CN102566301B - 测量方法、设备和衬底 - Google Patents

测量方法、设备和衬底 Download PDF

Info

Publication number
CN102566301B
CN102566301B CN201110387956.8A CN201110387956A CN102566301B CN 102566301 B CN102566301 B CN 102566301B CN 201110387956 A CN201110387956 A CN 201110387956A CN 102566301 B CN102566301 B CN 102566301B
Authority
CN
China
Prior art keywords
pattern
substrate
mark
sub pattern
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110387956.8A
Other languages
English (en)
Other versions
CN102566301A (zh
Inventor
大卫·德克斯
法兰西斯卡·戈德弗瑞德斯·卡斯珀·碧嫩
S·穆萨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of CN102566301A publication Critical patent/CN102566301A/zh
Application granted granted Critical
Publication of CN102566301B publication Critical patent/CN102566301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/70Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明公开了一种测量方法、光刻设备和衬底。图案利用光刻步骤形成在衬底上。图案包括在衬底上彼此相邻地定位的且具有各自的第一和第二周期的第一子图案和第二子图案。图案被观察以获得组合的信号,组合的信号包括具有第三周期的拍分量,第三周期处于比第一和第二周期的频率更低的频率。光刻过程的性能的测量通过参考拍分量的相位来确定。依赖于如何形成子图案,性能参数可以是例如临界尺寸或重叠。对于临界尺寸测量,子图案中的一个可以包括标记,每个标记具有由类似产品特征细分的部分。可以利用光刻设备中的已有的对准传感器来进行测量。测量的灵敏度和精度可以通过选择第一和第二周期来调整,因此通过选择第三周期来调整。

