CN102580300B - 运动分析装置 - Google Patents

运动分析装置 Download PDF

Info

Publication number
CN102580300B
CN102580300B CN201110363773.2A CN201110363773A CN102580300B CN 102580300 B CN102580300 B CN 102580300B CN 201110363773 A CN201110363773 A CN 201110363773A CN 102580300 B CN102580300 B CN 102580300B
Authority
CN
China
Prior art keywords
period
error
data
time
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110363773.2A
Other languages
English (en)
Other versions
CN102580300A (zh
Inventor
中冈康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN102580300A publication Critical patent/CN102580300A/zh
Application granted granted Critical
Publication of CN102580300B publication Critical patent/CN102580300B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/38Training appliances or apparatus for special sports for tennis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration

Abstract

一种运动分析装置,其易操作且可得到足够精度的分析信息。传感器部(10)安装在对象物上并检测所需的物理量。数据取得部(202)取得包含该物理量的m阶时间积分值的真值为已知的第一期间和作为运动分析对象的第二期间在内的期间内的传感器部的输出数据。误差时间函数推断部(204)对传感器部的输出数据进行m阶时间积分,根据传感器部的输出数据在第一期间内的m阶时间积分值与真值的差而推断传感器部检测出的物理量的值相对于真值的误差的时间函数。数据补正部(206)根据误差时间函数推断部的推断结果而补正传感器部的输出数据在第二期间内的m阶时间积分值。运动分析信息生成部(208)根据由数据补正部补正后的第二期间内的m阶时间积分值而生成对象物的运动分析信息。

