CN102498528A - 铁系超导电线材及其制造方法 - Google Patents

铁系超导电线材及其制造方法 Download PDF

Info

Publication number
CN102498528A
CN102498528A CN2010800241262A CN201080024126A CN102498528A CN 102498528 A CN102498528 A CN 102498528A CN 2010800241262 A CN2010800241262 A CN 2010800241262A CN 201080024126 A CN201080024126 A CN 201080024126A CN 102498528 A CN102498528 A CN 102498528A
Authority
CN
China
Prior art keywords
iron
wire rod
superconduct
superconductor
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800241262A
Other languages
English (en)
Other versions
CN102498528B (zh
Inventor
高野义彦
水口佳一
熊仓浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Publication of CN102498528A publication Critical patent/CN102498528A/zh
Application granted granted Critical
Publication of CN102498528B publication Critical patent/CN102498528B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/704Wire, fiber, or cable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种铁系超导电线材,其在主要由铁形成的筒状体的内部生成将形成筒状体的铁作为化学成分元素之一的铁系超导电体。

Description

铁系超导电线材及其制造方法
技术领域
本发明涉及使用了以铁为主要成分的铁系超导电体的铁系超导电线材及其制造方法。
背景技术
2008年初发现铁系超导电体(非专利文献1)。以该发现为契机,在类似化合物中陆续发现超导电体,期待铁系超导电体成为新的高温超导电体的矿脉。
另外,铁系超导电体的临界电流密度及临界磁场高,应用性上也有高的期待。本发明者们开发了其中具有最简单构造的FeSe、FeTe、FeSe1-xTex(0<x<1)、FeTe1-xSx(0<x<1)等(例如非专利文献2-3)。另外,已知Fe和硫属化合物的摩尔比中Fe若干过量。这些铁系超导电体由于毒性比较弱、构造简单等,因此认为适于应用化。
非专利文献1:J.Am.Chem.Soc.,130,3296(2008)
非专利文献2:Appl.Phys.Lett.,94,012503(2009)
非专利文献3:Appl.Phys.Lett.,93,152505(2008)
发明内容
发明要解决的问题
本发明的课题在于,实现这样的铁系超导电体的实用性的开发,提供使用了FeSe、FeTe、FeSe1-xTex(0<x<1)、FeTe1-xSx(0<x<1)等铁系超导电物质的铁系超导电线材及其制造方法。
用于解决问题的手段
为了实现所述课题,本发明的铁系超导电线材的特征在于,在主要由铁形成的筒状体的内部生成将形成筒状体的铁作为化学成分元素之一的铁系超导电体。
该铁系超导电线材中,优选筒状体为超导电线材的覆盖物。
另外,该铁系超导电线材中,优选铁系超导电体的化学组成为FeSe、FeTe、FeSe1-xTex(0<x<1)或FeTe1-xSx(0<x<1)中的任一种。
另外,该铁系超导电线材中,也可以将多条铁系超导电线材一体化而形成多芯线。
本发明提供一种铁系超导电线材的制造方法,其特征在于,向主要由铁形成的筒状体的内部装填铁以外的构成铁系超导电体的化学成分元素即原料物质后,进行机械加工,进行线材化,在100-1000℃下进行1分钟-500小时的加热处理,使形成筒状体的铁和装填于筒状体的内部的原料物质发生反应,生成铁系超导电体,得到铁系超导电线材。
发明效果
根据本发明的铁系超导电线材及其制造方法,通过使用主要由铁形成的筒状体,并向其内部装填构成铁系超导电体的其它的原料物质,能够简单地制作铁系超导电线材,铁系超导电线材的超导电特性稳定地显现。
附图说明
图1是表示实施例中(a)轧制后、(b)加热处理后的线材的照片;
图2是表示实施例中制作的FeSe1-xTex(0<x<1)超导电线材的电流-电压特性的图;
图3是拍摄实施例中制作的FeSe1-xTex(0<x<1)超导电线材的剖面的光学显微镜照片;
图4是实施例中制作的FeSe1-xTex(0<x<1)超导电线材的扫描电子显微镜像;
图5是表示实施例中制作的FeSe1-xTex(0<x<1)超导电线材的剖面的面映像结果的照片。
具体实施方式
本发明的铁系超导电线材中,使用主要由铁形成的筒状体,通过形成该筒状体的铁和向筒状体的内部装填且构成铁系超导电体的铁以外的化学成分元素即原料物质生成铁系超导电体。即,在主要由铁形成的筒状体的内部生成将形成筒状体的铁作为化学成分元素之一的铁系超导电体。
