JP6158986B2 - モーションセンサを用いたスイング解析システム、スイング解析方法、およびスイング解析プログラム - Google Patents

モーションセンサを用いたスイング解析システム、スイング解析方法、およびスイング解析プログラム Download PDF

Info

Publication number
JP6158986B2
JP6158986B2 JP2016099398A JP2016099398A JP6158986B2 JP 6158986 B2 JP6158986 B2 JP 6158986B2 JP 2016099398 A JP2016099398 A JP 2016099398A JP 2016099398 A JP2016099398 A JP 2016099398A JP 6158986 B2 JP6158986 B2 JP 6158986B2
Authority
JP
Japan
Prior art keywords
swing
sensor
swing analysis
sensor data
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016099398A
Other languages
English (en)
Other versions
JP2016144733A (ja
Inventor
大祐 佐京
大祐 佐京
順一 加藤
順一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Access Co Ltd
Original Assignee
Access Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Access Co Ltd filed Critical Access Co Ltd
Priority to JP2016099398A priority Critical patent/JP6158986B2/ja
Publication of JP2016144733A publication Critical patent/JP2016144733A/ja
Application granted granted Critical
Publication of JP6158986B2 publication Critical patent/JP6158986B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • User Interface Of Digital Computer (AREA)
  • Golf Clubs (AREA)