Description

测量方法、设备和衬底
技术领域
本发明涉及一种测量方法、一种光刻设备和一种衬底。所述方法可以应用至光刻过程的性能的测量,例如测量临界尺寸或重叠性能。
背景技术
光刻设备是一种将所需图案应用到衬底上(通常应用到所述衬底的目标部分上)的机器。例如,可以将光刻设备用在集成电路(IC)的制造中。在这种情况下,可以将可选地称为掩模或掩模版的图案形成装置用于生成待形成在所述IC的单层上的电路图案。可以将该图案转移到衬底(例如,硅晶片)上的目标部分(例如,包括一部分管芯、一个或多个管芯)上。典型地,经由成像将所述图案转移到在所述衬底上设置的辐射敏感材料(抗蚀剂)层上。通常,单个衬底将包含连续形成图案的相邻目标部分的网络。公知的光刻设备包括:所谓步进机,在所述步进机中,通过将整个图案一次曝光到所述目标部分上来辐射每一个目标部分;以及所谓扫描器,在所述扫描器中,通过辐射束沿给定方向(“扫描”方向)扫描所述图案、同时沿与该方向平行或反向平行的方向同步扫描所述衬底来辐射每一个目标部分。还可以通过将所述图案压印到所述衬底上,而将所述图案从所述图案形成装置转移到所述衬底上。
为了监控光刻过程,测量图案化的衬底的参数。参数可以例如包括形成在图案化的衬底中或上的连续层之间的重叠误差和临界线宽(临界尺寸,通常简称为CD)。可以在光敏抗蚀剂中(在曝光之后和显影之前或之后)或在由蚀刻、沉积等所形成的实际的产品特征中测量重叠和CD。这些测量可以在产品衬底和/或专门的量测目标上进行。存在用于直接测量在光刻过程中形成的微观结构的各种技术,包括使用扫描电子显微镜和各种专门的工具。快速且非入侵式的专门检查工具是散射仪,其中辐射束被引导至衬底的表面上的目标上,且被散射或反射的束的性质被测量。通过比较束在被衬底反射或散射之前和之后的性质,可以确定衬底的性质。这可以例如通过比较反射的束与存储在与已知的衬底性质相关的已知测量库中的数据来进行。
与电子显微术相比,散射术能够在设备中相对快速地进行CD和重叠的测量,所述设备被精密地集成到光刻制造单元或簇内。这些测量结果可以反馈或前馈到光刻设备的控制系统中或其它处理工具中,以便于以更加交互的方式调整性能。然而,散射术通常利用复杂且计算要求苛刻的设备,其被设置成靠近光刻设备自身。光刻设备,尽管其包括用于定位和绘图衬底和图案形成装置的非常精确的量测系统以将施加的图案的所有部分放置在它们被期望的位置上,但是通常不会直接测量重叠或CD。
依赖于应用,对重叠和CD的控制可能对于所制造的器件的良好性质是关键的。在当今由双重图案化技术制造的最高密度的结构中,不仅保持CD处于特定范围内是重要的,而且匹配在不同的过程步骤中实现的CD也是重要的。
发明内容
提供了一种量测方法,除去其它参数,其可以包括利用通常用于光刻设备自身的位置测量的所述类型的传感器的参数测量CD和重叠。已有的仪器可以用于这些新的目的,通过修改形成在衬底上的标记和通过修改用于处理传感器输出信号的数据。
根据本发明的第一方面,提供了一种测量光刻过程的性能参数的方法,所述方法包括:
(a)使用至少一个光刻步骤在衬底上形成图案,所述图案包括在所述衬底上的彼此相邻地定位且具有各自的第一和第二周期的第一子图案和第二子图案;
(b)对所述相邻的第一和第二子图案进行观察以获得组合的信号,所述组合的信号包括具有第三周期的拍分量(beat component),所述第三周期处于比所述第一和第二周期的频率更低的频率;和
(c)由所述组合的信号计算对所述光刻过程的性能的测量,所计算的测量至少部分地通过所述拍分量的相位来确定。
依赖于如何形成子图案,性能参数可以是例如临界尺寸(CD)或重叠。对于CD测量,子图案中的一个可以包括标记,每个标记具有由类似产品的特征细分的部分。对于重叠测量,子图案被在独立的光刻步骤中形成。
测量可以利用光刻设备中的已有的对准传感器来进行,且可以用于控制即将发生的光刻步骤。测量的灵敏度和精度可以通过选择第一和第二周期来调整,并因此通过选择第三周期来调整。
根据本发明的另一方面,还提供了一种用于测量光刻过程的性能参数的设备,所述设备包括:
传感器,可操作以观察利用所述光刻过程形成在衬底上的图案,所述图案包括在所述衬底上的彼此相邻地定位的且具有各自的第一和第二周期的第一和第二子图案;
布置,用于组合对所述相邻的第一和第二子图案的观察以获得组合的信号,所述组合的信号包括具有第三周期的拍分量,所述第三周期处于比所述第一和第二周期的频率更低的频率;和
处理器,用于由所述组合的信号计算对所述光刻过程的性能的测量,所计算的测量至少部分地通过所述拍分量的相位来确定。
在一实施例中,本发明还提供了一种光刻设备,所述光刻设备布置成将来自图案形成装置的图案转移到衬底上,所述光刻设备包括:衬底台,构造成保持衬底;和如上文所阐述的根据本发明的测量设备,布置成用于测量在所述衬底被支撑在所述光刻设备的衬底台上时所述衬底已经经历的光刻过程的性能参数。
所述测量设备的传感器还可以用于测量所述衬底的位置,所述光刻设备可以包括控制器,所述控制器用于通过参考所测量的位置至少部分地控制后续的图案到所述衬底上的转移。
在另一方面中,实施例又提供了一种衬底,标记已经通过光刻过程形成在所述衬底上,所述标记被修改以适应用于测量所述光刻过程的性能参数且包括在所述衬底上彼此相邻地定位且具有各自的第一和第二周期的第一和第二子图案,其中所述子图案被形成使得一个子图案相对于所述另一子图案的明显的位置依赖于所述性能参数,其中所述第一和第二周期是使得生成拍图案,所述拍图案具有第三周期,所述第三周期处于比所述第一和第二周期更低的频率,由此所述性能参数的变化可以从所述拍图案的位置变化推断。
在另一方面中,一实施例也提供了一种有形的计算机可读介质,包括用于使得测量设备执行如在上文阐述的根据本发明的方法中的步骤(b)和(c)的机器可执行指令。
附图说明
现在参照随附的示意性附图,仅以举例的方式,描述本发明的实施例,其中,在附图中相应的附图标号表示相应的部件,且其中:
图1描述根据本发明的一个实施例的光刻设备;
图2示出了对准标记的各种形式,该对准标记可以设置在图1的设备中的衬底上;
图3是图1的设备中的对准传感器的示意方块视图;
图4示出由图3的对准传感器获得和处理的信号;
图5示出(a):图2中显示的一个标记的形式、(b):在本发明的实施例中用于测量CD的修改后的标记的形式、(c):标记的一部分的放大细节、(d):在(c)处显示的所述部分的进一步的放大横截面细节和(e):在(d)处显示的标记细节的有效的衍射率的图表的放大细节;
图6示意性地显示在观察修改后的标记时由对准传感器检测的CD敏感的波纹(moiré)图案;
图7示出了被执行以利用图3的对准传感器从修改后的标记获得CD测量的信号处理和信号;
图8显示了可用于测量不同类型的CD的修改后的标记的可替代形式的细节;
图9是示出了具有利用图5的标记来测量CD的过程的附图的流程图;
图10示意性地示出了在图1的设备中的测量和曝光过程中的多个阶段;
图11示出了可用于利用图3的对准传感器测量重叠的标记的第二修改后的形式;
图12是利用图11的标记和图3的对准传感器测量重叠的方法的流程图;和
图13是适合用在上述的方法中的控制单元的实施例的方块图。
具体实施方式
图1示意性地示出根据本发明的一个实施例的光刻设备LA。所述设备包括:
-照射系统(照射器)IL,配置用于调节辐射束B(例如,紫外(UV)辐射或极紫外(EUV)辐射);
-支撑结构(例如掩模台)MT,构造用于支撑图案形成装置(例如掩模)MA并与配置用于根据确定的参数精确地定位图案形成装置的第一定位装置PM相连;
-衬底台(例如晶片台)WTa/WTb,构造用于保持衬底(例如涂覆有抗蚀剂的晶片)W,并与配置用于根据确定的参数精确地定位衬底的第二定位装置PW相连;和
-投影系统(例如折射式投影透镜系统)PS,所述投影系统PS配置用于将由图案形成装置MA赋予辐射束B的图案投影到衬底W的目标部分C(例如包括一根或多根管芯)上。
所述照射系统可以包括各种类型的光学部件,例如折射型、反射型、磁性型、电磁型、静电型或其它类型的光学部件、或其任意组合,以引导、成形、或控制辐射。
所述支撑结构MT支撑所述图案形成装置,即承载所述图案形成装置的重量。支撑结构MT以依赖于图案形成装置的方向、光刻设备的设计以及诸如图案形成装置是否保持在真空环境中等其它条件的方式保持图案形成装置。所述支撑结构MT可以采用机械的、真空的、静电的或其它夹持技术来保持图案形成装置。所述支撑结构MT可以是框架或台,例如,其可以根据需要成为固定的或可移动的。所述支撑结构MT可以确保图案形成装置位于所需的位置上(例如相对于投影系统)。在这里任何使用的术语“掩模版”或“掩模”都可以认为与更上位的术语“图案形成装置”同义。
这里所使用的术语“图案形成装置”应该被广义地理解为表示能够用于将图案在辐射束的横截面上赋予辐射束、以便在衬底的目标部分上形成图案的任何装置。应当注意,被赋予辐射束的图案可能不与在衬底的目标部分上的所需图案完全相符(例如如果该图案包括相移特征或所谓辅助特征)。通常,被赋予辐射束的图案将与在目标部分上形成的器件中的特定的功能层相对应,例如集成电路。
图案形成装置可以是透射式的或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列以及可编程液晶显示(LCD)面板。掩模在光刻术中是公知的,并且包括诸如二元掩模类型、交替型相移掩模类型、衰减型相移掩模类型和各种混合掩模类型之类的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每一个小反射镜可以独立地倾斜,以便沿不同方向反射入射的辐射束。所述已倾斜的反射镜将图案赋予由所述反射镜矩阵反射的辐射束。
这里使用的术语“投影系统”应该广义地解释为包括任意类型的投影系统,包括折射型、反射型、反射折射型、磁性型、电磁型和静电型光学系统、或其任意组合,如对于所使用的曝光辐射所适合的、或对于诸如使用浸没液或使用真空之类的其他因素所适合的。这里使用的术语“投影透镜”可以认为是与更上位的术语“投影系统”同义。
如这里所示的,所述设备是透射型的(例如,采用透射式掩模)。替代地,所述设备可以是反射型的(例如,采用如上所述类型的可编程反射镜阵列,或采用反射式掩模)。
所述光刻设备可以是具有两个(双台)或更多衬底台(和/或两个或更多的掩模台)的类型。在这种“多台”机器中,可以并行地使用附加的台,或可以在一个或更多个台上执行预备步骤的同时,将一个或更多个其它台用于曝光。在下文将参考图10描述一个例子。此处公开的本发明可以以单机方式使用,但是尤其它可以在单平台或多平台设备的曝光前测量平台中提供额外的功能。
光刻设备还可以是至少一部分衬底可以被折射率相对高的液体(例如水)覆盖、以便填充投影系统和衬底之间的空间的类型。浸没液体还可以被施加至光刻设备中的其它空间,例如在掩模和投影系统之间。在本领域中公知,浸没技术用于增加投影系统的数值孔径。如在此处所使用的术语“浸没”并不意味着诸如衬底等结构必须浸没在液体中,而是仅仅意味着在曝光期间液体位于投影系统和衬底之间。
参照图1,所述照射器IL接收从辐射源SO发出的辐射束。该源和所述光刻设备可以是分立的实体(例如当该源为准分子激光器时)。在这种情况下,不会将该源考虑成形成光刻设备的一部分,并且通过包括例如合适的定向反射镜和/或扩束器的束传递系统BD的帮助,将所述辐射束从所述源SO传到所述照射器IL。在其它情况下,所述源可以是所述光刻设备的组成部分(例如当所述源是汞灯时)。可以将所述源SO和所述照射器IL、以及如果需要时设置的所述束传递系统BD一起称作辐射系统。
所述照射器IL可以包括用于调整所述辐射束的角强度分布的调整器AD。通常,可以对所述照射器的光瞳平面中的强度分布的至少所述外部和/或内部径向范围(一般分别称为σ-外部和σ-内部)进行调整。此外,所述照射器IL可以包括各种其它部件,例如积分器IN和聚光器CO。可以将所述照射器用于调节所述辐射束,以在其横截面中具有所需的均匀性和强度分布。
所述辐射束B入射到保持在支撑结构(例如,掩模台MT)上的所述图案形成装置(例如,掩模MA)上,并且通过所述图案形成装置来形成图案。已经穿过掩模MA之后,所述辐射束B通过投影系统PS,所述投影系统PS将辐射束聚焦到所述衬底W的目标部分C上。通过第二定位装置PW和位置传感器IF(例如,干涉仪器件、线性编码器或电容传感器)的帮助,可以精确地移动所述衬底台WTa/WTb,例如以便将不同的目标部分C定位于所述辐射束B的路径中。类似地,例如在从掩模库的机械获取之后,或在扫描期间,可以将所述第一定位装置PM和另一个位置传感器(图1中未明确示出)用于相对于所述辐射束B的路径精确地定位掩模MA。通常,可以通过形成所述第一定位装置PM的一部分的长行程模块(粗定位)和短行程模块(精定位)的帮助来实现掩模台MT的移动。类似地,可以采用形成所述第二定位装置PW的一部分的长行程模块和短行程模块来实现所述衬底台WTa/WTb的移动。在步进机的情况下(与扫描器相反),所述掩模台MT可以仅与短行程致动器相连,或可以是固定的。可以使用掩模对准标记M1、M2和衬底对准标记P1、P2来对准图案形成装置MA和衬底W。尽管所示的衬底对准标记占据了专用目标部分,但是它们可以位于目标部分之间的空间(这些公知为划线对齐标记)中。类似地,在将多于一个的管芯设置在掩模MA上的情况下,所述掩模对准标记可以位于所述管芯之间。
可以将所述设备用于以下模式中的至少一种中:
1.在步进模式中,在将掩模台MT和衬底台WTa/WTb保持为基本静止的同时,将赋予所述辐射束的整个图案一次投影到目标部分C上(即,单一的静态曝光)。然后将所述衬底台WTa/WTb沿X和/或Y方向移动,使得可以对不同目标部分C曝光。在步进模式中,曝光场的最大尺寸限制了在单一的静态曝光中成像的所述目标部分C的尺寸。