筒状体为了助于铁系超导电体的生成而主要由铁形成,只要不阻碍铁系超导电体的生成,则筒状体可以含有铁以外的添加物、不可避免的杂质。例如允许Hexagonal相、Pyrite相、银、氧化铁、铋等的添加。
本发明的铁系超导电线材中铁系超导电体作为其化学组成,主要示例目前为止开发的FeSe、FeTe、FeSe1-xTex(0<x<1)、FeTe1-xSx(0<x<1)等,但只要可线材化,则化学组成就没有特别限制。
另一方面,构成铁系超导电体的化学成分元素的组成比可以适当变更。例如FeSe1-xTex(0<x<1)、FeTe1-xSx(0<x<1)中的Se和Te的比率、Te和S的比率等在0<x<1的范围内可以适当变更。
主要由铁形成的筒状体也可以起到作为超导电线材的覆盖物的功能及作用。
装填于筒状体的铁以外的元素原料中可以使用Se、Te、或S的单体或混合体、或SeTe等的预先合成的化合物。
本发明的铁系超导电线材的制造方法在下面示例。
1)向主要由铁形成的筒状体的内部装填构成铁系超导电体的铁以外的化学成分元素即原料物质。
2)进行轧制等机械性的加工,进行线材化。
3)在100-1000℃下进行1分钟-500小时的加热处理生成铁系超导电体。
在筒状体的内部装填的原料物质使用预先合成的SeTe及TeS的情况下,对抑制热处理时的Se及S的蒸发有效。
另外,加热处理通过在惰性气氛中的密闭状态下进行而能够有效地抑制Se及S的扩散。
另外,由于导入钉扎中心,因此可以在不阻碍超导电特性的程度下向装填于筒状体内部的SeTe等铁以外的原料物质中配合添加物,例如Hexagonal相、Pyrite相、银、氧化铁、铋等。
本发明通过在利用通电试验观察铁系超导电线材的临界电流上初步成功而完成,可在今后的铁系超导电体的线材化上赋予强大的技术性的方针。例如,可实现将铁系超导电线材的多数条一体化而形成多芯线的多芯铁系超导电线材。
线材的试制使用Powder-in-Tube法进行。使用外径6mm、内径3.5mm的铁制管作为覆盖物,在其内部装填Se或预先合成的SeTe,并将铁制管的两端密封。然后,使用槽辊轧制至外径为2mm,进而使用平辊轧制成宽度4-5mm、厚度0.55mm左右。将得到的线材切断成4cm左右,并将该短尺寸的线材在氩气气氛中(等同于环境压)封入石英管中。而且,在表1表示的条件下进行加热处理。加热温度为450-550℃。加热时间若包含升温时间则为3-4小时。加热处理后,通过通电试验进行电压-电流测定,估计临界电流(Ic)。
图1(a)是表示向铁制管(覆盖物)的内部装填SeTe粉末并进行轧制的烧成前的线材的照片,图1(b)是表示在氩气气氛中加热处理的烧成后的线材的照片。
另外,用于铁以外的原料物质的SeTe为将Se和Te按1∶1摩尔比计量,将其真空封入石英管的内部后在500℃下烧成8小时,由此合成,之后粉碎而成的物质。
另外,Se及Te中使用下面的物质。
Se为高纯度化学公司制造的Se粉末,纯度99.9%以上,平均粒径为75μm。
Te为高纯度化学公司制的Te粉末,纯度99.9%,平均粒径为150μm。
【表1】
Figure BDA0000114938970000041
如图2中所示的试样1及试样2所示,对在表1所示的实验No.1及No.2的条件下烧成并制作的FeSe1-xTex(0<x<1)线材(试样1与实验No.1对应,试样2与实验No.2对应),至某一定电流为止确认零电阻状态,将阈值设为0.1μV成功地估计临界电流。实现铁系超导电线材。
研磨线材的剖面,通过光学显微镜及SEM(Scanning ElectronMicroscope)进行剖面的观察,另外,使用EDX(Energy Dispersive X-rayspectroscopy)进行元素的面映像。
图3是拍摄将在表1所示的实验No.1的条件下制作的线材埋入树脂中并进行了研磨后的线材的剖面的光学显微镜照片。图4是在表1所示的实验No.1的条件下制作的线材的剖面的扫描电子显微镜图像。图5是在表1所示的实验No.1的条件下制作的线材的剖面的利用EDX(EnergyDispersive X-ray spectroscopy)的面映像。使用Fe-Kα线、Se-Lα线、及Te-Lα线进行分析。确认在铁覆盖物的内部生成化学组成FeSe1-xTex(0<x<1)即铁系超导电体。
在与表1所示的实验No.1及实验No.2一样的条件下能够制作化学组成为FeSe、FeTe1-xSx(0<x<1)的铁系超导电线材。FeTe1-xSx(0<x<1)超导电线材的制作中,使Te与S预先反应并合成,将变更其组成比的Te1-xSx用于铁以外的原料物质。根据FeSe、FeSe1-xTex(0<x<1)及FeTe1-xSx(0<x<1)的多结晶体的研究了解可以进行固溶系的合成。例如,将Te与S以1∶1的摩尔比混合并真空封入石英玻璃管内后,在400℃下烧成1/2天(半天),由此得到全量反应的TeS。
另外,为了调整组成比而向铁制管(覆盖物)内部同时装填该TeS和Te,在进行线材化后,进行450-600℃的加热处理,得到铁系超导电体的化学组成为FeTe1-xSx(0<x<1)的铁系超导电线材。关于全部铁系超导电线材也观测到临界电流。
另外,本发明的铁系超导电线材及其制造方法不限于上述实施例是不言而喻的。
产业上的可利用性
根据本发明的铁系超导电线材及其制造方法能够简单地制作使用了FeSe、FeTe、FeSe1-xTex(0<x<1)、FeTe1-xSx(0<x<1)等的铁系超导电物质的铁系超导电线材。希望铁系超导电体的实用化,期待其应用及开发。