Description

本発明は、ゴルフクラブなどによるスイング解析システム、スイング解析方法、およびスイング解析プログラムに関するものであり、詳しくは、モーションセンサを使用したスイング解析システム、スイング解析方法、およびスイング解析プログラムに関する。
従来、ゴルフクラブや野球のバットのスイングなど、人の運動を解析する様々な装置が提案されている。例えば、ゴルフクラブなどにマーカを付け、ボールを打つまでを連続的にカメラで撮影して、撮影された画像に基づいてスイングを解析する装置などが一般的に利用されている。しかしながら、このような装置では、スイング全体を視覚化することができないため、詳細なスイング解析を行うことができない。また装置自体が大がかりになってしまうため、ユーザがいつでも簡単にスイングを測定することができる環境ではない。
このようなカメラを用いたスイング解析装置における問題を解決するために、非特許文献1には、コンパクトなモーションセンサを利用して、スイング解析を行う技術が開示されている。詳しくは、非特許文献1のスイング解析装置では、直列に配置されたモーションセンサ、バッテリー、通信モジュールがゴルフクラブのグリップに埋め込まれている。そして、スイングマシンによってゴルフクラブのスイングを行い、モーションセンサから出力されるデータを解析する構成となっている。
Kevin W. King、"THE DESIGN AND APPLICATION OFWIRELESS MEMS INERTIAL MEASUREMENT UNITS FOR THE MEASUREMENT AND ANALYSIS OFGOLF SWINGS"、[online]、2008年、インターネット<URL:http://deepblue.lib.umich.edu/bitstream/2027.42/58460/1/kwking_1.pdf>
しかしながら、非特許文献1におけるスイング解析技術は、あくまでスイングマシンによるスイングを測定して得られたデータに基づいてスイング解析を行うものであり、人によるスイングの解析を行う場合の、人やセンサによる個体差やブレについては考慮されていない。具体的には、実際に人によるスイングの解析を行う場合には、下記のような問題が考えられる。
まず、非特許文献1では、アドレス時のフェース面と直行する方向を、スイング軌跡の角度測定の基準となるターゲットラインと設定している。スイングマシンでは常に一定のアドレス姿勢をとることが可能であるため、フェース面と直行する方向を常にターゲットラインと設定することができる。しかしながら、一般的なユーザにとって、スイングごとに常に一定のアドレス姿勢をとること、およびフェース面がターゲット方向に向いているか認識することは困難である。そのため、実際のターゲットラインはアドレス姿勢に依存して変化してしまい、正しい角度測定ができない恐れがある。
また、モーションセンサは機械であるので、電極やバネの偏りなど物理的な個体差による出力誤差や、時間経過による発熱により誤差が増大する事象などが存在する。これらのセンサの出力誤差によって測定結果は異なることになってしまうが、非特許文献1におけるスイング解析では、センサの誤差については考慮されていない。
さらに、非特許文献1では、上述のようにスイングマシンによるスイング動作を前提としており、アドレス状態の後は、直ぐにスイングが行われる。しかしながら、一般的なユーザは、アドレス状態から直ぐにスイングをするのではなく、プレルーティーンや、スイングの予備動作(以下、「ワッグル」という)を行ってから、スイングを開始する場合がほとんどである。このようなワッグル動作に対応する測定データがスイング解析に用いられた場合、その後のスイング測定結果に大きな誤差が生じる恐れがある。
本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、人やセンサの個体差を考慮して、より正確な解析結果を得ることが可能なスイング解析システム、スイング解析方法、およびスイング解析プログラムを提供することである。
上記の課題を解決する本発明の一形態に係るスイング解析システムは、スイング解析の対象物に取り付けられるモーションセンサと、該モーションセンサと無線通信可能な端末装置と、からなるスイング解析システムであって、端末装置が、モーションセンサから出力されるセンサデータに基づいて、スイング解析を行うスイング解析部と、モーションセンサが静止している状態におけるセンサデータから、対象物の姿勢情報を求め、姿勢情報に基づいてスイング解析手段におけるスイング解析の基準となるターゲットラインを設定するターゲットライン設定部と、を備えることを特徴とする。
また、上記モーションセンサは、三軸方向の加速度を検出可能な加速度センサを含み、ターゲットライン設定部は、加速度センサから出力されるセンサデータから、姿勢情報を求めても良い。さらに、姿勢情報は、重力加速度方向のベクトルであり、ターゲットライン設定部は、重力加速度方向のベクトルとZ軸方向のベクトルとの外積に基づいて、第1の座標系におけるターゲットラインを求めても良い。
また、ターゲットライン設定部は、第1の座標系におけるターゲットラインを第2の座標系に変換して、スイング解析手段において用いられるターゲットラインとして設定しても良い。さらに、ターゲットライン設定部は、設定されたターゲットラインを第2の座標系における一つの軸と平行になるよう処理しても良い。
また、スイング解析部は、センサデータから得られたスイング軌跡を判定する際に、ターゲットラインを用いても良い。
また、上記スイング解析システムは、モーションセンサが静止している状態を検出する静止状態検出部をさらに備え、静止状態検出部は、モーションセンサから出力される所定の数のセンサデータの平均値および標準偏差値を計算し、標準偏差値が、所定の閾値より低くなった場合を静止状態として検出しても良い。さらに、所定の数および所定の閾値は、使用条件に応じて可変であり、使用条件は、モーションセンサの感度、ユーザの年齢、およびスイング解析の対象物の種類を含むものであっても良い。
また、上記スイング解析システムは、モーションセンサが静止している状態において、該モーションセンサが正しく取り付けられているか否かを判定する姿勢判定部をさらに備えても良い。さらに、姿勢判定部は、モーションセンサから出力されるセンサデータの符号および平均値に基づいて、該モーションセンサが正しく取り付けられているか否かを判断しても良い。
また、本発明の別の形態に係るスイング解析方法は、スイング解析の対象物に取り付けられるモーションセンサに無線通信可能に接続される端末装置において実行される、スイング解析方法であって、モーションセンサが静止している状態におけるセンサデータから、対象物の姿勢情報を求めるステップと、姿勢情報に基づいてターゲットラインを設定するステップと、モーションセンサから出力されるセンサデータを用いてスイング解析を行うステップであって、スイング解析における基準にターゲットラインを用いるステップと、を含むことを特徴とする。
また、本発明の別の形態に係るスイング解析プログラムは、スイング解析の対象物に取り付けられるモーションセンサに無線通信可能に接続される端末装置のCPUに、上記スイング解析方法における各ステップを実行させることを特徴とする。
また、本発明の別の形態に係るスイング解析システムは、スイング解析の対象物に取り付けられるモーションセンサと、該モーションセンサと無線通信可能な端末装置と、からなるスイング解析システムであって、端末装置は、モーションセンサから出力されるセンサデータに基づいて、スイング解析を行うスイングデータ解析部と、モーションセンサの出力誤差を補正する誤差補正部と、を備え、誤差補正部は、モーションセンサから出力されるセンサデータに基づいて、対象物のアドレス時の座標点と、インパクト時の座標点との差を求めてモーションセンサの出力誤差と推定し、推定された誤差を用いて、モーションセンサから出力されるセンサデータの再計算を行うことを特徴とする。また、上記モーションセンサは、加速度センサを含み、誤差補正部は、加速度センサにおける出力誤差を補正するものであっても良い。