2.在扫描模式中,在对掩模台MT和衬底台WTa/WTb同步地进行扫描的同时,将赋予所述辐射束的图案投影到目标部分C上(即,单一的动态曝光)。衬底台WTa/WTb相对于掩模台MT的速度和方向可以通过所述投影系统PS的(缩小)放大率和图像反转特征来确定。在扫描模式中,曝光场的最大尺寸限制了单一动态曝光中所述目标部分的宽度(沿非扫描方向),而所述扫描运动的长度确定了所述目标部分的高度(沿所述扫描方向)。
3.在另一种模式中,将用于保持可编程图案形成装置的掩模台MT保持为基本静止,并且在对所述衬底台WTa/WTb进行移动或扫描的同时,将赋予所述辐射束的图案投影到目标部分C上。在这种模式中,通常采用脉冲辐射源,并且在所述衬底台WTa/WTb的每一次移动之后、或在扫描期间的连续辐射脉冲之间,根据需要更新所述可编程图案形成装置。这种操作模式可易于应用于利用可编程图案形成装置(例如,如上所述类型的可编程反射镜阵列)的无掩模光刻术中。
也可以采用上述使用模式的组合和/或变体,或完全不同的使用模式。
光刻设备LA具有所谓的双平台类型,其具有两个衬底台WTa和WTb以及两个工作站:曝光工作站和测量工作站,衬底台可以在它们之间交换。在一个衬底台上的一个衬底被在曝光工作站曝光时,可以将另一衬底装载到测量工作站的另一衬底台上,且可以执行各种预备步骤。预备步骤可以包括利用水平传感器LS绘制衬底的表面和利用对准传感器AS测量在衬底上的对准标识的位置。这使得能够相当大地增加了设备的生产量。如果位置传感器IF不能够当其在测量工作站以及在曝光站时测量衬底台的位置,则可以设置第二位置传感器以使得衬底台的位置可以在两个工作站处被追踪。
该设备还包括光刻设备控制单元LACU,其控制所述的各种致动器和传感器的所有移动和测量。LACU还包括信号处理和数据处理能力,以实施关于设备的操作的期望的计算。在实践中,控制单元LACU将被认为是许多子单元的系统,每个子单元操纵实时数据获取,处理和控制设备中的子系统或部件。例如,一个处理子系统可以专门用于对衬底定位装置PW的伺服控制。独立的单元甚至可以操纵粗和精致动器或不同的轴线。另一单元可以专门用于读取位置传感器IF。对设备的整体控制可以由中央处理单元来控制,与这些子系统处理单元通信、与操作器通信和与在光刻制造过程中涉及的其它设备通信。
图2显示了设置在衬底W上分别用于对X位置和Y位置的测量的对准标记202、204的例子。在这一例子中的每一标记包括在施加至或蚀刻到衬底中的产品层或其它层中形成的一系列栅条。X方向标记202上的栅条平行于Y轴,而Y方向标记204的栅条平行于X轴。对准传感器AS(在图1中显示的)用辐射斑206、208光学扫描每一标记,以测量衬底W相对于设备的位置。在对准图案中的栅条的节距典型地比形成在衬底上的产品特征的节距大得多,对准传感器AS使用的辐射的波长(或通常是多个波长)远大于用于施加图案到衬底上的曝光辐射的波长。然而,因为大量的栅条允许精确地测量重复图案的相位,所以可以获得精细的位置信息。
可以提供粗和精标记,使得对准传感器可以计算在给定位置的图案是哪一圈以及在该圈中的精确位置(相位)。不同节距的标记也可以用于这一目的。这些技术对于本领域技术人员也是公知的,且不在此详细描述。在本领域中公知这样的传感器的设计和操作,每一光刻设备具有其自己的传感器设计。为了本发明的描述的目的,假定对准传感器AS包括在US 6961116(den Boef)中描述的所述形式的对准系统。图2(b)显示用于与类似的对准系统一起使用的修改的标记,其的X和Y位置可以通过单个扫描来获得。所述标记210具有布置成对X和Y轴都成45°的栅条。可以利用在公开的专利申请US 2009195768A(Bijnen等)中描述的技术,来执行这种组合的X和Y测量,其内容通过参考并入本文中。可以注意到,US’768公开了一些实施例,其中X和Y对准标记具有不同节距的部分,与在本申请中新提出的标记有一些类似。然而,在图2(b)中显示的简单的标记是通常用在商业实施例中的形式,可以在US’768的实施例中的不同节距之间观察到的任何波纹(moiré)效应是固定的,且没有提供对过程性能的测量。
图3是对准传感器AS的示意方块图。照射源220提供一种或更多种波长的辐射束222,其被转向通过物镜224到达定位在衬底W上的标记(诸如标记202)上。如在图2中示意性地显示的,在上文提及的基于US 6961116的本发明的对准传感器的例子中,用于照射标记202的照射斑206的直径可以略小于标记自身的宽度。
由标记202散射的辐射由物镜224获取,且被校准成信息承载束226。光学分析器228处理束226,且将独立的束输出到传感器阵列230。来自传感器栅格230中的单独的传感器的强度信号232被提供至处理单元PU。由在方块228中的光学处理和单元PU中的计算处理的组合,输出相对于传感器的在衬底上的X和Y位置的值。根据下文进一步描述的本发明的实施例,在此处公开的新型设备中的处理单元PU还可以输出来自同一衬底W的临界尺寸(CD)和/或重叠(OV)测量。这通过使用修改后的标记和修改后的信号/数据处理来实现。处理单元PU可以与图1中显示的控制单元LACU是独立的,或它们可以分享同一处理硬件,这取决于设计选择和便利的情况。在单元PU是独立的时,信号处理的一部分可以在单元PU中进行,另一部分在单元LACU中进行。
图4示意性地示出了由已知设备中的对准传感器AS进行的信号处理和一些信号,用于测量X、Y位置。在左手侧处的图表是在随着沿着标记202扫描斑206而由传感器230获取辐射时所采集到的强度值I对扫描位置POS的轨迹240。扫描位置POS可以是X位置、Y位置或根据扫描方向的任何方向。如果以特定的线性速度执行扫描,那么扫描位置的变化实时对应于电信号的变化。信号可以表示成模拟形式的模拟强度值,但是被转换成数字形式,以便于处理。在该轨迹中,中心部分包括大量的波峰242,其间距对应于目标图案202中的单独的栅条的间距。在标记244处的轨迹的平滑部分表示对标记外面的区域的扫描,而中间部分246对应于斑206逐渐地到达标记上方且周期信号达到其波峰幅值的时刻。由于标记的长度和斑的相对较小的尺寸,轨迹的大的中心部分显示了相对稳定的幅值的波峰242和波谷。在图4的右手侧的放大细节显示出在中心部分中的轨迹240的一部分,波峰242被突出显示。在该部分中的轨迹具有大约正弦波形式。正弦波的周期P被示出,其对应于对准标记202中的线图案的节距。标记的节距是公知的。因此,通过在所提供的大量的周期上以近似频率的正弦曲线数学拟合轨迹240,可以进行非常精确的相位测量,其又使得能够进行精确的位置测量。可以在不同的波长处重复同一过程以增加精度和对标记进行鲁棒检测,而不管制造标记的材料。所述波长可以被光学多路复用和多路解复用,以便同时进行处理,和/或它们可以通过时间划分来进行多路复用。
如已经提及的,所示的特定测量仅在对应于标记的一个节距的一定范围内固定标记的位置。较粗糙的测量技术被与其结合使用,以识别正弦波的哪一周期是包括所标记的位置的周期。
图5(a)示出用于比较的已知类型的标记300,其可以例如是图2和图3中显示的标记202或204。标记300包括布置成垂直于标记的纵向轴线304的多个栅条302,而栅条302围绕且平行于横向轴线306对称地排列。标记关于这些轴线304、306的对称对于在US 6961116中描述的特殊类型的传感器发挥作用是重要的,其中光学分析器228形成一对标记图像,它们被相对彼此旋转180度。对称性在利用其它类型的传感器的实施例中可能不是重要的,在标记的设计中提供了更多的自由度。再者,由虚线圈表示扫描斑206,在扫描操作期间在标记上行进。
图5(b)显示了根据本发明的一实施例的基于已知的标记300但包括允许其用于测量CD的修改的新标记。在传统标记300包括横跨其全部宽度延伸的栅条302的情形中,新标记中的栅条被细分成三段。在平行于纵向轴线304延伸的标记310的外段中,提供了多个栅条312和314,其与传统标记中的栅条302的外部一致。在中心部分中,多个栅条316形成并沿着纵向轴线304对称地延伸。所述多个栅条316的节距不同于所述多个栅条312和314的节距。如下文所见,这导致了接收“拍”信号的扫描斑206,由于来自两个不同节距的信号在传感器AS的光学系统中的相长和相消干涉而有效地形成波纹图案。设置具有不同的重复节距的标记图案的不同部分以便在组合时形成波纹图案是使标记310区别于已知标记300的第一特征。
图5(c)显示使标记300区别于已知标记的另外的特征。标记310的中心部分的栅条316中的一个被以放大的细节的方式显示,且可以看到包括实心部分320和包括多个更细的栅条322的细分的部分。标记之间的空间被标记为324用于进行比较。图案中的下一栅条被标记为320’。在修改的栅条316的细分的部分中的单独的栅条322被称作为类似产品的特征,这是因为它们形成有类似于产品特征尺寸的尺寸,而不是大于对准栅条302、312等的尺寸。例如,在现代光刻过程中,最小的产品特征可以为50nm宽。因此,这些较小的特征被形成,以便具有与横跨衬底的产品特征共有的临界尺寸,其被设计成进行测量。应当注意,标记300和310中的栅条的数量和每一栅条316内的细分特征322的数量将远大于附图中显示的数量,其已经被简化以便于说明。在本发明的例子显示具有细分的栅条的标记310的中心部分的情况下,还可以将细分的栅条放置在标记310的外部(即在栅条312和314中)或甚至在标记310的外部312和314中和在标记310的内部316中,假定它们的位置被反转以便增强期望的效应,而不是抵消它(下文说明)。在细分的栅条中的标记-空间比可以有所变化而不是所显示的50∶50。一种选择将是在CD处于其名义值时(更接近零值),将切割的部分更深地延伸到空间部分324中,以使得内部标记具有有效的位置。然而,这不是关键的且在任何情形中,同一标记图案的有效位置将根据层厚度和形成其的材料而变化。
图5(d)显示出部分地细分的栅条316的横截面。为了示例起见,显示三种不同材料,下层340、将在其中测量CD的产品层342和覆盖层344。本领域技术人员将理解存在许多不同的可能性,用于构造这些层。材料340和342可能实际上是同一材料的不同蚀刻部分,其可以是特定层或仅仅是衬底材料。层344可以例如是抗蚀剂层。在图5(d)中显示的修改的栅条316的形式中,实心部320由材料342中的间隙形成,细分的栅条322类似地由材料342中的较窄的间隙形成。附图标号346表示细分的栅条之间的空间。这仅是为了示例和图示起见,它们可以被以另一种方式定义,而不影响将描述的本发明的原理。依据选择,临界尺寸CD可以被定义为这些特征346的宽度或它们之间的间隙322的宽度。当然,依赖于所选择的定义,同一物理变化将被体现为正或负CD变化。
图5(e)是对应于在其上的图5(d)中显示的修改后的栅条316的不同部分,显示在图5(d)中显示的材料的有效折射率neff对X位置的图表。在标记为360的图表的部分中,有效的折射率是相对高的,广义上对应于材料344的折射率。标记为362的图表的部分逆向地显示材料342的折射率或在实心部分324中的材料342和重叠材料344的组合的折射率。因为测量斑206中的光的波长比更小的标记的临界尺寸长几倍,所以它们未被分解为单独的部分。因此,在中间部分中,在发现了细分的栅条322和空间346的情形中,在水平位置364处的有效折射率依赖于形成标记的材料的组合,在这一例子中是在360所处的水平位置和362所处的水平位置的中间。
在CD处于名义值时,在部分364处的实线显示了该平均水平位置。然而,如果变化实际样品的CD,那么细分的标记322和空间346的相对宽度将变化而不是它们的名义比例。因此,在修改的栅条316的这一部分中的有效折射率将向上或向下变化,如由双头箭头表示。为了说明起见,且标记水平位置364“CD=”以表示名义CD值,标记为“CD-”的点虚线表示由CD的减小造成的有效折射率从名义值向上的偏移。类似地,标记为“CD+”的双点虚线表示由高于名义值的CD值造成的有效折射率的减小。
本领域技术人员将理解,有许多可替代的方式来定义标记和标记中的空间以及在栅条图案312,314,316中的空间,标记和空间的命名在实践中是略微随意的。类似地,可以是标记的折射率高于空间的折射率,反之亦然。修改后的栅条图案的细分的部分可以设置在更大图案的标记部分或空间部分中。依赖于所有这些设计选择和材料的布置,在305(e)中绘制的图表可以变化。然而,在所有变形中的共同特征将是具有有效折射率的区域的重复图案,其基本上独立于靠近由类似产品特征形成的部分的CD,使得有效折射率变成能够依赖于CD进行测量。
如将被描述的,邻近具有不同节距的标记312、314设置这些修改的栅条316以便产生波纹图案,允许由将被测量的CD变化造成的折射率的相对小的变化被明显地放大,以允许利用对准传感器进行对CD的非常灵敏的测量。该技术依据利用细分的或“切割的”标记已经用于聚焦测量的现象,由此小特征的宽度的减小造成了标记自身的位置的明显偏移。这样,特定的切割的目标可以与对准(X-Y位置)传感器一起使用以测量聚焦变化(Z)。在公开的专利申请US 2009135389 A1中描述了该技术的例子。