Claims (5)

1.一种铁系超导电线材,其特征在于,
在主要由铁形成的筒状体的内部,生成了将形成筒状体的铁作为化学成分元素之一的铁系超导电体。
2.如权利要求1所述的铁系超导电线材,其特征在于,
所述筒状体为超导电线材的覆盖物。
3.如权利要求1或2所述的铁系超导电线材,其特征在于,
所述铁系超导电体的化学组成为FeSe、FeTe、FeSe1-xTex(0<x<1)或FeTe1-xSx(0<x<1)中的任一种。
4.一种多芯铁系超导电线材,其特征在于,
将权利要求1~3中任一项所述的铁系超导电线材的多条一体化而形成为多芯线。
5.一种铁系超导电线材的制造方法,其特征在于,
向主要由铁形成的筒状体的内部装填铁以外的构成铁系超导电体的化学成分元素即原料物质后,进行机械加工,进行线材化,在100-1000℃下进行1分钟-500小时的加热处理,使形成筒状体的铁和装填于筒状体的内部的原料物质发生反应,生成铁系超导电体,得到铁系超导电线材。
CN201080024126.2A 2009-06-05 2010-06-01 铁系超导电线材及其制造方法 Expired - Fee Related CN102498528B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-136662 2009-06-05
JP2009136662 2009-06-05
PCT/JP2010/059278 WO2010140593A1 (ja) 2009-06-05 2010-06-01 鉄系超電導線材とその製造方法

Publications (2)

Publication Number Publication Date
CN102498528A true CN102498528A (zh) 2012-06-13
CN102498528B CN102498528B (zh) 2014-04-16

Family

ID=43297727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080024126.2A Expired - Fee Related CN102498528B (zh) 2009-06-05 2010-06-01 铁系超导电线材及其制造方法

Country Status (5)

Country Link
US (1) US8871684B2 (zh)
EP (1) EP2447958B1 (zh)
JP (1) JP5626658B2 (zh)
CN (1) CN102498528B (zh)
WO (1) WO2010140593A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112010270A (zh) * 2019-05-31 2020-12-01 中国科学院物理研究所 FeBi(Te,Se)多晶超导材料及其制备方法和应用
CN114242333A (zh) * 2021-12-23 2022-03-25 上海交通大学 一种铁硒碲硫超导靶材及其制备方法与应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626991B2 (ja) * 2011-01-18 2014-11-19 独立行政法人物質・材料研究機構 固相反応で合成したFeTe1−xSx化合物の超電導化方法
RU2522591C2 (ru) * 2012-07-13 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ синтеза монокристаллических селенидов железа
CN110061367B (zh) * 2019-04-23 2020-08-11 中国科学院电工研究所 一种铁基超导接头及其制备方法
CN110867283B (zh) * 2019-11-29 2020-11-24 西北有色金属研究院 一种FeSe基超导线材的制备方法
CN113345640B (zh) * 2021-06-03 2022-08-02 西北有色金属研究院 一种Fe(Se,Te)超导线材的制备方法
WO2023146540A1 (en) * 2022-01-30 2023-08-03 Fermi Research Alliance, Llc Bi-layer barrier assembly for iron-based superconductor and associated methods
CN114566326A (zh) * 2022-03-29 2022-05-31 中国科学院电工研究所 一种通过挤压成形获得复合包套铁基超导线带材的方法
CN114822991B (zh) * 2022-05-26 2023-01-31 西北有色金属研究院 一种Fe(Se,Te)超导线材的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1865457A (zh) * 2006-06-13 2006-11-22 中国科学院电工研究所 一种铁基二硼化镁超导线带材的热处理方法
CN1933036A (zh) * 2005-09-13 2007-03-21 中国科学院电工研究所 一种MgB2超导材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3945600B2 (ja) * 1998-03-04 2007-07-18 学校法人東海大学 Nb 3 Sn超伝導線材の製造方法
US20030036482A1 (en) * 2001-07-05 2003-02-20 American Superconductor Corporation Processing of magnesium-boride superconductors
JP4476800B2 (ja) * 2004-12-28 2010-06-09 株式会社神戸製鋼所 Nb3Sn超電導線材の製造方法
CN101271747B (zh) * 2008-05-07 2013-05-01 中国科学院电工研究所 一种铁基化合物超导线材、带材及其制备方法
JP5376499B2 (ja) * 2008-11-04 2013-12-25 独立行政法人物質・材料研究機構 鉄系超電導物質