また、本発明の別の形態に係るスイング解析システムは、スイング解析の対象物に取り付けられるモーションセンサと、該モーションセンサと無線通信可能な端末装置と、からなるスイング解析システムであって、端末装置は、モーションセンサから出力されるセンサデータからスイング状態を判定するスイング状態判定部と、モーションセンサから出力されるセンサデータに基づいて、スイング解析を行うスイングデータ解析部と、を備え、上記モーションセンサは、三軸方向の角速度を検出可能な角速度センサを備え、スイング状態判定部は、三軸の角速度センサにおけるセンサデータ、および対象物のインパクト時に基づいてスイング開始点を検出し、スイングデータ解析部は、検出されたスイング開始点以前に検出されたセンサデータの少なくとも一部をスイング解析に使用しないよう構成される。
また、上記スイング状態判定部は、角速度センサのZ軸のセンサデータのマイナスピーク値、およびX軸のセンサデータのプラスピーク値を検出し、インパクト時から測定開始時へさかのぼって、マイナスピーク値およびプラスピーク値の符号のいずれか一方が反転する点を、スイング開始点と判定するものであっても良い。さらに、上記スイング状態判定部は、インパクト時から測定開始時へさかのぼって、マイナスピーク値の符号が反転した点、およびプラスピーク値の符号が反転した点のうち、測定開始時に近い方の点をスイング開始点と判定しても良い。
また、上記モーションセンサは、三軸方向の加速度を検出可能な加速度センサをさらに備え、スイング状態判定部は、加速度センサのY軸のセンサデータのマイナスピーク値をインパクト時と判定しても良い。または、スイング状態判定部は、加速度センサのY軸のセンサデータにおいて、二つのセンサデータの値に所定値以上の差がある場合にインパクト時と判定しても良い。
本発明によれば、人やセンサの個体差を考慮して、より正確な解析結果を得ることが可能なスイング解析システム、スイング解析方法、およびスイング解析プログラムを提供することができる。
本発明の実施形態のスイング解析システムの構成を示すブロック図である。 本発明の実施形態におけるセンサの取付けを示す外観図である。 本発明の実施形態におけるスイング解析処理を示すフローチャートである。 本発明の実施形態におけるスイング解析処理を示すフローチャートである。 ゴルフクラブ、センサおよびターゲットラインの位置関係を説明するための図である。 スイング軌道およびターゲットラインの関係を説明するための図である。 本発明の実施形態におけるユーザ座標系を示す図である。 本発明の実施形態におけるセンサデータによる波形を示す図である。
以下、図面を参照して、本発明の実施形態におけるスイング解析システムについて説明する。尚、本実施形態は、ゴルフのスイング解析を行う場合を例に説明する。
図1は、本発明の実施形態におけるスイング解析システム1の概略構成を示す図である。図1に示すように、本実施形態のスイング解析システム1は、互いに無線通信可能なセンサ10および端末装置20からなる。センサ10は、モーションセンサ100、データ処理部110、通信部120、操作ボタン130およびLED140を備える。モーションセンサ100は、三軸方向の加速度を検出する加速度センサ、および三軸方向の角速度を検出する角速度センサを含む。モーションセンサ100はさらに、地磁気センサを含んでも良い。また、データ処理部110は、モーションセンサ100によって検出された各データの同期をとり、バイアス補正や温度補正などの処理を行って通信部120へ出力する処理部である。通信部120は、端末装置20と狭域の無線通信を行うための通信部であり、本実施形態では、Bluetooth(登録商標)によって、端末装置20とデータの送受信が行われる。尚、通信部120は、Bluetooth(登録商標)以外にも、WiFi(無線LAN)などによる無線通信を行うこととしても良い。
図2は、ゴルフクラブ6へ取付けられた状態のセンサ10を示す外観斜視図である。図2に示されるように、センサ10は、ゴルフクラブ6のシャフトの径と略同じ幅を有するように形成される小型のユニットであり、ゴルフクラブ6のグリップとシャフトの境目付近に、着脱可能に取り付けられる。また、センサ10はスイングの速度や打球した時の衝撃で動かないよう、ゴムバンドなどのホルダ15によってゴルフクラブ6に固定される。
ホルダ15の大きさやゴムの締め付けを調整することにより、あらゆる太さのゴルフクラブや、ゴルフクラブ以外の野球のバットやテニスのラケットにも取り付けることが可能となる。また、センサ10を小型化および軽量化したことにより、センサ10を取り付けた後のゴルフクラブ6の重心バランスを崩すことがないため、普段通りのスイングをしながらスイング測定が可能となる。
また、後述するように、ユーザはセンサ10の操作ボタン130をスイング動作の前に押すことで、センサ10と端末装置20とのデータの送受信を開始し、スイング測定を開始することができる。また、LED140は、端末装置20側のスイング解析準備が整ったか否か、または端末装置20とセンサ10との間に通信エラーが発生していないか、などの状況に応じて点灯する。これにより、ユーザは、端末装置20の表示部220に表示されたエラー画面や操作指示を見なくても、LED140の点灯状態を確認することで、スイング動作開始前に、スイング測定を継続すべきか、中断すべきかの判断をすることができる。
図1に戻って、端末装置20は、CPU200、通信部210、表示部220、操作部230、ROM240、RAM250、および不揮発性メモリ260を備える。なお、本実施形態における端末装置20としては、スマートフォンが用いられるが、これ以外にも携帯電話端末、PDA(Personal Digital Assistants)、PHS(Personal Handy phone System)、携帯ゲーム機、デジタル家電、カーナビ、デスクトップPC、ラップトップPC等の別形態の端末を利用することが可能である。端末装置20は、スイングの測定が行われる間、センサ10と無線通信が可能な範囲内(例えば練習場の棚など)に置かれる。
CPU200は、端末装置20に含まれる各要素と相互に通信を行い、装置全体の制御を統括的に実行する。ROM240および不揮発性メモリ260は、端末装置20にて実行される各種プログラムやデータを記憶するためのメモリである。RAM250は、様々なデータを一時的に記憶し、ROM240または不揮発性メモリ260に記憶されている各種プログラムのロード先ともなる揮発性メモリである。ROM240または不揮発性メモリ260に記憶されている各種プログラムは、CPU200によって実行される。
また、CPU200は、操作判定部201、静止状態検出部202、姿勢判定部203、ターゲットライン設定部204、スイング状態判定部205、及びスイングデータ解析部206を備える。これらは、不揮発性メモリ260に記憶されたアプリケーションプログラムをCPU200によって実行することにより実施される機能部である。各部の機能については、後ほど詳述する。なお、端末装置20にASIC(Application Specific Integrated Circuit)として各機能部の全部または一部を実装し、該ASICによってハードウェア的に実現される構成としても良い。
通信部210は、センサ10とBluetooth(登録商標)によって無線通信を行うための通信部である。通信部210は、さらに、外部ネットワーク(インターネットなど)とのデータの送受信(電話の発着信、電子メールの送受信、Webコンテンツの取得など)を行うために、外部ネットワークとの接続を確立するためのネットワークインタフェースを含んでいても良い。
操作部230は、タッチパネルにより構成され、LCD(Liquid Crystal Display)や、有機EL(Electro Luminescence)などによって構成される表示部220上に表示されたコンテンツに対して、ペンタッチやフィンガータッチによる入力や、フリック操作(画面上を指ではらう操作)による画面スクロール、ピンチ操作(二本の指の間を画面上で拡げる又は縮める操作)によるズームイン/ズームアウト等の各種操作を行うことができる。尚、操作部230は、表示部220とは別に設けられる各種キーによって構成されても良い。