图6以可视的方式显示如何利用修改的标记310来识别和测量CD变化。在每条线中的阴影栅条表示了在设备对标记的扫描期间所测量的强度波形上的波峰。在图6的顶部线中,对应于传统的目标300,具有对应于标记300中的栅条302中的节距的节距的简单的重复图案被观察到。这对应于我们在图4的轨迹的中间部分中看到的简单的正弦波。在其下面,显示出在扫描具有不同的CD值的修改的标记310时观察的图案。波纹图案包括由栅条的内部组和外部组的空间频率之间的拍效应定义的慢得多的变化,该波纹图案具有由斑显示的其最亮的点。由于栅条316的细分的部分的有效折射率随着CD而升高和降低,所以如由对准传感器所识别的这些栅条的有效位置从名义位置相对于未修改的栅条312、314朝向左或朝向右偏移。虽然这一偏移自身可能很小,但是在标记310的不同部分中的栅条图案之间的节距差使得波纹图案的波峰(由图6中的每条线中的斑表示的)移动大得多的距离。这是具有修改的标记的对准传感器可以用于进行对CD的非常灵敏的测量所依据的原理。
图7(a)显示了将与图4中显示的传统轨迹相比较的由修改标记310获得的轨迹。实际上,在图7(a)中,在不同波长处获得的四条轨迹彼此叠置。这些波长可以例如是绿、红、近红外(NIR)和远红外(FIR)波长。所有轨迹显示了精细的周期行为(对应于图4中显示的),但是被修改具有较低的频率包迹,表示波纹图案。如在(a)中的轨迹中显示的,标记中的栅条的长度和数量与它们的节距(空间频率)的差别一起使得在穿过标记时将观察到波纹图案的多个周期。如图7(b)中显示的,这允许正弦波包迹ENV高精度地与所观察到的轨迹拟合。因为标记310内的单个节距是精确地已知的,所以还公知它们的拍频,拟合操作可以提供对波纹图案(包迹)的相位的精确表示。波纹图案的明显的位置变化是由处于测试中的衬底中的CD变化造成的位置变化的放大形式。放大因子可以被计算作为m=(p1+p2)/2(p1-p2),其中p1和p2是分别在图5(b)中显示的栅条结构312/314和316的节距。
对节距和放大因子的选择依赖于设计者的对测量设备的知识,且还涉及可以观察到的波纹图案中的周期数与期望的放大因子之间的折衷。一种计算使用的好的节距的方法将是以公共的节距(例如22μm)开始,之后确定期望的放大因子,例如10。由此,将被组合的两个节距接下来是节距1:22/10=2.2μm和节距2:22/(10+1)=2μm。注意到,由在物理标记中的22μm的节距,11μm的可检测的正弦图案将导致图3中显示的自干涉类型的传感器。
参考图8,栅条316的细分的部分不一定是平行于栅条312、316等的通常方向放置的栅条322。它们可以被设计成仿效任意类型的产品特征,其临界尺寸期望被测量。在显示为316’的例子中,栅条316’的实心部分被标记为380。不是被细分成如图5中的多个更小的平行栅条322,该栅条316’设置有对应于小的方形特征的图案,被沿着X和Y维度细分。这些类似产品的特征382可能例如对应于产品层中的通孔,由其制造形成在衬底上的不同器件层中的导体或半导体材料之间的电接触。这样的特征的CD和CD均一性可能是对于整个光刻过程的性能和可靠性是重要的。类似地,在另一示例的标记中,栅条316”具有细分的部分,所述细分的部分包括对应于抗蚀剂或产品层中的支柱的离散的小的方形,由附图标号384表示。
图9是显示利用位置对准系统测量衬底上的CD的完成过程的流程图和说明性的材料。在步骤400处,标记成形成在衬底上,且成标记310的形式或类似的形式。在步骤402处,使用对准传感器来扫描标记。可以由同一标记获得位置信息X和/或Y,或其可以是在独立的步骤中获得的这样的信息。在测量位置的情形中,这可以是位置测量的粗或精的阶段。通过利用粗测量测量CD。标记310可以是被设置用于位置感测和晶片栅格绘制的“名义”标记中的一个的替代物,或其可以是专门用于CD测量的额外的标记。在用于粗和精位置测量将标记设置在衬底上的情况下,修改的标记可以替代粗标记中的一个,以便不会劣化在精测量步骤中的性能。在本描述中所使用的测量设备被假定是光刻设备的已存在的对准传感器,如上文和下文所描述的,但是其可以是独立的传感器。如果其是独立的传感器,它还可以具有其它的功能,或专门用于此目的。它可以集成到光刻设备中,或一些其它的测试设备中,或它可以是彻底独立的。
如由轨迹403显示的步骤402的输出是对由标记310(或类似标记)的内部栅条和外部栅条提供的单独的周期信号之间的拍效应的表示。因此,在低频包迹中观察到相当高的频率变化。在步骤404处,包迹拟合函数被应用至轨迹403,以获得和测量在步骤405处显示的包迹轨迹。如所提及的,关于标记的位置信息可以根据选择以传统的方式同时获得。适合的包迹拟合变换是Hilbert变换,但是当然可以基于适合的窗口操作和傅里叶变换使用任何适合的方法。在步骤406处,由拟合的包迹曲线,曲线的相位被测量和被针对CD变化的校准表绘制,以输出CD测量。
改善过程步骤之间的CD匹配的应用
图10显示在图1的双平台设备中执行的步骤的次序,以曝光衬底W上的管芯。同一次序可以被改成适合于单平台设备。在点线盒内的左手侧上是在测量工作站MEA处执行的步骤,而右手侧显示在曝光工作站EXP处执行的步骤。如关于图1在上文描述的,测量工作站代表了传感器AS、LS的通常位置,其中衬底台WTb当前处在所述传感器AS、LS的通常位置,而曝光工作站EXP是在投影系统PS的下面的位置,衬底台WTa当前被定位在曝光工作站EXP的该位置上。
设备的操作次序是可重复的,以处理一系列基本上相同的衬底。我们从衬底W已经被装载到曝光工作站中时(也如图1所示)开始对过程的描述。在步骤500处,新衬底W’被通过未显示的机构装载至设备。这两个衬底W和W’被并行地处理,以整体上增加光刻过程的生产率。最初参考新装载的衬底W’,这可以是之前未处理的衬底,被准备有用于设备中的第一次曝光的新光致抗蚀剂。通常,然而,所述的光刻过程将仅是一系列的曝光和处理步骤中的一个步骤,使得衬底W’已经穿过该设备和/或其它光刻术多次,且还可以具有随后进行的过程。在本发明的特殊的情形中,它可以具有关于其CD将被测量的特征。在步骤502处,使用衬底标记P1等和对准传感器AS的对准测量被执行以测量和记录衬底关于衬底台WT的对准。在实践中,在衬底W’上的多个标记将被测量以建立“晶片栅格”,其非常精确地绘制衬底上的标记的分布,包括相对于名义上规则的栅格的任何变形。利用上文已经描述的方法,还利用相同的对准传感器AS使用图5中显示的形式的标记或修改的标记进行CD测量。在步骤504,还测量了晶片高度对X-Y位置的分布图,用于对所曝光的图案的精确聚焦。
在衬底W’被装载时,条件手段数据506被接收,限定了将被执行的曝光,且还限定了之前制造的且将在其上制造的图案和晶片的性质。在502、504进行的测量被添加至这些条件手段数据,使得一组完整的条件手段和测量数据508被传送至曝光工作站。在步骤510,晶片W’和W被交换,使得测量的衬底W’变成了进入曝光工作站的衬底W。这种交换通过更换设备中的支撑件WTa和WTb来执行,使得衬底W、W’保持被精确地夹持和定位在这些支撑件上,以保持支撑件和衬底自身之间的相对对准。因此,如果已经更换工作台,则确定投影系统PS和衬底台WTa(之前的WTb)之间的相对位置是在曝光步骤的控制中利用衬底W(之前的W’)的测量信息502、504所需要的全部内容。在步骤512,利用掩模对准标记M1、M2(图1)来执行掩模版对准。在步骤514,516,518,扫描运动和辐射被施加到衬底W上的连续的管芯位置上,用于使多个图案的曝光完整。由于对准和水平分布图数据,这些图案被相对于期望的位置精确地对准,尤其是相对于之前设置在同一衬底上的特征精确地对准。由于CD数据,曝光和/或处理的参数可以以使所应用的图案的CD很好地匹配于在已存在的特征中的CD的目的来设置,而不是旨在CD的任意值或理想值。所曝光的衬底(在此标记为W”)被在步骤520从设备卸载,以根据所曝光的图案进行蚀刻或其它处理。
可以在期望CD测量的任何情况下,应用刚才描述的CD技术,适合的标记可以应用到将测量CD的层(器件层或抗蚀剂层)中。该方法的特殊的优点是可以使用位置传感器(诸如在光刻设备中典型地是可利用的和用于测量已经设置有一些特征的衬底的位置的对准传感器)快速地执行测量,且将要被曝光以形成额外的特征。其中CD的知识将是尤其有用的这一类型的情形是所谓的双重图案化技术,存在其的各种子类型。在双重图案化中,第一图案提供了限定具有临界(最小可制造)尺寸的产品特征的“第一群”(first population)线。为了增加产品特征的密度,利用相同或类似的光刻设备尽可能精确地在它们之间隔行交叉第二群线。
以第一种线之间的平均的间隔精确地放置这些第二种线假定了光刻设备过程的极好的重叠性能。然而,通常同样非常重要的是,在第一和第二群(线)中的特征的尺寸在给定的衬底或衬底部分很好地匹配的情况下所获得的光刻过程的满意的性能,和最终是所述器件的满意的性能。也就是说,与它们很好地与理想值匹配相比,对于给定的应用可能更加重要的是第一和第二群(线)中的CD彼此很好地匹配。许多努力和技术通常已经致力于实现双重图案化和光刻术的可预测的CD性能。在此处描述的新的测量技术提供了在第二群的图案化的准备中,在包括第一群的已存在的产品层中测量实际的CD的机会。使用该测量的结果允许在第一群的CD中发生的任何偏差可以通过对第二群的期望的CD中的调节(偏置)匹配。
测量重叠的可替代的实施例
图11和12示出了用于测量重叠的类似于上述的技术的应用,其是在同一衬底上的不同时刻执行的两个层(图案化步骤)之间的定位误差。图11(a)显示出标记610,该标记610粗略地与用于CD测量的上述的标记310一致。该标记的特征被用与标记310中的附图标号相类似的附图标号,但是第一个数字被用6替代3。如上文所述的,关于轴线604、606对称的该特殊布置针对于一种类型的对准传感器是尤其适合的。还可以设想可以包括仅两个栅条阵列(612,616)的其它布局。
图11(b)显示在标记610的中心部分中的栅条616的细节。与用于CD测量的标记316相比,在这一例子中的栅条616的中心阵列包括简单的标记620和空间624,而没有细分。在中心部分中的栅条616和在外部中的栅条612、614之间的主要差别在于它们被形成在独立的过程步骤中,例如在独立的产品层中。由于分别在不同组的栅条612/614和616之间的节距的差别,波纹图案在通过两组栅条所散射的辐射被在对准传感器中组合时再次出现。对于零重叠误差,栅条616相对于栅条612、614的位置可以是精确地如图11(a)所示。另一方面,在沿着纵向轴线604的方向出现重叠误差时,中心栅条616将略微偏移至左边或右边。波纹图案将以夸大的形式移动至左边和右边,以由光刻设备的对准传感器容易测量的方式着重突出了重叠误差。
因此,正如由标记310中的CD变化造成的栅条的中心图案中的明显的偏移允许通过波纹图案观察CD的非常灵敏的测量,使得由重叠误差造成的在标记610中的中心栅条616的实际移动将允许通过波纹图案的移动灵敏地观察重叠性能。
图12是重叠测量的过程的流程图。过程步骤700等近似地对应于图9的步骤400等,且应用了类似的数字。然而在生成标记的最初过程中具有差别。在步骤700,在第一光刻步骤期间,具有第一节距的栅条612和614被印刷作为从光刻设备中的图案形成装置M应用至衬底W上的图案的一部分。在第二光刻过程步骤701中,在光刻设备(或在另一类似的设备)中使用不同的图案形成装置M(图案形成装置M的一不同部分),以将第二图案施加到同一衬底W上,覆盖第一图案。该第二图案包括标记610的栅条616,所述栅条616具有不同于栅条612、614的节距,以使得标记610完整。
在步骤702,使用对准传感器扫描标记。可以由同一标记获得位置信息X和/或Y,或其可以是在独立的步骤中获得这样的信息。在位置被测量的情况下,这可以是位置测量的粗阶段或精阶段。通过使用粗测量来测量重叠,可以确保精测量不会被修改而折衷(牺牲精度)。
如由轨迹703显示的步骤702的输出是对由内部栅条和外部栅条提供的单独的周期信号之间的拍效应的显示。如在图7中,在低频包迹内观察到相对高的频率变化。在步骤704,包迹拟合函数被应用至轨迹703,以获得和测量在705处显示的包迹轨迹。如所提及的,关于标记的位置信息可以同时以传统的方式获得。如上文所述,适合的包迹拟合变换是Hilbert变换,但是当然可以使用任何适合的方法。在步骤706,根据拟合的包迹曲线,考虑波纹放大因子,观察到的曲线的相位被测量且被计算返回至重叠测量中。
清楚地,在本实施例中许多变化是可能的,包括如关于之前描述的CD测量方法所讨论的许多相同的变化。可以以不同的顺序生成标记610的不同的部分,例如在外部栅条612、614之前印刷中心栅条616。可以在同一衬底上形成多个标记,用于测量重叠和CD,且用于测量不同产品层的重叠和/或CD。
在数值例子中,内部栅条616的阵列具有2.2μm的节距,而外部栅条612,614的节距是2.6μm。由波纹图案造成的理论放大因子是(2.6+2.2)/(2(2.6-2.2))=6。因此,如果两组栅条之间的偏移将是1nm,那么在步骤704中检测到的包迹的偏移将是6nm。类似地,3nm的偏移将导致包迹的18nm的偏移。因此由波纹标记提供的放大因子可以允许对重叠误差的测量比利用对准传感器AS自身获得的测量更加灵敏,以测量不同的标记,且还可以允许用于使用单个测量步骤。此外,通过仅仅测量在不同层中形成的两个标记的位置来测量重叠,结果将具有不确定性,其是单独的位置测量的测量不确定性的两倍。上文提出的波纹方法不会以这种方式累积误差。节距和放大因子的选择依赖于设计者的测量设备的知识,且还涉及在可以被观察的波纹图案中的周期数量和放大因子之间的折衷。同一原理可以被应用在如上文所述的CD测量方法中。
所示出的方法具有相对于可替代的重叠测量技术的额外的优点,该优点在于,在两个过程步骤700、701中制造的图案被在它们的位置中进行比较,而没有物理地将一个重叠到另一个上。虽然重叠精度重要的实际产品特征将当然彼此叠置地形成,但是栅条612/614和616被并排地形成用于本发明的测量技术的事实意味着重叠测量免于由层之间的晶片水平相互作用造成的其它的影响。