Description

运动分析装置
技术领域
本发明涉及一种运动分析装置。
背景技术
目前在各种各样的领域中需要对人或物体的运动进行分析的装置。例如,通过对网球拍或高尔夫球杆的挥动轨道、棒球的投球或击球的姿势等进行分析,且根据分析结果而明确改善点,从而能够与竞技力的提高紧密关联。
目前,作为实用的运动分析装置,一般使用如下装置,即,该装置通过由红外线照相机等对带有标识的被测定物进行连续拍摄,并使用所拍摄的连续图像而计算出标识的移动轨迹,从而对运动进行分析。
然而,在这种运动分析装置中,由于需要用于对图像进行拍摄的红外线照相机,因此存在装置大型化且难以操作的问题。例如,当想要从多个角度对网球练习中的图像进行拍摄时,需要按照想要进行拍摄的角度而移动红外线照相机的位置、或改变运动员的朝向。
对此,近年来,提出了一种将小型的惯性传感器安装在被测定物上,而根据传感器的输出数据对被测定物的运动进行分析的装置,由于其不需要红外线照相机,因此具有容易操作的优点。例如,通过对加速度传感器检测出的加速度值a(t),分别进行下式(1)以及下式(2)所示的时间积分处理,从而能够计算出被测定物的速度v(t)以及位置p(t)。
式1
v ( T ) = ∫ 0 T a ( t ) dt + v 0 . . . ( 1 )
式2
p ( T ) = ∫ 0 T v ( t ) dt + p 0
= ∫ 0 T ∫ 0 t a ( τ ) dτdt + v 0 T + p 0 . . . ( 2 )
但是,通常在惯性传感器的输出值中,除了想要进行观测的值以外还包含误差。因此,例如,加速度传感器的输出数据x(t)能够使用加速度值a(t)和误差ε(t)而表示为下式(3)。
式3
x(t)=a(t)+ε(t)…(3)
因此,当根据加速度传感器的输出数据x(t),而分别进行下式(4)以及下式(5)所示的时间积分处理,从而计算出被测定物的速度v(t)以及位置p(t)时,由于误差ε(t)也将被时间积分,因此随着时间t的经过,速度v(t)以及位置p(t)的误差将急速地增大。
式4
∫ 0 T x ( t ) dt = v ( T ) + ∫ 0 T ϵ ( t ) dt + c 1 . . . ( 4 )
式5
∫ 0 T ∫ 0 t x ( τ ) dτdt = p ( T ) + ∫ 0 T ∫ 0 t ϵ ( τ ) dτdt + c 1 T + c 2 . . . ( 5 )
总之,现状为,在使用了惯性传感器的运动分析装置中,实际上传感器自身的特性并不充分,当对惯性传感器的输出数据进行积分处理,从而计算出姿态、速度、位置等时,由于传感器的输出中所包含的误差将通过积分处理而急速地增大,因此得不到足够的分析(测定)性能。
在先技术文献
专利文献
专利文献1:日本特开2004-24488号公报
发明内容
本发明是鉴于上述的问题点而实施的,根据本发明的几种方式,能够提供一种容易操作且可得到足够精度的分析信息的运动分析装置。
(1)本发明为一种如下的运动分析装置,所述运动分析装置包括:传感器部,其被安装在对象物上,并对物理量进行检测;数据取得部,其取得包含所述物理量的m阶时间积分值(m为1以上的整数)的真值为已知的第一期间和作为运动分析的对象的第二期间在内的期间内的、所述传感器部的输出数据;误差时间函数推断部,其对所述输出数据进行m阶时间积分,并根据所述输出数据在所述第一期间内的m阶时间积分值与所述真值之间的差,而对由所述传感器部检测出的所述物理量的值相对于所述真值的误差的时间函数进行推断;数据补正部,其根据所述误差时间函数推断部的推断结果,而对所述输出数据在所述第二期间内的m阶时间积分值进行补正;运动分析信息生成部,其根据由所述数据补正部补正后的所述第二期间内的m阶时间积分值,而生成所述对象物的运动分析信息。
成为分析的对象的对象物既可以是人,也可以是人以外的物体(例如运动器械或车辆等)。
用于分析对象物的运动的信息可以为,例如,对象物的轨迹的信息或对象物的速度变化的信息等。
m阶时间积分既可以为连续时间系统中的m阶时间积分,也可以为离散时间系统中的m阶时间积分(m阶时间差分)。
根据本发明,通过将传感器部的检测误差作为时间函数而进行推断,并使用推断出的误差的时间函数,对检测对象的物理量的m阶时间积分值进行补正,从而能够生成具有足够精度的分析信息。而且,根据本发明,由于使用传感器以取代红外线照相机,因此能够采用简便的结构,且操作也比较容易。
(2)在该运动分析装置中,也可以采用如下方式,即,所述误差时间函数推断部通过利用多项式而对所述误差的时间函数进行近似,并对该多项式的系数进行计算,从而对所述误差的时间函数进行推断。
根据该方式,能够通过比较简单的运算,而以足够的精度对检测误差的时间函数进行推断。而且,多项式的次数只需根据运动分析所要求的精度而决定即可。
而且,例如,所述误差时间函数推断部可以对超定方程组进行求解,从而计算出所述多项式的系数,其中,在所述超定方程组中,设定所述数据取得部所取得的数据在所述第一期间内的m阶时间积分值相对于真值的误差近似于,所述多项式在所述第一期间内的m阶时间积分值。
以此种方式,通过在第一期间中取得更多的数据而建立超定方程组,从而能够提高检测误差的时间函数的推断精度。而且,也可以通过例如最小二乘法对超定方程组进行求解。
(3)在该运动分析装置中,也可以采用如下方式,即,所述第一期间被设定有多个,所述误差时间函数推断部根据所述数据取得部在多个所述第一期间中的每一个期间内所取得的数据,而对所述误差的时间函数进行推断。
通过以此方式设置多个第一期间,从而能够进一步提高对检测误差的时间函数的推断精度。
(4)在该运动分析装置中,也可以采用如下方式,即,多个所述第一期间中的至少一个为所述第二期间开始前的期间,多个所述第一期间中的至少一个为所述第二期间结束后的期间。
根据该方式,由于能够进一步提高作为运动分析的对象的第二期间内的、检测误差的时间函数的推断精度,因此能够生成精度更高的运动分析信息。
(5)在该运动分析装置中,也可以采用如下方式,即,所述第一期间为所述对象物处于静止中的期间。
根据该方式,能够使例如第一期间内的对象物的速度、姿态、位置成为已知。
(6)在该运动分析装置中,也可以采用如下方式,即,所述传感器部将加速度以及角速度中的至少一个作为所述物理量而进行检测。
附图说明
图1为表示本实施方式的运动分析装置的结构的图。
图2为表示通过处理部而实施的运动分析信息的生成处理的一个示例的流程图。
图3为表示数据取得期间、第一期间以及第二期间的示例的图。
图4为误差时间函数的推断处理以及数据补正处理的流程图。
图5为本实验例中的传感器部的概要结构图。
图6为表示本实验例中的传感器部的安装示例的图。
图7为用于对本实验例中的被实验者的动作顺序进行说明的图。
图8为用于对本实验例中的坐标系的定义进行说明的图。
图9为本实验例中的处理部的处理的流程图。
图10为表示本实验例中的轨迹数据的图。
图11为对本实施方式的方法和现有方法的两个轨迹数据进行比较的图。
具体实施方式
以下,利用附图对本发明的优选实施方式进行详细说明。并且,以下所说明的实施方式并不是对权利要求范围内所记载的本发明的内容进行不恰当限定的实施方式。而且,在下文中所说明的全部结构并不一定为本发明的必要结构要素。