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933036A (zh) * 2005-09-13 2007-03-21 中国科学院电工研究所 一种MgB2超导材料及其制备方法
CN1865457A (zh) * 2006-06-13 2006-11-22 中国科学院电工研究所 一种铁基二硼化镁超导线带材的热处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YOSHIKAZU MIZUGUCHI ET AL.: "Superconductivity at 27 K in tetragonal FeSe under high pressure", 《APPLIED PHYSICS LETTERS》, vol. 93, 31 October 2008 (2008-10-31), XP012111887, DOI: doi:10.1063/1.3000616 *
YOSHIKAZU MIZUGUCHI ET AL.: "Superconductivity in S-substituted FeTe", 《APPLIED PHYSICS LETTERS》, vol. 94, 31 January 2009 (2009-01-31), XP012118213, DOI: doi:10.1063/1.3058720 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112010270A (zh) * 2019-05-31 2020-12-01 中国科学院物理研究所 FeBi(Te,Se)多晶超导材料及其制备方法和应用
CN114242333A (zh) * 2021-12-23 2022-03-25 上海交通大学 一种铁硒碲硫超导靶材及其制备方法与应用
CN114242333B (zh) * 2021-12-23 2023-03-14 上海交通大学 一种铁硒碲硫超导靶材及其制备方法与应用

Also Published As

Publication number Publication date
WO2010140593A1 (ja) 2010-12-09
JP5626658B2 (ja) 2014-11-19
EP2447958A4 (en) 2015-04-15
US20120135869A1 (en) 2012-05-31
CN102498528B (zh) 2014-04-16
US8871684B2 (en) 2014-10-28
EP2447958A1 (en) 2012-05-02
EP2447958B1 (en) 2017-09-20
JPWO2010140593A1 (ja) 2012-11-22

Similar Documents

Publication Publication Date Title
CN102498528B (zh) 铁系超导电线材及其制造方法
Liu et al. Influence of Ag doping on thermoelectric properties of BiCuSeO
Rogl et al. New bulk p-type skutterudites DD0. 7Fe2. 7Co1. 3Sb12− xXx (X= Ge, Sn) reaching ZT> 1.3
Singh et al. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material
Chen et al. Recent progress of half-Heusler for moderate temperature thermoelectric applications
Ning et al. Enhanced thermoelectric performance of porous magnesium tin silicide prepared using pressure-less spark plasma sintering
Zhang et al. Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2-yAgyTe1-2xSxSex
Sekimoto et al. Thermoelectric properties of Sn-doped TiCoSb half-Heusler compounds
Ji et al. Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization
Sahoo et al. Enhancing thermopower and hole mobility in bulk p-type half-Heuslers using full-Heusler nanostructures
EP1999066A2 (de) Dotierte bleitelluride fuer thermoelektrische anwendungen
Zhou et al. Effects of partial substitution of Co by Ni on the high-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds
Zhang et al. Fabrication and properties of Bi2S3− xSex thermoelectric polycrystals
TW200933940A (en) Extrusion process for preparing improved thermoelectric materials
Ye et al. Enhancing the critical current properties of internal Mg diffusion-processed MgB2 wires by Mg addition
Flahaut et al. Role of Ag in textured-annealed Bi2Ca2Co1. 7Ox thermoelectric ceramic
Zou et al. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds
Li et al. Comparison of thermoelectric performance of AgPbxSbTe20 (x= 20–22.5) polycrystals fabricated by different methods
Kawano et al. Effect of Sn doping on the thermoelectric properties of ErNiSb-based p-type half-Heusler compound
He et al. Boosting thermoelectric performance of BiCuSeO by improving carrier mobility through light element doping and introducing nanostructures
Song et al. Thermoelectric properties of Bi2-xTixO2Se with the shear exfoliation-restacking process
Gao et al. Improved thermoelectric properties of hole-doped Bi 2− x Na x Ba2Co2O y ceramics
Wang et al. Influence of crystalline boron powders on superconducting properties of C-doped internal Mg diffusion processed MgB2 wires
Choi et al. Thermoelectric properties of higher manganese silicide consolidated by flash spark plasma sintering technique
Cheng et al. Synthesis of amorphous Si–Ge alloys using microwave energy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140416

Termination date: 20170601