因为重叠是对两个位置的差别的确定,所以它还可能需要定义用于测量的参考位置。多种方案对于其是可利用的。第一种方案是使用组合的标记的一部分的节距中的一个,其是栅条612或614或616的阵列的位置。假定这一节距可以使用仪器进行识别,这意味着单个扫描步骤702可以用于确定重叠和绝对位置。Hilbert变换例如可以用于识别拍图案中的独立的节距的位置,以及拍图案自身的包迹。可替代地,看上去像标记610但具有在一个层中的所有栅条的额外的标记可以被印刷在重叠测量标记610的旁边。在所述情形中,两个标记的波纹图案可以被比较,一个具有已知的零重叠误差(且因此是可测量的位置),另一个具有由在步骤700和701中应用的图案之间的位移造成的偏移。作为另外的替代方案,标记可以在步骤700或701中的一个中印刷,所述标记具有对应于所获得的组合的标记的包迹的节距。
在图示的例子中,两组栅条被设计成具有或多或少的相等的权重因子,使得波纹图案尽可能清楚。如果相同的标记用于位置测量,然而,可能在CD或重叠信号强度(波纹信号)与位置信号强度之间进行折衷。不同组的栅条之间的尺寸的比例可能因此被修剪以提供充足的波纹信号,而不盖过基周期信号。
可替代的实施方式
除上文提及的在US 6961116和US 2009195768A中描述的传感器之外,本发明还可以被修改以适合于与其它类型的传感器一起使用。另一类型的传感器是例如在US 6297876中描述的,存在许多可替代的设计。虽然在上文的例子中,波纹图案形成在光学系统中,该光学系统组合来自标记的不同部分的辐射,但是其它的传感器基于在失常的图像(pixilated image)的数字处理之后的图像捕获。在这些情形中,检测的图像可能看上去更像标记310或610,具有其离散的栅条。波纹图案将不在成其被检测的形式的图像中出现,但是可以由图像处理步骤形成,仅仅集成图案上的像素值。可以在快照中执行图像捕获,而不是通过以在图3中显示的传感器的方式用照射斑扫描。周期信号是否是被一次记录在图像中或作为来自扫描的随时间变化的信号,本领域技术人员可以容易地改变根据所述的原理的随后的处理以实现期望的结果。
应当理解,所述的用于计算CD和重叠测量的信号处理可以利用如图13所示的计算机组件。所述计算机组件可以是在设备外部的专门的计算机,或它可以是在对准传感器中的单元PU或可替代地是用于控制整个光刻设备的中央控制单元LACU。计算机组件可以布置成用于装载包括计算机可执行代码的计算机程序产品。这可以使得在计算机程序产品被下载时计算机组件能够控制具有对准传感器AS的光刻设备的上述的使用。因为上述的技术可以在已有的设备中实施,而不修改硬件,所以本发明可以在这样的计算机程序产品中具体地实施,其承载控制来自特殊的标记310、610等的信号的分析和读取的指令。
连接至处理器1227的存储器1229可以包括许多存储部件,例如硬盘1261、只读存储器(ROM)1262、电可擦除可编程只读存储器(EEPROM)1263以及随机存储器(RAM)1264。并不是需要设置所有上述的存储部件。此外,并不一定需要上述的存储部件在物理上非常靠近处理器1227或彼此靠近。它们可以定位成离开一距离。
处理器1227还可以连接至一些类型的用户接口,例如键盘1265或鼠标1266。还可以使用本领域技术人员已知的触摸屏、轨迹球、语言转换器或其它接口。
处理器1227可以连接至读取单元1267,其被布置成从数据载体(例如可移除硬盘1268或CDROM1269)上读取例如成计算机可执行代码形式的数据,和在一些情形下将数据储存到上述数据载体。还可以使用本领域技术人员已知的DVD或其它数据载体。
处理器1227还可以连接至打印机1270,以将输出数据打印在纸张上以及打印至显示器1271。处理器1227可以通过负责输入/输出(I/O)的发送器/接收器1273的方式连接至通信网络1272,例如公共开关电话网络(PSTN)、局域网(LAN)、广域网(WAN)等。处理器1227可以布置成经由通信网路1272与另外的通信系统通信。在本发明的实施例中,外部计算机(未显示),例如操作者的个人计算机,可以经由通信网络1272登录到处理器1227中。
处理器1227可以被实施作为独立的系统或并行地操作的多个处理单元,其中每个处理单元被布置成执行更大的程序的子任务。处理单元还可以被分成具有多个子处理单元的一个或更多的主处理单元。处理器1227的一些处理单元可以甚至定位成离开其它的处理单元一定距离且通过通信网络1272通信。
应当注意,虽然图1中的所有连接被显示成物理连接,但是这些连接中的一个或更多个可以被设置成是无线的。它们的意图仅是显示“被连接的”单元被布置成以某种方式彼此通信。计算机系统可以是任何信号处理系统,其中模拟和/或数字和/或软件技术被布置成执行此处讨论的功能。
尽管在本文中可以做出具体的参考,将所述光刻设备用于制造IC,但应当理解这里所述的光刻设备可以有其他的应用,例如,集成光学系统、磁畴存储器的引导和检测图案、平板显示器、液晶显示器(LCD)、薄膜磁头等的制造。本领域技术人员应该理解的是,在这种替代应用的情况中,可以将其中使用的任意术语“晶片”或“管芯”分别认为是与更上位的术语“衬底”或“目标部分”同义。这里所指的衬底可以在曝光之前或之后进行处理,例如在轨道(一种典型地将抗蚀剂层涂到衬底上,并且对已曝光的抗蚀剂进行显影的工具)、量测工具和/或检验工具中。在可应用的情况下,可以将所述公开内容应用于这种和其它衬底处理工具中。另外,所述衬底可以处理一次以上,例如以便产生多层IC,使得这里所使用的所述术语“衬底”也可以表示已经包含多个已处理层的衬底。
尽管以上已经做出了具体的参考,在光学光刻术的情形中使用本发明的实施例,但应该理解的是,本发明的实施例可以用于其他应用中,例如压印光刻术,并且只要情况允许,不局限于光学光刻术。在压印光刻术中,图案形成装置中的拓扑限定了在衬底上产生的图案。可以将所述图案形成装置的拓扑印刷到提供给所述衬底的抗蚀剂层中,在其上通过施加电磁辐射、热、压力或其组合来使所述抗蚀剂固化。在所述抗蚀剂固化之后,所述图案形成装置从所述抗蚀剂上移走,并在抗蚀剂中留下图案。
这里使用的术语“辐射”和“束”包含全部类型的电磁辐射,包括:紫外(UV)辐射(例如具有或具有约365、248、193、157或126nm的波长)和极紫外(EUV)辐射(例如具有在5-20nm范围内的波长)以及粒子束,诸如离子束或电子束。
在上下文允许的情况下,所述术语“透镜”可以表示各种类型的光学部件中的任何一种或它们的组合,包括折射式、反射式、磁性式、电磁式和静电式的光学部件。
尽管以上已经描述了本发明的特定的实施例,但是应该理解的是本发明可以以与上述不同的形式实现。例如,本发明可以采取包含用于描述上述公开的方法的一个或更多个机器可读指令序列的计算机程序的形式,或者采取具有在其中存储的这种计算机程序的数据存储介质的形式(例如,半导体存储器、磁盘或光盘)。
以上的描述是说明性的,而不是限制性的。因此,本领域的技术人员应当明白,在不背离下文所阐述的方面的保护范围的条件下,可以对所述的本发明进行修改。
本发明提供了以下方面的实施例:
1.一种测量光刻过程的性能参数的方法,所述方法包括:(a)使用至少一个光刻步骤在衬底上形成图案,所述图案包括在所述衬底上的彼此相邻地定位且具有各自的第一和第二周期的第一子图案和第二子图案;(b)对所述相邻的第一和第二子图案进行观察以获得组合的信号,所述组合的信号包括具有第三周期的拍分量,所述第三周期处于比所述第一和第二周期的频率更低的频率;和(c)由所述组合的信号计算对所述光刻过程的性能的测量,所计算的测量至少部分由所述拍分量的相位来确定。
2.如在实施例1中所述的方法,其中所述第一和第二子图案两者都在所述同一光刻步骤中形成,其中所述子图案中的至少一个被形成以便相对于另一子图案具有依赖于所述性能参数的呈现(apparent)位置。
3.如在实施例2中所述的方法,其中所述性能参数是在所述光刻步骤中形成在所述衬底上的特定的特征类型的尺寸。
4.如在实施例1、2或3中所述的方法,其中所述子图案中的至少一个包括周期性的标记阵列,其中所述标记中的每一个具有实心部分和细分的部分,在步骤(b)中被观察时所述每一标记的呈现位置依赖于所述光刻过程的所述性能参数。
5.如在实施例1中所述的方法,其中所述第一和第二子图案被在独立的光刻步骤中形成。
6.如在实施例5中所述的方法,其中所述性能参数是重叠。
7.如在任何前述的实施例中任一个所述的方法,其中在所述步骤(b)中,对所述第一和第二子图案的观察被光学地组合且被转换成电信号,所述电信号已经包括所述拍分量。
8.如在实施例7中所述的方法,其中所述图案被通过用传感器扫描所述图案以生成所述电信号来观察,使得所述拍分量在所述扫描期间作为所述电信号中的随时间变化的分量呈现。
9.如在实施例1至6中任一个所述的方法,其中在步骤(b)中,对所述第一和第二图案的观察被同时进行,且被转换成第一和第二电信号,所述第一和第二电信号之后被电组合以获得所述组合的信号。
10.如在实施例9中所述的方法,其中所述第一和第二电信号包括所述图案的图像的不同的部分。
11.如在前述的任何实施例中任一个所述的方法,还包括执行另外的光刻步骤以施加另外的图案至所述衬底,所述另外的光刻步骤过程通过参考所测量的参数而被部分地控制。
12.根据在实施例11中所述的方法,其中所述光刻步骤和所述另外的光刻步骤包括在双重图案化过程中的步骤。
13.一种用于测量光刻过程的性能参数的设备,所述设备包括:传感器,能够操作以观察利用所述光刻过程形成在衬底上的图案,所述图案包括在所述衬底上的彼此相邻地定位且具有各自的第一和第二周期的第一和第二子图案;布置,用于组合对所述相邻的第一和第二子图案的观察以获得组合的信号,所述组合的信号包括具有第三周期的拍分量,所述第三周期处于比所述第一和第二周期的频率更低的频率;和处理器,用于由所述组合的信号计算对所述光刻过程的性能的测量,所计算的测量至少部分通过所述拍分量的相位来确定。
14.如在实施例13中所述的设备,其中在操作中对所述第一和第二子图案的观察在被转换成电信号之前光学地组合,所述电信号已经包括所述拍分量。
15.如在实施例14中所述的设备,其中所述传感器被布置成通过扫描所述图案以生成所述电信号来执行所述观察,使得在所述扫描期间所述拍分量作为所述电信号中的随时间变化的分量出现。
16.一种如在前述实施例中任一个所述的设备,其中,在所述组合中,组合布置被布置成获得对成第一和第二电信号的形式的所述第一和第二图案的观察,且组合所述第一和第二电信号以获得所述组合的信号。
17.如在实施例16中所述的设备,其中所述第一和第二电信号包括所述图案的图像的不同的部分。
18.一种光刻设备,所述光刻设备布置成将来自图案形成装置的图案转移到衬底上,所述光刻设备包括:衬底台,构造成保持衬底;和如在前述实施例中任何一个中所描述的用于测量光刻过程的性能参数的设备,其布置成用于当所述衬底被在所述光刻设备的衬底台上支撑时测量所述衬底已经经历的光刻过程的性能参数。
19.如在实施例18中所述的光刻设备,其中所述测量设备的传感器还被布置成测量所述衬底的位置,所述光刻设备包括控制器,所述控制器用于通过参考所测量的位置至少部分地控制随后的图案到所述衬底上的转移。
20.如在实施例19所述的光刻设备,其中所述测量设备的处理器被布置成根据在观察所述拍图案的同时观察到的信号来确定所述衬底的位置。
21.如在实施例18、19或20中所述的光刻设备,其中所述控制器被布置成通过参考所测量的性能参数至少部分地控制另外的图案到所述衬底上的转移。
22.一种衬底,在所述衬底上已经通过光刻过程形成标记,所述标记被修改以适应用于测量所述光刻过程的性能参数且包括在所述衬底上彼此相邻地定位且具有各自的第一和第二周期的第一和第二子图案,其中所述子图案被形成,使得一个子图案相对于另一子图案的呈现位置依赖于所述性能参数,其中所述第一和第二周期用于生成拍图案,所述拍图案具有第三周期,所述第三周期处于比所述第一和第二周期更低的频率,由此所述性能参数的变化能够从所述拍图案的位置变化推断。
23.根据在实施例22中所述的衬底,其中所述第一和第二子图案两者被在所述同一光刻步骤中形成,其中所述子图案中的至少一个被形成以便具有相对于所述另一子图案的呈现位置,其依赖于所述性能参数。
24.如在实施例23中所述的衬底,其中所述性能参数是在所述光刻过程中形成在所述衬底上的特定特征类型的尺寸。
25.如在实施例22、23或24中所述的衬底,其中所述子图案中的至少一个包括周期性的栅条阵列,其中所述栅条中的每个具有实心的部分和细分的部分,在被观察时每个栅条的所述呈现位置依赖于所述光刻过程中的所述性能参数。
26.如在实施例22或24中所述的衬底,其中所述第一和第二子图案已经在独立的光刻步骤中形成,所述性能参数是重叠。
27.如在实施例22至26中的任一个中所述的衬底,其中所述第一和第二子图案沿着所述图案的纵向方向并排地延伸。
28.如在实施例27中所述的衬底,其中所述第一和第二子图案中的第一个沿着所述图案的中心线延伸,而所述第一和第二子图案中的另一个沿着两侧延伸,使得所述图案整体上关于所述中心线是对称的。
29.如在实施例22至28中任一个中所述的衬底,其中所述标记被形成在第一群特征中且在准备以与所述第一群特征隔行交叉的布置形成的第二群特征时形成,作为双重图案化过程的一部分。
30.一种有形的计算机可读介质,包括用于使得测量设备执行如在实施例1至12中任一个中所描述的方法中的步骤(b)和(c)的机器可执行指令。