图1为表示本实施方式的运动分析装置的结构的图。
本实施方式的运动分析装置1被构成为,包括一个或多个传感器部10、和主机终端20,且对对象物的运动进行分析。传感器部10和主机终端20之间既可以被无线连接,也可以被有线连接。
传感器部10被安装在运动分析的对象物上,并且实施对所需的物理量进行检测的处理。在本实施方式中,传感器部10被构成为,包括一个或多个传感器100、数据处理部110、通信部120。
传感器100为,对所需的物理量进行检测,并输出与检测出的物理量(例如,加速度、角速度、速度、角加速度等)的大小相对应的信号(数据)的传感器。传感器100也可以为,例如惯性传感器。
数据处理部110实施如下的处理,即,使各个传感器100的输出数据同步,并将该数据设为与时刻信息等进行了组合的信息组而向通信部120输出。而且,数据处理部110也可以实施传感器100的偏压补正或温度补正的处理。另外,也可以将偏压补正或温度补正的功能编入传感器100中。
通信部120实施向主机终端20发送从数据处理部110接受的信息组数据的处理。
主机终端20被构成为,包括:处理部(CPU)200、通信部210、操作部220、ROM230、RAM240、非易失性存储器250、显示部260。
通信部210实施如下处理,即,接收由传感器部10发送的数据,并向处理部200发送。
操作部220实施如下处理,即,取得来自使用者的操作数据,并向处理部200发送。操作部220为,例如触摸屏型显示器、按钮、键、话筒等。
ROM230存储用于处理部200进行各种计算处理和控制处理的程序、用于实现应用功能的各种程序和数据等。
RAM240被用作处理部200的作业区域,并且为对从ROM230中读取的程序或数据、从操作部220输出的数据、处理部200根据各种程序而执行的运算结果等进行临时存储的存储部。
非易失性存储器250为,对通过处理部200的处理而生成的数据中的、需要长期保存的数据进行记录的记录部。
显示部260将处理部200的处理结果显示为文字、图表或其他的图像。显示部260为,例如CRT、LCD、触摸屏型显示器、HMD(头戴式显示器)等。而且,也可以由一个触摸屏型显示器来实现操作部220和显示部260的功能。
处理部200根据被存储于ROM240中的程序,而实施对于从传感器部10经由通信部210而接收的数据的、各种计算处理或各种控制处理(对于显示部260的显示控制等)。
尤其是,在本实施方式中,处理部200作为在下文中进行说明的数据取得部202、误差时间函数推断部204、数据补正部206、运动分析信息生成部208而发挥功能。
数据取得部202实施如下处理,即,在包含作为传感器100的检测对象的物理量的、m阶时间积分值的真值为已知的第一期间和作为运动分析的对象的第二期间在内的期间内,取得传感器部10的输出数据。所取得的数据例如被存储在RAM240中。
误差时间函数推断部204实施如下处理,即,对传感器部10的输出数据进行m阶时间积分,并根据该输出数据在第一期间内的m阶时间积分值与真值之间的差,而对由传感器部10检测出的物理量的值相对于真值的误差的时间函数(以下,称为“误差时间函数”)进行推断。
数据补正部206实施如下处理,即,根据误差时间函数推断部204的推断结果,而对传感器部10的输出数据在第二期间内的m阶时间积分值进行补正。
运动分析信息生成部208进行如下处理,即,根据由数据补正部206补正后的第二期间内的m阶时间积分值,而生成用于分析对象物的运动的信息(以下,称为“运动分析信息”)。所生成的运动分析信息既可以以文字、图表、图等的方式被显示在显示部260上,也可以向主机终端20的外部输出。
图2为表示通过处理部200而实施的运动分析信息的生成处理的一个示例的流程图。
首先,处理部200作为数据取得部202,而在数据取得期间结束之前(步骤S20中的否)周期性地从传感器部10取得新的数据(步骤S10)。
接下来,当数据取得期间结束时(步骤S20中的是),处理部200对数据进行m阶积分(步骤S21),并作为误差时间函数推断部204,而根据在步骤S10中所取得的数据在第一期间内的m阶时间积分值与真值之间的差,而对误差时间函数进行推断(步骤S30)。
接下来,处理部200作为数据补正部206,而根据在步骤S30中推断出的时间函数,对在步骤S10中所取得的数据在第二期间内的m阶时间积分值进行补正(步骤S40)。
最后,处理部200作为运动分析信息生成部208,而根据在步骤S40中进行了补正的第二期间内的m阶时间积分值,生成运动分析信息(步骤S50)。
图3(A)以及图3(B)为,表示数据取得期间、第一期间以及第二期间的示例的图。
在图3(A)的示例中,在时刻t2~t3间设置有分析对象物进行运动的第二期间,并且在第二期间的前后设置有时刻t0~t1和t4~t5这两个在时间上分离的第一期间。而且,时刻t0~t5成为数据取得期间,在该数据取得期间内,通过主机终端20,而以固定的周期取样(取得)传感器部10的输出数据。由于在两个第一期间内,作为传感器部10的检测对象的物理量的m阶积分值的真值为已知,因此可知传感器部10的输出数据的m阶时间积分值与真值之间的差。根据该差的信息,能够在整个数据取得期间内推断出相对于传感器部10的输出数据的误差时间函数。而且,虽然可以不设置第一个第一期间(时刻t0~t1)和第二个第一期间(时刻t4~t5)中的某一个,但为了提高误差时间函数的推断精度,优选在第二期间的前后设置第一期间。总之,由于为了提高误差时间函数的推断精度,以反映由电源变动或温度变动等而引起的随机的误差的变动的方式,对误差时间函数进行推断的方法是有效的,因此优选设置在时间上分离的多个第一期间。尤其是,由于通过在第二期间的前后设置第一期间,从而提高了在第二期间内的推断误差的精度,因此能够提高第二期间内的数据的补正精度。
此外,在图3(B)的示例中,在时刻t2~t3和时刻t4~t5间设置有分析对象物进行运动的第二期间,且在第一个第二期间(时刻t2~t3)之前设置有第一个第一期间(时刻t0~t1),在两个第二期间之间设置有第二个第一期间(时刻t3~t4),在第二个第二期间之后设置有第三个第一期间(时刻t6~t7)。而且,时刻t0~t7成为数据取得期间。由于在三个第一期间内,作为传感器部10的检测对象的物理量的m阶积分值的真值为已知,因此可知传感器部10的输出数据的m阶时间积分值与真值之间的差。根据该差的信息,能够在整个数据取得期间内推断出相对于传感器部10的输出数据的误差时间函数。而且,在图3(B)的示例中,由于设置有两个成为运动分析的对象的第二期间,因此能够通过以夹着两个第二期间的方式在时间上分离的位置处设置三个第一期间,从而提高在两个第二期间内的误差时间函数的推断精度。即,通过在成为运动分析的对象的各个第二期间的前后设置第一期间,从而即使在隔开时间而反复进行分析对象的运动的情况下,也能够提高各个第二期间内的数据的补正精度。
误差时间函数的推断以及数据补正
接下来,对误差时间函数的推断以及数据补正的方法的一个示例进行详细说明。
