silicon-ozone CVD with reduced pattern loading using incubation period deposition
CN102560422A (zh) * 2011-12-23 2012-07-11 嘉兴科民电子设备技术有限公司 多片远程等离子体增强原子层沉积腔室
US9624578B2 (en) * 2014-09-30 2017-04-18 Lam Research Corporation Method for RF compensation in plasma assisted atomic layer deposition
CN110408912A (zh) * 2019-09-11 2019-11-05 光驰科技(上海)有限公司 一种多片式旋转等离子体增强原子层沉积成膜装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4202158C1 (zh) * 1992-01-27 1993-07-22 Siemens Ag, 8000 Muenchen, De
US20030015292A1 (en) * 2001-08-16 2003-01-23 Hwang Chul Ju Apparatus for fabricating a semiconductor device
US20040106302A1 (en) * 2002-12-03 2004-06-03 Bong-Jun Jang Method for forming PE-TEOS layer of semiconductor integrated circuit device
CN101413111A (zh) * 2007-10-16 2009-04-22 东京毅力科创株式会社 成膜装置及其使用方法
CN101476114A (zh) * 2009-01-23 2009-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体设备腔室维护前预处理的方法
TWI380393B (zh) * 2009-05-15 2012-12-21 Advanced Micro Fab Equip Inc
CN102586753A (zh) * 2012-03-21 2012-07-18 中微半导体设备(上海)有限公司 Mocvd设备的清洁方法

Also Published As

Publication number Publication date
CN113529057B (zh) 2023-02-28
CN113529057A (zh) 2021-10-22
US20210407796A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
JP3265042B2 (ja) 成膜方法
US8337960B2 (en) Seasoning method for film-forming apparatus
KR20210035769A (ko) 성막 방법 및 성막 장치
TWI741445B (zh) 基板處理裝置、半導體裝置之製造方法及記錄媒體
US20080311731A1 (en) Low pressure chemical vapor deposition of polysilicon on a wafer
JP6804280B2 (ja) プラズマ処理装置及びプラズマ処理方法
WO2021208680A1 (zh) 半导体制造方法及多片式沉积设备
KR20210011861A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
EP2202785A1 (en) Plasma treatment apparatus, plasma treatment method, and semiconductor element
JP2001257164A (ja) 基板処理装置、基板処理方法及び圧力制御方法
US20220298620A1 (en) Enhanced oxidation with hydrogen radical pretreatment
KR101596329B1 (ko) Vhf를 이용한 pe-ald 장치 및 방법
US7972961B2 (en) Purge step-controlled sequence of processing semiconductor wafers
US20230092185A1 (en) Method for processing a substrate
JPH1046372A (ja) ドライエッチング方法
JP2000332012A (ja) シリコン窒化膜の成膜方法
JPH06168914A (ja) エッチング処理方法
US10685848B2 (en) Workpiece processing method
JP7386679B2 (ja) 成膜方法および成膜装置
WO2021187425A1 (ja) 基板処理装置、排気装置、半導体装置の製造方法及びプログラム
KR20240027421A (ko) 기판처리방법
JP2003105544A (ja) 成膜装置
US20130251896A1 (en) Method of protecting component of film forming apparatus and film forming method
CN117758233A (zh) 一种沉积装置和沉积方法
TW202403090A (zh) 沉積設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21789117

Country of ref document: EP

Kind code of ref document: A1