続いて、本実施形態におけるスイング解析処理の流れについて、図3A及び図3Bのフローチャートを参照して説明する。本実施形態のスイング解析処理は、事前に不揮発性メモリ260にダウンロードされたスイング解析アプリケーションプログラムを、ユーザが端末装置20の操作部230を操作して起動することにより開始される。スイング解析アプリケーションプログラムが起動されると、表示部220に使用するゴルフクラブの情報を入力するための画面が表示される。そして、ユーザによって使用するゴルフクラブの情報が入力され、操作判定部201にて入力された情報を取得し、不揮発性メモリ260に記憶する(S1)。
続いて、スイング解析処理に使用するセンサ10の設定が行われる(S2)。ここで、スイング解析システム1において、センサ10は、端末装置20の無線通信圏内に複数存在する可能性もある(例えば、複数のゴルフクラブに一つずつ装着される場合など)。そのため、端末装置20において、現在のスイング解析処理で使用するセンサを特定する必要がある。そこで、端末装置20とセンサ10とが初めてペアリングされる際に、センサ10が、端末装置20に製造時のシリアル番号を送信することによって、端末装置20がセンサ10を識別できるようになっている。そして、S2では、表示部220に使用するセンサ10を選択するための画面が表示され、操作判定部201にて、ユーザによって選択されたセンサを今回使用するセンサ10として特定し、不揮発性メモリ260に記憶する。
続いて、センサ10を図2に示すようにゴルフクラブ6に取付け、電源をONにする(S3)。これにより、端末装置20とセンサ10との間で無線通信が確立し、データの送受信が可能となる(S4)。そして、ユーザはゴルフクラブ6を構えてスイングを行う準備をし、準備が整った時点でセンサ10の操作ボタン130を押す(S5)。このとき、端末装置20側のスイング測定準備が整っていないことや、通信エラーが発生していることがLED140の点灯によって確認された場合は、操作ボタン130を押さずにしばらく待つか、S1の処理からやり直すことができる。
端末装置20の操作判定部201では、センサ10の操作ボタン130が押されたことを検出し、センサ10へモーションセンサ100から出力されるセンサデータの送信開始指示がなされる(S6)。これにより、センサ10において、モーションセンサ100の三軸加速度センサおよび三軸角速度センサで検出された各センサデータが、端末装置20へ送信される。具体的には、本実施形態では、各センサにおいて1秒間に所定の数のデータが検出され、データ処理部110および通信部120を介して端末装置20に随時送信される。
続いて、端末装置20では、センサ10から送信されるセンサデータの受信を開始し、受信したセンサデータを随時RAM250に記憶する(S7)。そして、表示部220またはスピーカ(不図示)を介して、ユーザに、アドレス姿勢を取るよう指示を行う(S8)。その後、静止状態検出部202によって、受信したセンサデータに基づいて静止状態が検出される(S9)。静止状態とは、センサ10が静止している状態、すなわち、スイング開始前のアドレス状態である。S9では、S7においてセンサデータの受信を開始してから、直近までのいくつか(例えば連続する350個)のセンサデータの平均値と標準偏差値を計算する。そして、得られた標準偏差値が、所定の閾値より低くなった場合に静止状態を検出したと判断する。ここで、モーションセンサ100の感度、ユーザの年齢、使用するゴルフクラブによって、平均値を計算するデータの個数および標準偏差値と比較する閾値を調整することで、ゴルフクラブの種類やユーザの個人差にかかわらず、静止状態を適切に判断することができる。そして、静止状態が検出された場合(S10:Yes)は、S11の処理に進み、静止状態が検出されない場合(S10:No)は、S9の処理に戻って、再度静止状態を検出する。
続いて、姿勢判定部203にて、静止状態が判定された時のセンサデータを使用して、センサ10の姿勢判定が行われる(S11)。ここで、ROM240には、センサ10の取り付け方向が正しい場合の、モーションセンサ100の加速度センサにおける各軸のセンサデータの符号および平均値が予め記憶されている。姿勢判定部203では、ROM240に記憶される各値を読み出し、静止状態が検出された時のセンサデータと比較する。そして、静止状態が検出された時のセンサデータが記憶されたセンサデータの符号と一致せず、かつ平均値がROM240に記憶された平均値に対して一定の範囲内にない場合、センサ10の取り付け位置が正しくない、またはアドレス姿勢が通常のゴルフのアドレス姿勢とは全く異なる姿勢であると判断する。尚、センサ10の姿勢判定における許容範囲の設定も、静止状態の検出と同様に、モーションセンサ100の感度、ユーザの年齢、使用するゴルフクラブに応じて変更することで、ゴルフクラブの種類やユーザの個人差にかかわらず、適切に姿勢を判定することができる。そして、姿勢判定の結果、センサ10の取付け方向が正しいと判断された場合(S12:Yes)、S13の処理に進む。一方、センサ10の取付け方向が正しくないと判断された場合(S12:No)は、S3の処理に戻り、センサ10が再度取付けられ、以降の処理が繰り返される。このように姿勢判定を行うことにより、センサが誤って取り付けられた状態でスイングされることを防ぐことができる。
尚、センサ10を取り付ける場所や、取り付ける対象物の太さ、材質および形状、またホルダ15の材質および形状により、センサ10を図4および図6に示す位置に取り付けられない場合も考えられる。そのような場合は、ROM240に記憶する取り付け位置が正しい場合のセンサデータの符号、平均値を変更することで、センサ10の取り付け位置を図4および図6に示す位置から変更することも可能である。図6に示すセンサ位置から時計回りに90°回転して取り付けることが可能な場合、センサ10の各軸からのセンサデータを図6の位置となるように置き換えることで、実際のセンサ10の取り付け位置を、図6に示されるように正面としなくても、同じように姿勢を判定することができる。また操作部230により、ユーザに取り付け位置を選択させてRAM250に保存し、RAM250に保存した取り付け位置に基づいて、姿勢を正常と判定するセンサデータの符号、平均値を変更しても良い。
続くS13では、ターゲットライン設定部204にて、静止状態が検出された時のセンサデータを使用して、ターゲットラインが設定される。ターゲットラインは、スイング解析を行う際に、測定されたスイング軌道をインサイドイン、インサイドアウト、またはアウトサイドイン(スイングプレーン)に分類するための基準に用いられる。本実施形態におけるターゲットライン設定処理については、後ほど詳述する。
続いて、端末装置20の表示部220またはスピーカ(不図示)から、ユーザに対して、スイングを開始するよう指示が行われる(S14)。そして、ユーザによるスイング動作がセンサ10によって測定され、各センサデータが端末装置20にて受信される。続いて、スイング状態判定部205によって、受信したセンサデータに基づいて、スイング状態判定処理が行われる(S15)。本処理では、スイングの各状態を逐次判定し、RAM250に記憶する。スイングの各状態とは、アドレス状態(スイング前)、スイング開始(テイクバックの開始)、テイクバックスイング、トップオブスイング、ダウンスイング、インパクト、フォロースルーである。本実施形態のスイング状態判定処理では、受信したセンサデータに対してセンサ誤差を補正する処理、およびスイング開始点を検出するためのワッグル除去処理が行われる。これらの処理については、後ほど詳述する。
次に、スイング状態判定部205において、インパクトが検出されたか否かが判断される(S16)。そして、インパクトが検出された場合は(S16:Yes)、端末装置20からセンサ10へ測定を停止するよう指示がなされ、センサ10にて測定および端末装置20へのデータ送信が停止される(S17)。