首先,当将处理部200中的成为计算对象的物理量在时刻t的值设定为Fm(t),且传感器部10对其m次导函数的值f(t)进行测定时,下式(6)成立。
式6
d m F m ( t ) dt m = f ( t ) . . . ( 6 )
在此,当传感器部10的输出数据x(t)包含误差ε(t)时,则x(t)表示为下式(7)。
式7
x(t)=f(t)+ε(t)…(7)
如下式(8)所示,考虑利用n次多项式g(t)来对误差时间函数ε(t)进行近似。
式8
ϵ ( t ) ≈ g ( t ) = a 0 + a 1 t + a 2 t 2 + . . . + a n t n = Σ k = 0 n a k t k . . . ( 8 )
在作为对传感器部10的输出数据x(t)进行了m阶时间积分的结果的Xm(t)中,也在成为计算对象的物理量Fm(t)之外还包含由于ε(t)和初始状态误差(积分常数)而产生的误差成分Em(t)。因此,Xm(t)表示为下式(9)。
式9
Xm(t)=Fm(t)+Em(t)…(9)
d m X m ( t ) dt m = x ( t ) d m E m ( t ) dt m = ϵ ( t )
当考虑到该误差成分Em(t)也能够利用多项式Gm(t)来进行近似时,下式(10)、(11)成立,其中,在多项式Gm(t)中,相对于g(t)的m阶时间积分而考虑了积分常数(初始状态误差)ck
式10
d m G m ( t ) dt m = g ( t ) . . . ( 10 )
式11
E m ( t ) ≈ G m ( t ) = Σ k = 0 n k ! ( k + m ) ! a k t k + m + Σ k = 0 m - 1 c m - k k ! t k . . . ( 11 )
25
因此,当已知某一时刻tr的物理量Fm(tr)时,下式(12)的关系成立。
式12
X m ( t r ) - F m ( t r ) ≈ G m ( t r ) = Σ k = 0 n k ! ( k + m ) ! a k t r k + m + Σ k = 0 m - 1 c m - k k ! t r k . . . ( 12 )
通过仅准备成为计算对象的物理量的值已知的时刻的数量的该关系式(12),从而对于近似多项式(11)的系数ak以及ck,能够建立如下的超定方程组(13)。
X m ( t r 1 ) - F m ( t r 1 ) X m ( t r 2 ) - F m ( t r 2 ) X m ( t r 3 ) - F m ( t r 3 ) . . . ≈ U a 0 a 1 . . . a n + V c 1 c 2 . . . c m . . . ( 13 ) 式13
U = { u ij } , u ij = j ! ( m + j ) ! t ri m + j V = { v ij } , v ij = 1 ( m - j ) ! t ri m - j
根据该超定方程组(13),可通过例如最小二乘法来求出近似多项式(11)的系数ak以及ck
式14
M=[U V]…(14)
式15
a 0 a 0 . . . a n c 1 c 2 . . . c m = ( M T M ) - 1 M T X m ( t r 1 ) - F m ( t r 1 ) X m ( t r 2 ) - F m ( t r 2 ) X m ( t r 3 ) - F m ( t r 3 ) . . . . . . ( 15 )
由于使用该系数ak以及ck而决定了近似多项式g(t)以及Gm(t),因此能够将物理量Fm(t)和其m次导函数的值f(t)分别推断为下式(16)、(17)。
式16
Fm(t)≈Xm(t)-Gm(t)…(16)
式17
f(t)≈x(t)-g(t)…(17)
在图4中图示了基于以上所说明的方法的误差时间函数的推断处理以及数据补正处理的流程。
首先,对所取得的数据x(t)进行m阶时间积分,从而计算出Xm(t)(步骤S32)。
接下来,利用多项式g(t)而对误差时间函数ε(t)进行近似,且使用第一期间内的各个时刻tr的m阶时间积分值Xm(tr)和真值Fm(tr)而生成超定方程组(13)(步骤S34)。
接下来,对在步骤S34中所生成的超定方程组(13)进行求解,从而计算出g(t)的系数值ak、ck(步骤S36)。
接下来,使用在步骤S36中计算出的系数值ak、ck,而通过式(11)来计算Gm(t)(步骤S38)。
最后,使用在步骤S32中计算出的Xm(t)和在步骤S36中计算出的Gm(t),而通过式(16)来计算Fm(t)(步骤S42)。
另外,步骤S32~S38的处理对应于图2中的流程图的步骤S30的处理,步骤S42的处理对应于图2中的流程图的步骤S40的处理。
如以上所说明的那样,根据本实施方式的运动分析装置,能够通过推断传感器部10的输出数据的误差时间函数而对传感器部10的输出数据的m阶时间积分值进行补正,从而生成具有足够精度的运动分析信息。而且,根据本实施方式,由于使用传感器以取代红外线照相机,因此能够实现具有简单的结构且容易操作的运动分析装置。
此外,根据本实施方式,由于利用多项式而对误差时间函数进行近似,因此能够通过例如式(15)这种比较简单的运算,从而以足够的精度而对误差时间函数进行推断。而且,通过在第一期间内取得更多的数据而建立超定方程组(13),从而能够提高误差时间函数的推断精度。
运动分析的实验例
接下来,对应用了本实施方式的运动分析方法的实验例进行说明。在本实验例中,如图6所示,将以图5所示的方式而构成的传感器部10安装在作为分析对象物的网球拍的握柄末端,而显示被实验者握住该网球拍击打网球时的、网球拍的顶端302和握柄末端304的轨迹(运动分析信息的一个示例)。
如图5所示,本实验例中所使用的传感器部10具有6轴运动传感器以作为图1所示的传感器100,其中,所述6轴运动传感器由对x轴、y轴、z轴方向上的加速度进行检测的3轴加速度传感器102x、102y、102z(惯性传感器的一个示例),和对x轴、y轴、z轴方向上的角速度进行检测的3轴陀螺传感器(角速度传感器)104x、104y、104z(惯性传感器的一个示例)组成。x轴、y轴、z轴可根据例如右手坐标系来决定。
数据处理部110除了实施使6轴运动传感器的输出数据同步并向通信部120输出的处理之外,还实施对由于6轴运动传感器的安装角度的偏差而产生的检测误差进行补正的处理等。
通信部120实施如下处理,即,向主机终端10发送从数据处理部110接收到的数据。
例如,如图6所示,以x轴与网面(击球面)垂直的方式,将该传感器部10安装在网球拍300的握柄末端304上。安装传感器部10的朝向可以为任意的朝向。例如,如图6所示,以x轴方向成为从纸面纵深侧朝向近前侧的垂线方向、y轴方向成为水平右方、z轴方向成为垂直上方的方式,来安装传感器部10。