Claims (15)

1.一种测量光刻过程的性能参数的方法,所述方法包括:
(a)使用至少一个光刻步骤在衬底上形成图案,所述图案包括具有各自的第一和第二周期的第一子图案和第二子图案,所述第一子图案和第二子图案在所述衬底上沿一轴线并行地排列且在横向于所述轴线的方向上彼此相邻地定位;
(b)对相邻的第一和第二子图案进行观察以获得组合的信号,所述组合的信号包括具有第三周期的拍分量,所述第三周期处于比所述第一和第二周期的频率更低的频率;和
(c)由所述组合的信号计算对所述光刻过程的性能的测量,所计算的测量至少部分通过所述拍分量的相位来确定。
2.根据权利要求1所述的方法,其中所述第一和第二子图案两者都在所述同一光刻步骤中形成,其中所述子图案中的至少一个被形成以便相对于另一子图案具有呈现位置,其依赖于所述性能参数。
3.根据权利要求2所述的方法,其中所述性能参数是在所述光刻步骤中形成在所述衬底上的特定的特征类型的尺寸。
4.根据权利要求1、2或3所述的方法,其中所述子图案中的至少一个包括周期性的标记阵列,其中所述标记中的每一个具有实心部分和细分的部分,在步骤(b)中观察时所述每一标记的呈现位置依赖于所述光刻过程的所述性能参数。
5.根据权利要求1所述的方法,其中所述第一和第二子图案被在独立的光刻步骤中形成。
6.根据权利要求5所述的方法,其中所述性能参数是重叠。
7.根据权利要求1-3和5-6中任一项所述的方法,其中在所述步骤(b)中,对所述第一和第二子图案的观察被光学地组合且转换成电信号,所述电信号已经包括所述拍分量。
8.根据权利要求7所述的方法,其中所述图案被通过用传感器扫描所述图案以生成所述电信号来观察,使得所述拍分量在所述扫描期间作为所述电信号中的随时间变化的分量出现。
9.根据权利要求1至3和5至6中任一项所述的方法,其中在步骤(b)中,对所述第一和第二图案的观察被同时进行,且被转换成第一和第二电信号,所述第一和第二电信号之后被电组合以获得所述组合的信号。
10.一种用于测量光刻过程的性能参数的设备,所述设备包括:
传感器,所述传感器能够操作以观察利用所述光刻过程形成在衬底上的图案,所述图案包括具有各自的第一和第二周期的第一和第二子图案,所述第一和第二子图案在所述衬底上沿一轴线并行地排列且在横向于所述轴线的方向上彼此相邻地定位;
布置,所述布置用于组合对所述相邻的第一和第二子图案的观察以获得组合的信号,所述组合的信号包括具有第三周期的拍分量,所述第三周期处于比所述第一和第二周期的频率更低的频率;和
处理器,所述处理器用于由所述组合的信号计算对所述光刻过程的性能的测量,所计算的测量至少部分通过所述拍分量的相位来确定。
11.根据权利要求10所述的设备,其中在操作中对所述第一和第二子图案的所述观察被在转换成电信号之前光学地组合,所述电信号已经包括所述拍分量。
12.根据权利要求11所述的设备,其中所述传感器被布置成通过扫描所述图案以生成所述电信号来执行所述观察,使得所述拍分量在所述扫描期间作为所述电信号中的随时间变化的分量出现。
13.根据权利要求10所述的设备,其中在所述组合中,布置被布置成获得对成第一和第二电信号的形式的所述第一和第二图案的观察,且组合所述第一和第二电信号以获得所述组合的信号。
14.一种衬底,在所述衬底上已经通过光刻过程形成标记,所述标记被修改以适应用于测量所述光刻过程的性能参数且包括具有各自的第一和第二周期的第一和第二子图案,所述第一和第二子图案在所述衬底上沿一轴线并行地排列且在横向于所述轴线的方向上彼此相邻地定位,其中所述子图案被形成,使得一个子图案相对于另一子图案的呈现位置依赖于所述性能参数,其中所述第一和第二周期用于生成拍图案,所述拍图案具有第三周期,所述第三周期处于比所述第一和第二周期的频率更低的频率,由此所述性能参数的变化能够从所述拍图案的位置变化来推断。
15.根据权利要求14所述的衬底,其中所述子图案中的至少一个包括周期性的栅条阵列,其中所述栅条中的每个具有实心的部分和细分的部分,在被观察时每个栅条中的所述呈现位置依赖于所述光刻过程中的所述性能参数。
CN201110387956.8A 2010-11-30 2011-11-29 测量方法、设备和衬底 Active CN102566301B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41819310P 2010-11-30 2010-11-30
US61/418,193 2010-11-30