その後、スイングデータ解析部206において、RAM250に記憶されたデータに基づいて、スイングデータ解析が行われる(S18)。具体的には、スイングデータ解析部206にて、センサデータからスイング測定に必要な各種データが解析される。スイング測定に必要な各種データには、ヘッドスピード、フェース角、リアルロフト角、ライ角、左右進入角、上下進入角、リストスピード、リスト回転速度、スイングプレーン、リストターン係数、テンポおよびスイング軌跡の座標などがある。スイングデータ解析部206にて解析が行われた後、解析結果が不揮発性メモリ260へ保存されるとともに、端末装置20の表示部220に表示される(S19)。尚、スイングデータ解析部206による解析結果は、端末装置20とインターネット等を介して通信可能なサーバに送信され、サーバによって保存および管理される構成としても良い。
表示部220では、スイング軌跡の座標情報を3Dアニメーションで表示し、360度回転可能なスイング軌跡、およびスイング開始からスイング終了までの各測定点における測定結果(ヘッドスピード、フェース角、リアルロフト角など)が表示される。この場合、ユーザが測定結果を容易に把握できるように、様々な表示を行うことが可能である。具体的には、スイングの状態変化に応じたスイング軌跡の色分け、シークバーにおける色分け、シャフト表示の色分け、シャフトとスイングアークの表示方法の切り替えなどが考えられる。
また、S19では、各測定結果やスイング軌跡を表示および記録するだけでなく、スイングの改善点をユーザが容易に理解できるように提示することが望ましい。そこで、本実施形態では、スイング解析の結果に基づいて、端末装置20の表示部220にアドバイスを表示させることも可能である。具体的には、まずユーザは、端末装置20の操作部230を操作し、スイング動作後に実際にボールが飛んだ方向を入力する。スイングデータ解析部206は、入力されたボールの方向、センサデータを解析して得られたヘッドスピード、リストスピードの割合、およびスイングプレーンの種類に基づいて、予め記憶されたアドバイスから適切なアドバイスを選択して、表示部220に表示する。これにより、ユーザが容易に改善点を理解することができる。
さらに、一般的に、ユーザは、スイングの最中においてゴルフクラブ6のヘッドがボールに当たる直前の挙動に対して最も関心があると考えられる。そこで、本実施形態では、インパクトを検出した後、インパクトの前後における数十個のセンサデータを抽出し、ヘッドがボールに当たる直前のフェース面の挙動(フェース角度の変位及び軌跡情報)をユーザが真上から見た軌跡としてクローズアップして表示部220に表示する。これにより、ユーザは、ゴルフクラブ6のヘッドがボールに当たる前後の挙動をより詳しく知ることができる。
続いて、センサ10の操作ボタン130が押されたか否かが判断される(S20)。そして、操作ボタン130が押された場合は(S20:Yes)、S6の処理に戻り、再度、センサ10による測定および端末装置20へのセンサデータの送信が行われる。そして、新たなスイングに対して、以降の処理が繰り返される。一方、操作ボタン130が押されていない場合は(S20:No)、端末装置20とセンサ10との通信が切断され(S21)、本処理を終了する。
続いて、本実施形態におけるターゲットライン設定処理について、図4−図6を参照して説明する。上述のように、従来技術においては、スイングマシンが用いられているため、センサ10のゴルフクラブ6への取り付け位置およびセンサ10の姿勢が常に一定であった。具体的には、従来技術においては、図4に示すように、ターゲットライン方向をゴルフクラブ6のフェース面と直交する方向として、静的に設定することが可能である。しかしながら、実際に人によるスイングを解析する場合、アドレス時にゴルフクラブ6のロフト角とライ角が常に一定になるということはありえず、これらの角度の変化によりフェース面と直交する方向がターゲットラインと平行ではなくなってしまうと言った問題があった。
スイング軌道を測定するための基準となるターゲットラインが本来の方向とずれてしまうと、測定結果が正しくなってしまう。図5(a)および(b)は、スイング軌道とターゲットラインとの関係を示す図である。スイング軌道とは、図5(a)および(b)のようにゴルフクラブ6のヘッドが描く軌跡を真上から見たときの軌道をいう。スイング解析を行う場合には、ターゲットラインを基準線として、スイング軌道がインサイドイン、インサイドアウト、アウトサイドインのいずれかに分類される。尚、一般的にはインサイドインの軌道になることが理想的なスイング軌道と言われている。ここで、本来は、図5(a)のように、スイング軌道がインサイドインで判定されるべき場合であっても、ターゲットライン方向が図5(b)のように本来あるべき方向と違う方向に設定されてしまうと、スイング軌道はインサイドアウトと誤って判定されてしまう。そこで、本実施形態のターゲットライン設定処理では、アドレス時におけるセンサ10の向き(すなわちゴルフクラブ6のシャフトの向き)に応じて、ターゲットラインが動的に設定される構成とした。
ターゲットライン設定処理の流れについて、以下に詳述する。本処理の前提として、図4に示されるように、センサ10の操作ボタン130が設けられる面がターゲットラインと平行となるように、センサ10がゴルフクラブ6に装着されているものとする。より詳しくは、図4に示される座標系(以下、「センサ座標系」という)におけるX軸がターゲットラインと平行であり、Z軸がターゲットラインと直交するように、センサ10がゴルフクラブ6に装着されているものとする。さらに、アドレス時に、ユーザが図6に示すようにターゲットラインとほぼ平行に、すなわち図6に示される座標系(以下、「ユーザ座標系」という)のY軸とほぼ平行に、スタンスをとってゴルフクラブ6を構えているものとする。
ターゲットライン設定処理では、まず、静止状態が検出されたときのモーションセンサ100のセンサデータから、アドレス時におけるセンサ10の向き(すなわち、ゴルフクラブ6の姿勢情報)を求め、センサ座標系におけるターゲットラインを算出する。そして、算出されたセンサ座標系のターゲットラインをユーザ座標系に変換し、図6に示される状態と比較して、センサ10の向きがどのくらい回転しているかを求め、本来のターゲットラインを設定する。
本処理における、より具体的な流れを以下に説明する。
1.まず、静止状態が検出されると、そのときの加速度センサから出力されるセンサデータから、センサ座標系におけるターゲットラインのベクトルtarget’を求める。ターゲットラインのベクトルtarget’は、センサ座標系における重力加速度方向とZ軸方向に直交する方向である。そこで、下記の式(1)に示すように、ゴルフクラブ6の姿勢情報を表わす重力加速度方向のベクトルとZ軸方向のベクトルとの外積からターゲットラインのベクトルtarget’を求めることができる。
target’=Z×g ・・・ (1)
2.続いて、ユーザ座標系でのターゲットラインのベクトルtargetを求めるため、センサ座標系からユーザ座標系への変換を行う。詳しくは、1.で算出されたセンサ座標系におけるターゲットラインのベクトルtarget’を正規化(すなわち、単位ベクトル化)して、下記の回転行列(2)および(3)を用いて、ユーザ座標系でのターゲットラインのベクトルtargetを求める。ここで求められたターゲットラインのベクトルtargetが、本来のターゲットラインとして設定され、不揮発性メモリ260に記憶される。
Figure 0006158986
Figure 0006158986
尚、e1−e4の初期条件(t=0)は、以下のとおりである。
Figure 0006158986
Figure 0006158986
Figure 0006158986
Figure 0006158986
3.また、2.で求められたターゲットラインのベクトルtargetは、ユーザ座標系におけるY軸と平行になっていない。そこで、その後のスイング解析を行うために、ターゲットラインのベクトルtargetを、Y軸に対して回転する既知の回転行列Pと、既出の式(2)との積を、式(2)の回転行列に置き換え、Y軸と平行になるよう補正する。
このように、本実施形態では、アドレス時におけるセンサ10の向きに応じて、ターゲットラインを動的に設定することができる。そのため、人によって様々な角度でゴルフクラブ6が構えられた状態でも、これらの個体差を反映して正確なスイング軌道の測定結果を得ることが可能となる。また、このように本来のターゲットラインを設定することで、適切なアドバイス表示を行うことができる。
続いて、本実施形態のスイング状態判定処理で行われる、センサの出力誤差を補正する処理について説明する。一般的な加速度センサはデジタル、アナログ方式で、静電容量検出方式、ピエゾ抵抗方式、熱検知方式など検知方式があるが、いずれの方式においても機械であるため物理的な偏りが存在する。それらの偏りは、センサの製造時にキャリブレーションされ、補正されるが、キャリブレーション時の環境によっては、キャリブレーションの精度が低く誤差が補正されない場合がある。また、製造時にキャリブレーションを行ったとしても、1LSB(Least Significant Bit)未満はキャリブレーションすることができない。しかしながら、男性がドライバーを用いてスイングした場合のスイングスピードは一般的に40m/s以上であり、加速度センサおよび角速度センサの感度設定を低感度に設定し測定レンジを大きくとる必要がある。このため1LSBあたりの計測精度が低くなり、誤差要素が大きくなってしまう。これにより、1LSB未満で誤差がある場合、センサ出力を補正することは不可能であるにも関わらず、計算精度は落ちてしまうことになる。またセンサの使用時間に比例して、センサ自体が発熱し発熱によりミクロ単位で基盤の歪みが生じ、センサ出力の誤差がさらに大きくなるといった問題もある。このように、時間経過による誤差や、センサの個体差の誤差によりセンサ出力の精度が落ちてしまうと、測定結果が安定しなくなってしまい、正確なスイング解析が行えなくなってしまう。そこで、本実施形態では、モーションセンサ100の誤差(より詳しくは加速度センサの誤差)を求め、該誤差に基づいてセンサデータを補正することにより、測定結果の安定を図る構成となっている。
一般的に、ユーザは、ゴルフスイングのアドレス姿勢時では、ゴルフクラブ6のヘッドをボールのすぐ後ろに配置してからスイングを開始する。従って、スイング開始時の座標点とインパクトの座標点が一致することが前提として考えられる。一方、スイング開始時の座標点と、インパクト時の座標点が著しく離れる場合は、何らかの誤差の影響により位置がずれたものと考えられる。そこで、本実施形態では、スイング開始時の座標点と、インパクト時の座標点との差分を過不足分の移動距離として求め、その距離を移動するだけの加速度を、加算または減算して再計算することで、センサ10の1LSB未満の誤差、および時間経過による誤差を補正する構成とした。
本処理における、具体的な計算方法について以下に説明する。尚、以下の説明および数式において、真値が斜体文字で表わされる。
まず、時刻 t においてセンサ10が検出した加速度 をai(t)とし、真の重力加速度をgとすると、時刻 t における真の加速度 a(t)は、下記の式(8)で表わされる。
Figure 0006158986
そして、時刻 t における真の速度 v(t)は、下記の式(9)で表わされる。
Figure 0006158986
また、アドレス時点でのクラブヘッド位置をr(0)とすると、時刻 t における真の位置 r(t)は、下記の式(10)で表わされる。
Figure 0006158986
さらに、インパクト時刻をTとすると、真のインパクト位置r(T)は、下記の式(11)で表わされる。
Figure 0006158986
ここで、下記の式(12)に示されるように、重力加速度gにセンサ10による誤差geが加算されていたとすると、時刻 t における加速度 a(t)、速度v(t)、および位置 r(t)はそれぞれ下記の式(13)−(15)で求められる。
Figure 0006158986
また、誤差 geは、下記の式(16)および(17)によって求められる。
Figure 0006158986
上記のように、本実施形態では、センサデータに基づいて最初に得られた測定結果に基づいて、誤差geを求め、再度、センサデータに対して誤差geの補正を行って測定結果が求められる。このように構成することにより、より正確な測定結果を得ることが可能となる。これにより、インパクトの前後におけるゴルフクラブ6のヘッドの挙動についても正確に表示させることができる。
続いて、本実施形態のスイング状態判定処理で行われるワッグルを除去する処理について、説明する。一般的に、ユーザのスイング動作では、スイングの初動前にスイングとは関係のない予備動作(ワッグル)をすることがある。このワッグル動作は無軌道な動きであるため、ワッグル動作もスイング軌跡として演算されると、その後のスイング測定結果における大きな誤差要因となる。また、最高速度が40m/s以上となるドライバーなどによるスイングを検出する際ために、加速度センサおよび角速度センサの感度設定は、有限のビット数で測定可能な最大速度に設定され、センサの1LSBあたりに検出可能な単位が大きくとられている。このように測定可能な全体のレンジ幅が拡大された場合には、ワッグル動作のように非常にゆっくりとした速度の動作の検出が正確にできないと言った問題もある。
そこで、本実施形態では、スイング状態判定部205において、センサデータからワッグルによるスイング軌跡を除去したスイング開始点を検出し、ワッグル動作によるセンサデータをスイング解析に使用しない構成とした。
本処理における、具体的な流れについて以下に説明する。図7は、センサ10をゴルフクラブ6に取り付けてスイングした場合の、モーションセンサ100の角速度センサのセンサ座標系でのX軸およびZ軸のセンサデータ、ならびに加速度センサのY軸のセンサデータによる波形である。ここで、スイング状態判定部205では、データ測定開始点から、角速度センサのZ軸のセンサデータのマイナスピーク値Z1、角速度センサのX軸のセンサデータのプラスピーク値X1を検出し、RAM250に記憶する。そして、インパクト点T1を検出した後、X軸のセンサデータおよびZ軸のセンサデータが、ともにRAM250に記録したピーク値Z1およびX1に対して符号が反転する点まで遡る。具体的には、図7に示すように、Z軸のセンサデータがマイナスピーク値Z1からプラスに転じる点Z2、およびX軸のセンサデータがプラスピーク値X1からマイナスに転じる点X2が検出される。そして、検出された点Z2およびX2において、データ検出開始点との間で測定点が少ない方をスイング開始点Sと判定する。そして、スイングデータ解析処理において、判定されたスイング開始点より前の加速度センサのセンサデータは、重力加速度のみとしてフィルタリングし、スイング解析には使用しないことにより、より正確な解析結果を得ることができる。
また、インパクト点T1の検出は、図7の波形における、加速度センサのY軸のセンサデータの急激な減速、またはマイナス方向のピークを検知することで判定される。また、通常、インパクトの際には、打球をすることで運動が一瞬停止し、センサデータに大きな差分が発生すると考えられる。そのため、上記以外にも、図7に示される加速度センサのY軸のセンサデータの波形において、前後のセンサデータの値に所定の差分がある場合にインパクトT1を検出したと判定しても良い。さらに、インパクトを判定する前後の差分定数をゴルフクラブやボールの種類によって変更することで、打球した際の衝撃度合いに応じて、打球したかどうか判定することができ、どのクラブ、どのボールにおいても正確にインパクトを検出することができる。
以上が本発明の実施形態であるが、本発明はこれらの実施形態に限定されるものではなく様々な範囲で変形が可能である。例えば、本実施形態はゴルフのスイング解析システムに関するものであるが、本発明は、これに限定されるものではなく、テニス、野球など様々なスイング動作を解析するシステムにおいても適用可能である。
1 スイング解析システム
10 センサ
20 端末装置
100 モーションセンサ
110 データ処理部
120 通信部
130 操作ボタン
140 LED
200 CPU
210 通信部
220 表示部
230 操作部
240 ROM
250 RAM
260 不揮発性メモリ

Claims (6)

  1. スイング解析の対象物に取り付けられる加速度センサと、前記加速度センサと無線通信可能な端末装置と、からなるスイング解析システムであって、
    前記端末装置は、
    前記加速度センサから出力されるセンサデータに基づいて、スイング解析を行うスイングデータ解析部と、
    前記加速度センサの出力誤差を補正する誤差補正部と、
    を備え、
    前記誤差補正部は、前記加速度センサから出力されるセンサデータに基づいて、前記対象物のアドレス時の座標点と、インパクト時の座標点との差を求めて前記加速度センサの出力誤差と推定し、前記推定された誤差を用いて、前記加速度センサから出力されるセンサデータの再計算を行う、スイング解析システム。
  2. ターゲットラインと平行な方向をX軸とし、前記対象物のフェース面と平行で前記対象物のシャフトと直交する方向をZ軸とし、前記X軸と前記Z軸の双方と直交する方向をY軸として、
    当該スイング解析システムは、前記対象物に取り付けられ三軸方向の角速度を検出可能な角速度センサをさらに含み、
    前記端末装置は、前記角速度センサと無線通信可能であり
    前記端末装置は、前記角速度センサにおけるセンサデータ、および前記対象物のインパクト時に基づいてスイング開始点を検出してスイング状態を判定するスイング状態判定部さらに備え、
    前記スイングデータ解析部は、前記検出されたスイング開始点以前に検出されたセンサデータの少なくとも一部をスイング解析に使用しないよう構成される、請求項1に記載のスイング解析システム。
  3. 前記スイング状態判定部は、前記角速度センサの前記Z軸のセンサデータのマイナスピーク値、および前記X軸のセンサデータのプラスピーク値を検出し、前記インパクト時から測定開始時へさかのぼって、前記マイナスピーク値および前記プラスピーク値の符号のいずれか一方が反転する点を、スイング開始点と判定する、請求項2に記載のスイング解析システム。
  4. 前記スイング状態判定部は、前記インパクト時から測定開始時へさかのぼって、前記マイナスピーク値の符号が反転した点、および前記プラスピーク値の符号が反転した点のうち、測定開始時に近い方の点をスイング開始点と判定する、請求項3に記載のスイング解析システム。
  5. 前記スイング状態判定部は、前記加速度センサの前記Y軸のセンサデータのマイナスピーク値を前記インパクト時と判定する、請求項2乃至4のいずれか一項に記載のスイング解析システム。
  6. 前記スイング状態判定部は、前記加速度センサの前記Y軸のセンサデータにおいて、二つのセンサデータの値に所定値以上の差がある場合に前記インパクト時と判定する、請求項2乃至4のいずれか一項に記載のスイング解析システム。
JP2016099398A 2016-05-18 2016-05-18 モーションセンサを用いたスイング解析システム、スイング解析方法、およびスイング解析プログラム Active JP6158986B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099398A JP6158986B2 (ja) 2016-05-18 2016-05-18 モーションセンサを用いたスイング解析システム、スイング解析方法、およびスイング解析プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099398A JP6158986B2 (ja) 2016-05-18 2016-05-18 モーションセンサを用いたスイング解析システム、スイング解析方法、およびスイング解析プログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012254672A Division JP5940436B2 (ja) 2012-11-20 2012-11-20 モーションセンサを用いたスイング解析システム、スイング解析方法、およびスイング解析プログラム

Publications (2)

Publication Number Publication Date
JP2016144733A JP2016144733A (ja) 2016-08-12
JP6158986B2 true JP6158986B2 (ja) 2017-07-05

Family

ID=56685814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099398A Active JP6158986B2 (ja) 2016-05-18 2016-05-18 モーションセンサを用いたスイング解析システム、スイング解析方法、およびスイング解析プログラム

Country Status (1)

Country Link
JP (1) JP6158986B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018094248A (ja) * 2016-12-15 2018-06-21 カシオ計算機株式会社 運動解析装置、運動解析方法及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264060A (ja) * 2003-02-14 2004-09-24 Akebono Brake Ind Co Ltd 姿勢の検出装置における誤差補正方法及びそれを利用した動作計測装置
JP5948011B2 (ja) * 2010-11-19 2016-07-06 セイコーエプソン株式会社 運動解析装置
JP5704317B2 (ja) * 2011-02-02 2015-04-22 セイコーエプソン株式会社 スイング解析装置、スイング解析システム、プログラム及びスイング解析方法
JP6074897B2 (ja) * 2012-03-16 2017-02-08 セイコーエプソン株式会社 運動解析装置及び運動解析方法

Also Published As

Publication number Publication date
JP2016144733A (ja) 2016-08-12

Similar Documents

Publication Publication Date Title
JP5940436B2 (ja) モーションセンサを用いたスイング解析システム、スイング解析方法、およびスイング解析プログラム
JP5704317B2 (ja) スイング解析装置、スイング解析システム、プログラム及びスイング解析方法
JP5773121B2 (ja) スイング分析装置及びスイング分析プログラム
US20150012240A1 (en) Motion analysis device
JP2014110832A (ja) 運動解析システム及び運動解析方法
WO2014110667A1 (en) A device and method for reconstructing and analyzing motion of a rigid body
JP5773122B2 (ja) スイング分析装置及びスイング分析プログラム
US20160089568A1 (en) Exercise analysis device, exercise analysis system, exercise analysis method, and program
JP2015077351A (ja) 運動解析方法、運動解析装置および運動解析プログラム
JP2015156882A (ja) 運動解析装置及び運動解析システム
WO2015141173A1 (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP6380733B2 (ja) 運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラム
WO2015146062A1 (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP2018126180A (ja) 運動解析方法および表示方法
JP2016116613A (ja) 運動解析装置、運動解析システム、運動解析方法、及びプログラム
JP6158986B2 (ja) モーションセンサを用いたスイング解析システム、スイング解析方法、およびスイング解析プログラム
JP6315181B2 (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP2015073821A (ja) 運動解析方法、運動解析装置、および運動解析プログラム
JP2016055028A (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP6028941B2 (ja) スイング解析装置、スイング解析システム、プログラム及びスイング解析方法
JP2016030123A (ja) 運動解析方法、運動解析装置及びプログラム
JP6311897B2 (ja) スイング解析装置、スイング解析システム及びスイング解析方法
JP2016209431A (ja) スイング分析装置、スイング分析方法、スイング分析プログラムおよびスイング分析システム
JP2018158052A (ja) 運動解析装置、運動解析システム、運動解析方法及びプログラム
JP2017104730A (ja) スイング解析装置、スイング解析方法、プログラム、およびスイング解析システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6158986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250