在该实验例中,使被实验者实施固定的动作顺序。使用图7对该动作顺序进行说明。首先,将网球拍300置于预先决定的第一位置处,并使其至少静止一秒左右(时刻t0~t1)。接下来,被实验者握住网球拍300并使其向第二位置移动,以进行挥拍的准备(时刻t1~t2)。接下来,朝向被实验者发球,并且被实验者用网球拍300来击打网球(时刻t2~t3)。接下来,挥拍结束之后,被实验者握住网球拍300并使其向第一位置移动,从而将网球拍置于第一位置处(时刻t3~t4)。最后,使网球拍300至少静止一秒左右(时刻t4~t5)。时刻t0~t5的期间相当于数据取得期间,例如以每秒500次取样的取样率(0.5kHz)而对传感器部10的输出数据进行取样。而且,时刻t0~t1的期间和时刻t4~t5的期间相当于传感器部10的位置为已知的第一期间。此外,时刻t2~t3的期间相当于成为运动分析的对象的第二期间。
而且,在该实验例中,如图8所示,以网球拍300的顶端302为最大速度时(网球300碰到网球拍300的网面之前的瞬间)的传感器部10的位置为原点,以顶端302的最大速度的方向为X轴,而利用右手坐标系来决定Y轴、Z轴。而且,将第二期间(时刻t2~t3的期间)内的、XYZ坐标系中的网球拍300的顶端302和握柄末端304的轨迹图表化而进行表示。
图9为,从处理部200开始对传感器部10的输出数据的取得起,到对第二期间内的、XYZ坐标系中的网球拍300的顶端302和握柄末端304的轨迹进行图表表示为止的处理的流程图。
首先,在数据取得期间结束之前(步骤S120中的否),周期性地从传感器部10取得新的3轴加速度数据和3轴角速度数据(步骤S110)。
接下来,当数据取得期间结束时(步骤S120的是),对在步骤S110中于两个第一期间(时刻t0~t1的期间和时刻t4~t5的期间)内所取得的3轴角速度数据相对于真值(0)的误差进行计算,并对3轴陀螺传感器的输出误差(角速度误差)的时间函数进行推断(步骤S130)。例如,可以利用多项式来对角速度误差的时间函数进行近似从而进行推断。
接下来,使用在步骤S130中推断出的时间函数,将在步骤S110中所取得的3轴角速度数据的误差去除再进行积分,从而计算出传感器部10在XYZ坐标系中的姿态(步骤S140)。
接下来,使用在步骤S140中计算出的、传感器部10在XYZ坐标系中的姿态,而将在步骤S110中所取得的3轴加速度数据(xyz坐标系中的加速度矢量)坐标转换为XYZ坐标系中的加速度矢量(步骤S150)。
接下来,对通过步骤S150中的坐标转换而得到的XYZ坐标系中的加速度矢量进行2阶积分,从而计算出数据取得期间(时刻t0~t5的期间)内的、XYZ坐标系中的传感器部10的位置(步骤S160)。
接下来,对两个第一期间(时刻t0~t1的期间和时刻t4~t5的期间)内的、XYZ坐标系中的传感器部10的位置相对于真值(第一位置)的误差进行计算,并对XYZ坐标系中的加速度矢量在X轴、Y轴、Z轴的各个方向上的加速度误差的时间函数进行推断(步骤S170)。
接下来,使用在步骤S170中推断出的加速度误差的时间函数,将XYZ坐标系中的加速度矢量的误差去除再进行2阶积分,从而计算出传感器部10在XYZ坐标系中的位置(网球拍300的握柄末端304的位置)(步骤S180)。
接下来,从传感器部10到顶端的距离和方向被预先计测而设为已知,从而根据在步骤S160中计算出的传感器部10在XYZ坐标系中的位置、和在步骤S140中计算出的传感器部10在XYZ坐标系中的姿态,而计算出网球拍300的顶端302在XYZ坐标系中的位置(步骤S190)。
最后,抽取成为运动分析的对象的第二期间(时刻t2~t3的期间)内的、网球拍300的顶端302和握柄末端304在XYZ坐标系中的位置坐标,而进行图表表示(步骤S200)。
图10(A)以及图10(B)为表示第二期间(时刻t2~t3的期间)内的网球拍300的顶端302和握柄末端304的轨迹的一个示例的图。图10(A)为X-Y平面上的轨迹,图10(B)为X-Z平面上的轨迹。在图10(A)中,由L1所示的曲线为顶端302的轨迹,而由L2所示的曲线为握柄末端304的轨迹。而且,在图10(B)中,由L3所示的曲线为顶端302的轨迹,而由L4所示的曲线为握柄末端304的轨迹。图10(A)以及图10(B)的轨迹符合实际的挥拍的轨迹。
为了进行比较,在图11(A)以及图11(B)中各自图示了,将应用了在未对3轴加速度数据的误差进行补正的条件下进行积分的现有方法时的轨迹,与图10(A)以及图10(B)中的轨迹重叠表示的图。在图11(A)中,轨迹图G1为图10(A)中的轨迹图(应用了本实施方式的方法时的X-Y平面上的轨迹图),轨迹图G2为应用了现有方法时的X-Y平面上的轨迹图。此外,在图11(B)中,轨迹图G3为图10(B)中的轨迹图(应用了本实施方式的方法时的X-Z平面上的轨迹图),轨迹图G4为应用了现有方法时的X-Z平面上的轨迹图。从图11(A)以及图11(B)中可明确以下内容,即,在应用了现有方法时的轨迹图G2和G4中,X轴方向的位移为大约4m,从而与实际的挥拍的轨迹不一致。根据该结果可知,通过应用本实施方式的方法,大幅度地提高了挥拍的轨迹的精度。
本发明并不限定于本实施方式,其能够在本发明的技术思想范围内进行各种变形并实施。
例如,虽然在本实施方式中,以对将加速度数据进行了2阶时间积分后的位置数据进行补正的情况为例进行了说明,但是,作为其他的示例,也可以对将加速度数据进行了1阶时间积分后的速度数据进行补正。此时,例如,如果将第一期间设为对象物的静止期间,则只需在第一期间内将速度作为零而对加速度误差的时间函数进行推断即可。通过以此种方式对速度进行补正,从而能够精度良好地对例如网球拍、高尔夫球杆、球棒等的挥动速度进行计测。而且,作为其他的示例,也可以对将陀螺传感器输出的角速度数据进行了1阶时间积分后的、绕一个轴的角度(旋转角度)的数据进行补正。此时,例如,如果将第一期间设为对象物的静止期间,则只需在第一期间内将旋转角度作为零而对角速度误差的时间函数进行推断即可。通过以此种方式对旋转角度进行补正,从而能够精度良好地对例如球刚刚碰到网球拍或高尔夫球杆等之后的(刚碰撞之后)、击球面的旋转角度进行计测。
本发明包括与实施方式中所说明的结构实质性相同的结构(例如,功能、方法以及结果相同的结构,或者目的以及效果相同的结构)。而且,本发明包括对实施方式中所说明的结构的非本质的部分进行置换而得到的结构。而且,本发明包括能够起到与实施方式中所说明的结构相同的作用效果的结构,或者能够达成相同的目的的结构。而且,本发明包括在实施方式中所说明的结构中附加了公知技术的结构。
符号说明
1     运动分析装置;
10    传感器部;
20    主机终端;
100   传感器;
102x、102y、102z  加速度传感器;
104x、104y、104z  陀螺传感器;
110    数据处理部;
120    通信部;
200    处理部(CPU);
202    数据取得部;
204    误差时间函数推断部;
206    数据补正部;
208    运动分析信息生成部;
220    操作部;
210    通信部;
230    ROM;
240    RAM;
250    非易失性存储器;
260    显示部;
300    网球拍;
302    顶端;
304    握柄末端;
400    网球。