Publications (2)

Publication Number Publication Date
CN102566301A CN102566301A (zh) 2012-07-11
CN102566301B true CN102566301B (zh) 2015-09-23

Family

ID=44862738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110387956.8A Active CN102566301B (zh) 2010-11-30 2011-11-29 测量方法、设备和衬底

Country Status (7)

Country Link
US (1) US10151987B2 (zh)
EP (1) EP2458441B1 (zh)
JP (1) JP5155436B2 (zh)
KR (1) KR101266035B1 (zh)
CN (1) CN102566301B (zh)
SG (1) SG181227A1 (zh)
TW (1) TWI452441B (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958898B2 (en) * 2011-11-07 2015-02-17 Nalco Company Method and apparatus to monitor and control sheet characteristics on a creping process
US9606442B2 (en) 2012-07-30 2017-03-28 Asml Netherlands B.V. Position measuring apparatus, position measuring method, lithographic apparatus and device manufacturing method
TWI454679B (zh) * 2012-08-08 2014-10-01 Chroma Ate Inc Optical detection system and optical property detection method
US9506965B2 (en) * 2012-11-12 2016-11-29 United Microelectronics Corp. Alternately arranged overlay marks having asymmetric spacing and measurement thereof
WO2014139855A1 (en) 2013-03-14 2014-09-18 Asml Netherlands B.V. Patterning device, method of producing a marker on a substrate and device manufacturing method
CN104423145B (zh) * 2013-09-02 2019-02-22 北大方正集团有限公司 掩膜版及显微镜读取关键尺寸的方法
CN103645036B (zh) * 2013-12-30 2017-07-18 京东方科技集团股份有限公司 摩尔纹测评方法及测评装置
JP5932859B2 (ja) * 2014-02-18 2016-06-08 キヤノン株式会社 検出装置、インプリント装置、および物品の製造方法
CN104950587B (zh) * 2014-03-25 2017-12-29 上海微电子装备(集团)股份有限公司 曝光装置与曝光方法
CN112331576B (zh) * 2014-10-03 2024-07-26 科磊股份有限公司 计量目标设计方法以及验证计量目标
US9484188B2 (en) * 2015-03-11 2016-11-01 Mapper Lithography Ip B.V. Individual beam pattern placement verification in multiple beam lithography
US9864209B2 (en) * 2015-05-19 2018-01-09 Kla-Tencor Corporation Self-moire target design principles for measuring unresolved device-like pitches
WO2016207891A1 (en) * 2015-06-22 2016-12-29 Nova Measuring Instruments Ltd. Method for use in process control of manufacture of patterned samples
CN106933024B (zh) * 2015-12-30 2020-05-01 上海微电子装备(集团)股份有限公司 一种可检测掩膜弯曲度的光刻系统及检测方法
CN108010855B (zh) 2016-10-31 2020-04-14 中芯国际集成电路制造(上海)有限公司 用于检测基板上的标记的装置、设备和方法
CN108022847B (zh) 2016-10-31 2020-12-18 中芯国际集成电路制造(上海)有限公司 用于检测基板上的标记的装置、设备和方法
EP3339959A1 (en) * 2016-12-23 2018-06-27 ASML Netherlands B.V. Method of determining a position of a feature
TWI730050B (zh) * 2017-02-15 2021-06-11 聯華電子股份有限公司 層疊對準標記與評估製程穩定度的方法
US10656535B2 (en) * 2017-03-31 2020-05-19 Imec Vzw Metrology method for a semiconductor manufacturing process
US10473460B2 (en) * 2017-12-11 2019-11-12 Kla-Tencor Corporation Overlay measurements of overlapping target structures based on symmetry of scanning electron beam signals
US10446367B2 (en) * 2018-03-07 2019-10-15 Kla-Tencor Corporation Scan strategies to minimize charging effects and radiation damage of charged particle beam metrology system
WO2020007558A1 (en) * 2018-07-06 2020-01-09 Asml Netherlands B.V. Position sensor
EP3637187A1 (en) * 2018-10-12 2020-04-15 ASML Netherlands B.V. Method for measuring focus performance of a lithographic apparatus
JP7095183B2 (ja) * 2019-01-28 2022-07-04 ケーエルエー コーポレイション モアレターゲット及びそれを用い半導体デバイスの位置ずれを計測する方法
US20220121129A1 (en) * 2019-02-19 2022-04-21 Asml Netherlands B.V. Metrology system, lithographic apparatus, and method
CN113454538B (zh) * 2019-02-21 2024-06-11 Asml控股股份有限公司 使用目标或产品的形状双折射的晶片对准
WO2020197950A1 (en) 2019-03-25 2020-10-01 Kla Corporation Improved self-moiré grating design for use in metrology
US11073768B2 (en) * 2019-06-26 2021-07-27 Kla Corporation Metrology target for scanning metrology
JP7418080B2 (ja) * 2019-10-04 2024-01-19 キヤノン株式会社 位置検出装置、位置検出方法、リソグラフィ装置、及び物品の製造方法
CN115428139B (zh) * 2020-04-15 2024-04-12 科磊股份有限公司 可用于测量半导体装置偏移的具有装置级特征的偏移目标
KR20230013039A (ko) * 2020-05-27 2023-01-26 에이에스엠엘 네델란즈 비.브이. 정렬 방법 및 연관된 정렬과 리소그래피 장치
US11967535B2 (en) * 2021-04-13 2024-04-23 Kla Corporation On-product overlay targets
CN114326325B (zh) * 2021-12-29 2023-12-29 长江存储科技有限责任公司 套刻标记及其形成方法
WO2024161495A1 (ja) * 2023-01-31 2024-08-08 株式会社ニコン マーク計測方法、計測装置、露光装置、演算装置、プログラム及び記憶媒体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534271A (zh) * 2002-09-20 2004-10-06 Asml荷兰有限公司 器件检验