Claims (6)

1.一种运动分析装置,包括:
传感器部,其被安装在对象物上,并对物理量进行检测;
数据取得部,其取得包含所述物理量的m阶时间积分值的真值为已知的第一期间和作为运动分析的对象的第二期间在内的期间内的、所述传感器部的输出数据,其中,m为1以上的整数;
运动分析信息生成部,
所述运动分析装置的特征在于,还包括:
误差时间函数推断部,其对所述输出数据进行m阶时间积分,并根据所述输出数据在所述第一期间内的m阶时间积分值与所述真值之间的差,而对由所述传感器部检测出的所述物理量的值相对于所述真值的误差的时间函数进行推断;
数据补正部,其根据所述误差时间函数推断部的推断结果,而对所述输出数据在所述第二期间内的m阶时间积分值进行补正;
所述运动分析信息生成部根据由所述数据补正部补正后的所述第二期间内的m阶时间积分值,而生成所述对象物的运动分析信息。
2.如权利要求1所述的运动分析装置,其中,
所述误差时间函数推断部通过利用多项式而对所述误差的时间函数进行近似,并对该多项式的系数进行计算,从而对所述误差的时间函数进行推断。
3.如权利要求1所述的运动分析装置,其中,
所述第一期间被设定有多个,
所述误差时间函数推断部根据所述数据取得部在多个所述第一期间中的每一个期间内所取得的数据,而对所述误差的时间函数进行推断。
4.如权利要求3所述的运动分析装置,其中,
多个所述第一期间中的至少一个为所述第二期间开始前的期间,
多个所述第一期间中的至少一个为所述第二期间结束后的期间。
5.如权利要求1所述的运动分析装置,其中,
所述第一期间为所述对象物处于静止中的期间。
6.如权利要求1所述的运动分析装置,其中,
所述传感器部将加速度以及角速度中的至少一个作为所述物理量而进行检测。
CN201110363773.2A 2010-11-19 2011-11-16 运动分析装置 Expired - Fee Related CN102580300B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-259234 2010-11-19
JP2010259234A JP5948011B2 (ja) 2010-11-19 2010-11-19 運動解析装置

Publications (2)

Publication Number Publication Date
CN102580300A CN102580300A (zh) 2012-07-18
CN102580300B true CN102580300B (zh) 2015-01-07

Family

ID=46064414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110363773.2A Expired - Fee Related CN102580300B (zh) 2010-11-19 2011-11-16 运动分析装置

Country Status (3)

Country Link
US (3) US8565483B2 (zh)
JP (1) JP5948011B2 (zh)
CN (1) CN102580300B (zh)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480940B2 (en) 2009-03-13 2019-11-19 Otl Dynamics Llc Leveling and positioning system and method
US10502565B2 (en) 2009-03-13 2019-12-10 Otl Dynamics Llc Leveling and positioning system and method
US10241127B2 (en) * 2009-07-30 2019-03-26 Here Global B.V. Method, apparatus and computer program product for collecting activity data via a removable apparatus
US9261526B2 (en) 2010-08-26 2016-02-16 Blast Motion Inc. Fitting system for sporting equipment
US9406336B2 (en) 2010-08-26 2016-08-02 Blast Motion Inc. Multi-sensor event detection system
US9646209B2 (en) 2010-08-26 2017-05-09 Blast Motion Inc. Sensor and media event detection and tagging system
US9604142B2 (en) 2010-08-26 2017-03-28 Blast Motion Inc. Portable wireless mobile device motion capture data mining system and method
US9076041B2 (en) 2010-08-26 2015-07-07 Blast Motion Inc. Motion event recognition and video synchronization system and method
US9247212B2 (en) 2010-08-26 2016-01-26 Blast Motion Inc. Intelligent motion capture element
US9418705B2 (en) 2010-08-26 2016-08-16 Blast Motion Inc. Sensor and media event detection system
US9320957B2 (en) 2010-08-26 2016-04-26 Blast Motion Inc. Wireless and visual hybrid motion capture system
US8941723B2 (en) 2010-08-26 2015-01-27 Blast Motion Inc. Portable wireless mobile device motion capture and analysis system and method
US9619891B2 (en) 2010-08-26 2017-04-11 Blast Motion Inc. Event analysis and tagging system
US9039527B2 (en) 2010-08-26 2015-05-26 Blast Motion Inc. Broadcasting method for broadcasting images with augmented motion data
US9607652B2 (en) 2010-08-26 2017-03-28 Blast Motion Inc. Multi-sensor event detection and tagging system
US9401178B2 (en) 2010-08-26 2016-07-26 Blast Motion Inc. Event analysis system
US9235765B2 (en) 2010-08-26 2016-01-12 Blast Motion Inc. Video and motion event integration system
US9626554B2 (en) 2010-08-26 2017-04-18 Blast Motion Inc. Motion capture system that combines sensors with different measurement ranges
US9396385B2 (en) 2010-08-26 2016-07-19 Blast Motion Inc. Integrated sensor and video motion analysis method
US9940508B2 (en) 2010-08-26 2018-04-10 Blast Motion Inc. Event detection, confirmation and publication system that integrates sensor data and social media
JP5948011B2 (ja) * 2010-11-19 2016-07-06 セイコーエプソン株式会社 運動解析装置
US9676073B2 (en) 2012-09-20 2017-06-13 Otl Dynamics Llc Work-tool control system and method
US8869412B2 (en) * 2012-09-20 2014-10-28 Otl Dynamics Llc Work-tool positioning system and method
JP6175750B2 (ja) * 2012-09-21 2017-08-09 カシオ計算機株式会社 状態特定装置、状態特定方法及びプログラム
JP6300195B2 (ja) * 2012-10-05 2018-03-28 セイコーエプソン株式会社 ゴルフスイング解析装置およびゴルフスイング解析方法
US9415291B2 (en) 2012-10-05 2016-08-16 Seiko Epson Corporation Golf swing analyzing apparatus and method of analyzing golf swing
JP5835206B2 (ja) * 2012-12-21 2015-12-24 ヤマハ株式会社 運動分析装置
JP6168279B2 (ja) * 2013-02-15 2017-07-26 セイコーエプソン株式会社 解析制御装置、運動解析システム、プログラム、記録媒体および方位合わせ方法
US9342737B2 (en) * 2013-05-31 2016-05-17 Nike, Inc. Dynamic sampling in sports equipment
JP5870969B2 (ja) * 2013-06-21 2016-03-01 セイコーエプソン株式会社 運動解析装置および運動解析プログラム
JP6467766B2 (ja) * 2013-06-21 2019-02-13 セイコーエプソン株式会社 運動解析方法、運動解析装置および運動解析プログラム
CN103357146A (zh) * 2013-08-04 2013-10-23 无锡同春新能源科技有限公司 一种训练用网球拍
CN103357147A (zh) * 2013-08-04 2013-10-23 无锡同春新能源科技有限公司 一种训练用羽毛球拍
JP2015100567A (ja) * 2013-11-26 2015-06-04 セイコーエプソン株式会社 方位角キャリブレーション方法、運動解析装置、および方位角キャリブレーションプログラム
JP2015107237A (ja) * 2013-12-05 2015-06-11 ソニー株式会社 解析装置、解析方法および記録媒体
JP6371056B2 (ja) * 2013-12-26 2018-08-08 株式会社早稲田エルダリーヘルス事業団 移動運動状態表示装置、方法及びシステム並びにプログラム
JP2015192686A (ja) * 2014-03-31 2015-11-05 カシオ計算機株式会社 特定装置、特定方法及びプログラム
WO2016035464A1 (ja) * 2014-09-04 2016-03-10 ソニー株式会社 解析方法、システムおよび解析装置
JP2016116615A (ja) * 2014-12-19 2016-06-30 セイコーエプソン株式会社 運動解析装置、運動解析システム、運動解析方法、及びプログラム
JP6696109B2 (ja) * 2014-12-22 2020-05-20 セイコーエプソン株式会社 運動解析装置、運動解析システム、運動解析方法及びプログラム
US10706740B2 (en) * 2014-12-24 2020-07-07 Sony Corporation System and method for processing sensor data
CN105989196B (zh) * 2015-02-27 2020-01-17 中国移动通信集团公司 基于采集运动信息进行社交的方法及系统
JP6368280B2 (ja) 2015-06-10 2018-08-01 美津濃株式会社 スイング解析装置、コンピュータにスイングを解析させるためのプログラムおよびスイング解析システム
US10974121B2 (en) 2015-07-16 2021-04-13 Blast Motion Inc. Swing quality measurement system
US10124230B2 (en) 2016-07-19 2018-11-13 Blast Motion Inc. Swing analysis method using a sweet spot trajectory
US9694267B1 (en) 2016-07-19 2017-07-04 Blast Motion Inc. Swing analysis method using a swing plane reference frame
US11565163B2 (en) 2015-07-16 2023-01-31 Blast Motion Inc. Equipment fitting system that compares swing metrics
US11577142B2 (en) 2015-07-16 2023-02-14 Blast Motion Inc. Swing analysis system that calculates a rotational profile
JP2017086164A (ja) * 2015-11-02 2017-05-25 セイコーエプソン株式会社 電子機器、システム、方法、プログラム、及び記録媒体
ES2602591B1 (es) * 2015-12-17 2017-11-28 Kaitt Labs Innovation S.L. Raqueta de padel con sistema de representación de las variables dinámicas del juego
JP2017124071A (ja) * 2016-01-15 2017-07-20 セイコーエプソン株式会社 電子機器、システム、提示方法、提示プログラム、及び記録媒体
JP2017124099A (ja) * 2016-01-15 2017-07-20 セイコーエプソン株式会社 運動解析方法、運動解析プログラム及びその記憶媒体並びに運動解析装置及び運動解析システム
JP2017144130A (ja) * 2016-02-19 2017-08-24 セイコーエプソン株式会社 運動解析装置、運動解析システム、運動解析方法、運動解析プログラム、記録媒体および表示方法
US10265602B2 (en) 2016-03-03 2019-04-23 Blast Motion Inc. Aiming feedback system with inertial sensors
JP6158986B2 (ja) * 2016-05-18 2017-07-05 株式会社Access モーションセンサを用いたスイング解析システム、スイング解析方法、およびスイング解析プログラム
US10786728B2 (en) 2017-05-23 2020-09-29 Blast Motion Inc. Motion mirroring system that incorporates virtual environment constraints
CN109173212B (zh) * 2018-10-31 2019-09-17 中国地质大学(武汉) 一种羽毛球持拍矫正器制作方法
CN111111121B (zh) * 2020-01-16 2023-10-03 合肥工业大学 一种球拍及击球识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031803A (zh) * 2004-08-12 2007-09-05 旭化成电子材料元件株式会社 加速度计测装置
US7587065B2 (en) * 2002-09-26 2009-09-08 Kabushiki Kaisha Toshiba Image analysis method, analyzing movement of an object in image data
CN101549205A (zh) * 2008-04-02 2009-10-07 北京国浩微磁电子智能传感器技术研究所 人体步态识别及其能耗实时监测和运动训练指导系统
CN101850172A (zh) * 2009-03-31 2010-10-06 松下电工株式会社 运动装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694340A (en) * 1995-04-05 1997-12-02 Kim; Charles Hongchul Method of training physical skills using a digital motion analyzer and an accelerometer
US6430997B1 (en) * 1995-11-06 2002-08-13 Trazer Technologies, Inc. System and method for tracking and assessing movement skills in multidimensional space
JP2003299757A (ja) * 2002-04-10 2003-10-21 Yamasa Tokei Keiki Kk トレーニング補助器具
JP4028771B2 (ja) 2002-06-25 2007-12-26 ブリヂストンスポーツ株式会社 ゴルフスイングのインパクト状態計測方法
KR100480793B1 (ko) * 2003-06-16 2005-04-07 삼성전자주식회사 가속도 오차 보정 방법 및 장치, 및 이를 이용한 관성항법 시스템
US8556267B2 (en) * 2004-06-07 2013-10-15 Acushnet Company Launch monitor
EP1779344A4 (en) * 2004-07-29 2009-08-19 Motiva Llc SYSTEM FOR MEASURING HUMAN MOVEMENT
US7219033B2 (en) * 2005-02-15 2007-05-15 Magneto Inertial Sensing Technology, Inc. Single/multiple axes six degrees of freedom (6 DOF) inertial motion capture system with initial orientation determination capability
JP4724832B2 (ja) * 2005-11-09 2011-07-13 国立大学法人豊橋技術科学大学 歩行補助制御方法とその歩行補助制御装置
US8001838B2 (en) * 2007-08-07 2011-08-23 Roberts Jerry B Electronic pitching trainer and method for determining the true speed of a sports projectile
JP5160963B2 (ja) * 2008-05-27 2013-03-13 日本電信電話株式会社 姿勢・移動軌跡検出装置、検出方法、プログラムおよび記録媒体
JP4743292B2 (ja) * 2009-02-16 2011-08-10 美津濃株式会社 スイング分析装置およびゴルフクラブシャフト選定システム
JP5948011B2 (ja) * 2010-11-19 2016-07-06 セイコーエプソン株式会社 運動解析装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7587065B2 (en) * 2002-09-26 2009-09-08 Kabushiki Kaisha Toshiba Image analysis method, analyzing movement of an object in image data
CN101031803A (zh) * 2004-08-12 2007-09-05 旭化成电子材料元件株式会社 加速度计测装置
CN101549205A (zh) * 2008-04-02 2009-10-07 北京国浩微磁电子智能传感器技术研究所 人体步态识别及其能耗实时监测和运动训练指导系统
CN101850172A (zh) * 2009-03-31 2010-10-06 松下电工株式会社 运动装置

Also Published As

Publication number Publication date
US20150198629A1 (en) 2015-07-16
CN102580300A (zh) 2012-07-18
US20120128203A1 (en) 2012-05-24
US9020197B2 (en) 2015-04-28
JP2012110359A (ja) 2012-06-14
JP5948011B2 (ja) 2016-07-06
US20140019083A1 (en) 2014-01-16
US8565483B2 (en) 2013-10-22

Similar Documents

Publication Publication Date Title
CN102580300B (zh) 运动分析装置
US8998717B2 (en) Device and method for reconstructing and analyzing motion of a rigid body
CN104524755B (zh) 摆动分析装置
US3945646A (en) Athletic swing measurement system and method
CN104225897A (zh) 运动分析方法以及运动分析装置
US20070206837A1 (en) Portable Swing Analyzer
CA2595793A1 (en) Single/multiple axes six degrees of freedom (6 dof) inertial motion capture system with initial orientation determination capability
KR20140148308A (ko) 운동 해석 장치
KR20150005447A (ko) 운동 해석 장치
KR20140148298A (ko) 운동 해석 방법 및 운동 해석 장치
JP6054331B2 (ja) ゴルフクラブ用の改善されたフィッティングシステム
US20130186202A1 (en) Device and method for recording at least one acceleration and a corresponding computer program and a corresponding computer-readable storage medium and also use of such a device
KR101415149B1 (ko) 골프 퍼팅 시뮬레이션을 위한 골프 퍼팅 연습장치
US10276060B2 (en) Golf club determination method, golf club determination device, and golf club determination program
US20170011652A1 (en) Motion analysis method, motion analysis apparatus, motion analysis system, and program
US10252137B2 (en) Motion analysis method, motion analysis apparatus, and storage device
US20180169471A1 (en) Selection support apparatus, selection support system, and selection support method
CN114555196A (zh) 球拍用解析系统、球拍用解析装置、球拍用解析程序以及球拍用解析方法
JP6862848B2 (ja) 運動解析装置、運動解析方法、プログラム、及び運動解析システム
US20170004729A1 (en) Motion analysis method, motion analysis apparatus, motion analysis system, and program
JP6862931B2 (ja) 運動解析装置、運動解析方法、運動解析システムおよび表示方法
KR100856426B1 (ko) 복수의 가속도 센서를 이용한 운동기구 궤적 측정장치 및그 방법
US10565895B2 (en) Motion analysis method, motion analysis apparatus, and storage device
JP2015002911A (ja) 運動解析装置および運動解析プログラム
WO2015146155A1 (ja) スイングデータ圧縮方法、スイングデータ圧縮装置、スイング解析装置及びスイングデータ圧縮プログラム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150107

Termination date: 20171116

CF01 Termination of patent right due to non-payment of annual fee