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215905A (ja) * 1985-03-22 1986-09-25 Nippon Kogaku Kk <Nikon> 位置検出装置
US4710026A (en) * 1985-03-22 1987-12-01 Nippon Kogaku K. K. Position detection apparatus
JPH02188907A (ja) * 1989-01-17 1990-07-25 Canon Inc 面位置検出装置
JP2906433B2 (ja) * 1989-04-25 1999-06-21 株式会社ニコン 投影露光装置及び投影露光方法
US5182610A (en) * 1990-04-19 1993-01-26 Sortec Corporation Position detecting method and device therefor as well as aligning device
JP3187093B2 (ja) * 1991-09-27 2001-07-11 キヤノン株式会社 位置ずれ測定装置
JPH0587527A (ja) * 1991-09-27 1993-04-06 Canon Inc 光ヘテロダイン干渉計測方法及び計測装置
US6034378A (en) * 1995-02-01 2000-03-07 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
US5805290A (en) * 1996-05-02 1998-09-08 International Business Machines Corporation Method of optical metrology of unresolved pattern arrays
WO1998039689A1 (en) 1997-03-07 1998-09-11 Asm Lithography B.V. Lithographic projection apparatus with off-axis alignment unit
JPH10270347A (ja) * 1997-03-24 1998-10-09 Nikon Corp 位置ずれ検出方法及びその装置
JPH11211415A (ja) * 1998-01-29 1999-08-06 Canon Inc 位置検出装置及びそれを用いたデバイスの製造方法
US6732890B2 (en) * 2000-01-15 2004-05-11 Hazelett Strip-Casting Corporation Methods employing permanent magnets having reach-out magnetic fields for electromagnetically pumping, braking, and metering molten metals feeding into metal casting machines
TW526573B (en) * 2000-12-27 2003-04-01 Koninkl Philips Electronics Nv Method of measuring overlay
DE60319462T2 (de) 2002-06-11 2009-03-12 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
US7209235B2 (en) * 2002-07-11 2007-04-24 Hymite A/S Accurate positioning of components of a optical assembly
JP4074867B2 (ja) * 2003-11-04 2008-04-16 エーエスエムエル ネザーランズ ビー.ブイ. 第1及び第2位置合せマークの相対位置を計測する方法及び装置
US7279258B2 (en) * 2004-03-12 2007-10-09 Infineon Technologies Richmond, Lp Method and arrangement for controlling focus parameters of an exposure tool
JP2006039148A (ja) * 2004-07-26 2006-02-09 Toshiba Corp ホトマスク、それを用いたフォーカス測定方法および半導体装置の製造方法
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7342641B2 (en) * 2005-02-22 2008-03-11 Nikon Corporation Autofocus methods and devices for lithography
KR100715280B1 (ko) * 2005-10-01 2007-05-08 삼성전자주식회사 오버레이 키를 이용하는 오버레이 정밀도 측정 방법
US20070146670A1 (en) * 2005-12-27 2007-06-28 Asml Netherlands B.V. Lithographic apparatus, patterning device and device manufacturing method
US7818073B2 (en) 2006-04-20 2010-10-19 Asml Netherlands B.V. Method for obtaining improved feedforward data, a lithographic apparatus for carrying out the method and a device manufacturing method
US7502103B2 (en) 2006-05-31 2009-03-10 Asml Netherlands B.V. Metrology tool, system comprising a lithographic apparatus and a metrology tool, and a method for determining a parameter of a substrate
US7714981B2 (en) 2006-10-30 2010-05-11 Asml Netherlands B.V. Lithographic apparatus and method
US7948616B2 (en) * 2007-04-12 2011-05-24 Nikon Corporation Measurement method, exposure method and device manufacturing method
US8687166B2 (en) 2007-05-24 2014-04-01 Asml Netherlands B.V. Lithographic apparatus having an encoder position sensor system
TWI383273B (zh) 2007-11-20 2013-01-21 Asml Netherlands Bv 微影投射裝置之焦點測量方法及微影投射裝置之校準方法
NL1036476A1 (nl) 2008-02-01 2009-08-04 Asml Netherlands Bv Alignment mark and a method of aligning a substrate comprising such an alignment mark.
NL1036647A1 (nl) * 2008-04-16 2009-10-19 Asml Netherlands Bv A method of measuring a lithographic projection apparatus.
NL2003673A (en) 2008-11-21 2010-05-25 Asml Netherlands Bv Lithographic apparatus and methods for compensating substrate unflatness, determining the effect of patterning device unflatness, and determing the effect of thermal loads on a patterning device.
NL2003785A (en) 2008-12-09 2010-06-10 Asml Netherlands Bv Method of forming a marker, substrate having a marker and device manufacturing method.
NL2008110A (en) * 2011-02-18 2012-08-21 Asml Netherlands Bv Measuring method, measuring apparatus, lithographic apparatus and device manufacturing method.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534271A (zh) * 2002-09-20 2004-10-06 Asml荷兰有限公司 器件检验

Also Published As

Publication number Publication date
EP2458441B1 (en) 2022-01-19
TW201232193A (en) 2012-08-01
EP2458441A2 (en) 2012-05-30
SG181227A1 (en) 2012-06-28
JP5155436B2 (ja) 2013-03-06
TWI452441B (zh) 2014-09-11
JP2012146959A (ja) 2012-08-02
US20120133938A1 (en) 2012-05-31
EP2458441A3 (en) 2017-08-23
US10151987B2 (en) 2018-12-11
KR101266035B1 (ko) 2013-05-21
KR20120059412A (ko) 2012-06-08
CN102566301A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
CN102566301B (zh) 测量方法、设备和衬底
CN102681167B (zh) 光学设备、扫描方法、光刻设备和器件制造方法
CN102402129B (zh) 光刻设备、器件制造方法和施加图案到衬底上的方法
TWI314672B (en) Lithographic apparatus with multiple alignment arrangemetns and alignment measurement method
CN101957567B (zh) 多头对准系统中的对准头的位置校准
CN101819384B (zh) 检验设备、光刻设备、光刻处理单元以及检验方法
CN102314092B (zh) 位置传感器和光刻设备
CN102460310B (zh) 重叠测量的方法、光刻设备、检查设备、处理设备和光刻处理单元
CN102483582B (zh) 量测方法和设备、光刻设备、光刻处理单元和包括量测目标的衬底
CN100580563C (zh) 光刻装置及用于校准该光刻装置的方法
CN102171618B (zh) 使用二维目标的光刻聚焦和剂量测量
CN102687073B (zh) 检验方法和设备
CN102422226B (zh) 确定重叠误差的方法
US20050168714A1 (en) Lithographic apparatus, measurement system, and device manufacturing method
JP5979626B2 (ja) 像内の構造の位置を決定する方法及び該方法を実施するための位置測定装置
KR101651447B1 (ko) 정량적 레티클 왜곡 측정 시스템
CN101424513A (zh) 位置测量系统和光刻设备
CN102103330A (zh) 测量光刻设备中动态定位误差的性质的方法、数据处理设备以及计算机程序产品
US8130366B2 (en) Method for coarse wafer alignment in a lithographic apparatus
CN108139695A (zh) 具有传感器的设备以及执行目标测量的方法
JP2012129314A (ja) インプリント装置、そのモールド及び物品の製造方法
NL2022569A (en) Target design and method for alignment and metrology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant