CN1024564C - 抑制奥氏体不锈钢中辐照加速应力腐蚀开裂的方法 - Google Patents

抑制奥氏体不锈钢中辐照加速应力腐蚀开裂的方法 Download PDF

Info

Publication number
CN1024564C
CN1024564C CN89101613A CN89101613A CN1024564C CN 1024564 C CN1024564 C CN 1024564C CN 89101613 A CN89101613 A CN 89101613A CN 89101613 A CN89101613 A CN 89101613A CN 1024564 C CN1024564 C CN 1024564C
Authority
CN
China
Prior art keywords
stainless steel
stress corrosion
austenitic stainless
irradiation
highest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN89101613A
Other languages
English (en)
Other versions
CN1038672A (zh
Inventor
阿尔温·约瑟夫·雅各斯
杰拉尔德·迈龙·戈登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1038672A publication Critical patent/CN1038672A/zh
Application granted granted Critical
Publication of CN1024564C publication Critical patent/CN1024564C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

抑制在奥氏体不锈钢中主要由于高强辐照而发生应力腐蚀开裂的方法,此方法包括热处理一种不锈钢,将其大块不锈钢在温度范围至少为2050°F至2400°F内保持至少1分钟至45分钟,其热处理时间和热处理温度近似成反比,所述的不锈钢合金的基本组成如下,以近似重量百分数表示:铬18-20;镍8-14;碳最高0.08;锰最高2.0;硅最高1.0;钼最高3.0和铁余量。

Description

本发明涉及抑制奥氏体不锈钢中主要由于高强辐照而发生应力腐蚀开裂的方法。本发明与核反应堆内部和周围通常应用的不锈钢和其它合金的断裂有关,这种断裂主要由于受到高水平辐照导致出现应力腐蚀开裂。
高铬-镍型不锈钢合金,由于其众所周知的高耐腐蚀性和高耐其他腐蚀条件的性质,通常用作核裂变反应堆中的构件。例如,核燃料组件,中子吸收控制装置和中子源夹具等常常被包覆或被置于304型或类似合金成分的不锈钢包壳或屏蔽套中,这类组件(包括指出的那些)常常被放在核反应堆的裂变燃料的芯体内部和周围,在此区域极强的腐蚀条件(如强辐照和高温)最为恶劣和具破坏性。
普遍认为固溶或轧制退火的(Solution    or    mill    annealed)不锈钢合金商品,对其他损坏源造成的晶粒间应力腐蚀开裂和本身破坏,基本上是不敏感的。然而,已经发现不锈钢在受到强辐照之后,例如最典型的是在水冷却核裂变反应堆的裂变燃料芯体中和其附近使用时,由于晶粒间应力腐蚀开裂而碎裂和破坏。虽然不锈钢合金已经处在所谓的固溶或轧制退火状态,也就是说已经过热处理,即加热至温度在约1010℃(1850°F)至1121℃(2050°F)范围内,然后迅速冷却以使碳化物溶解,并防止碳化物自固溶体进入晶粒边界成核和沉淀析出,但是仍然发生了这种与辐照有关的晶粒间应力腐蚀开裂破坏。
一种理论认为,由强场或广泛暴露,或两者兼有而导致的高水平辐照是引起不锈钢合金碎裂的一个重要原因,除了其他可能的因素外,这是由于辐照促进了合金的杂质成分的偏析所致。
过去为减少不锈钢合金中与辐照有关的晶间应力腐蚀开裂的努力,包括研制耐蚀合金组合物。例如,已经提出含有低水平杂质的不锈钢。
本发明包括一种处理高铬-镍型及其类似合金的奥氏体不锈钢合金组合物和由其构成的零件和装置的方法,此方法可抑制由于高水平的和/或长时间的辐照暴露导致的将来可能发生的应力腐蚀开裂。本预防性处理包括一种精密的热处理过程,或强化的固溶退火步骤。这种处理可使这类合金即使受到强辐照也具有高度的抗应力腐蚀开裂的性能。
本发明的主要目的,是提供一种抑制奥氏体不锈钢中,其他高镍-铬合金中,以及由其构成的部件中,由于受到辐照而发生应力腐蚀开裂的方法。
本发明的又一目的,是提供一种在经受强辐照的奥氏体不锈钢合金以及由其制造的制品中,赋予抗辐照加速应力腐蚀开裂的性能的有效和可行的处 理方法。
本发明的再一个目的,是提供一种抑制用于核反应堆的奥氏体不锈钢构件和经受高辐照的其他不锈钢制造的部件,由于应力腐蚀开裂而断裂的经济和实用的方法。
本发明的另外一个目的,是提供一种解决奥氏体不锈钢合金中辐照后发生应力腐蚀开裂问题的有效方法,此方法对这些合金或它们的制品不会产生任何有害的作用。
图1曲线表示不锈钢的应力腐蚀敏感度与热处理不同水平的温度以及对应时间之间的关系;
图2是一种条线图,它表示经本发明热处理的不锈钢的相对延伸率;和
图3是一种条线图,它表示受到本发明热处理的不锈钢在应力腐蚀试验中达到的相对最大应力。
本发明主要与由(或包括)奥氏体不锈钢(例如304型)制造的结构单元和部件,或它们的组合件有关,这些构件,部件或组合件设计用在核裂变反应堆的放射性环境中或用在其他与辐照有关的设备或环境中。本发明特别针对阻止在这种使用中的奥氏体不锈钢(包括单相奥氏体不锈钢)发生辐照加速碎裂的一种预防手段。
本发明进而适用于奥氏体的、高镍-铬合金,其中含有约30%(重量)至约76%(重量)的镍和约15%(重量)至约24%(重量)的较小量铬,例如商品因科镍铬不锈钢(Incoloy)和因科内尔镍合金(Inconel)系列产品。
本发明特别是针对包括商品纯和高纯度两种304型铬-镍奥氏体不锈钢,使其对于辐照造成的碎裂具有潜在的不敏感性。商品304型不锈钢的技术规范在C.L.Mautell编辑的《工程材料手册》(Engineering    Materials    Handbook)一书1958年版5-12页和第5-13页的表5-14中有详细说明。这种合金一般含有约18-20%(重量)的铬和约8-14%(重量)的镍,以及最大重量百分含量为0.08的碳、2.0的锰、1.0的硅和3.0的钼,其余为铁及某些少量无意义的杂质。
组件,如燃料和吸收棒的包壳、中子源夹持器等,均包含有上述类型的奥氏体不锈钢合金,并应用于核裂变反应堆的燃料芯体中,这些组件往往由于称为“辐照加速的应力腐蚀开裂”现象而断裂。这种形式的碎裂是应力腐蚀开裂的一种特殊形式,尽管不锈钢合金已进行了固溶或轧制退火,但它仍可发生。已经过温度1010℃(1850°F)至1121℃(2050°F)常规固溶或轧制退火的不锈钢,在工业中被认为可免于发生晶粒间应力腐蚀开裂。然而,当这样处理过的不锈钢合金受到高水平辐照时(如在核反应堆的燃料芯体的内部和周围受到的典型辐照),强辐照场在促使发生晶粒间应力腐蚀开裂中起了某些复杂的作用。一种理论认为,这种现象可能的机理或原因是辐照促进了合金内部的杂质(如磷、硫、硅和氮)在晶粒边界偏析。
本发明包括一种严格的温度和保温时间条件的预防性热处理,它可以显著地减少辐照对奥氏体不锈钢合金通常表现出的不利影响或作用,以及减少辐照在促使这种合金发生晶粒间应力腐蚀开裂的有害有作用。本发明的方法包括使奥氏体不锈钢合金,经过温度为至少1121℃(2050°F)直至约1316℃(2400°F)、保温时间至少1分钟直至约45分钟的特殊热处理步骤。在此范围内的保温时间应与温度近似成反比。例如,在有效实施本发明的条件范围内,当温度在给定范围的较低区域时,所用时间应当较长些;反之,当温度在给定范围的较高区域时,所用时间应以较短些为宜。
阻止发生辐照引致的应力腐蚀开裂的本方法,最好是使奥氏体不锈钢合金在温度接近最佳范围(1204℃(2200°F)至1316℃(2400°F))内保温较短时间(约1分钟至约20分钟)。由实施例将会清楚地看到,为获得有效的耐腐蚀性,在该温度条件下可允许的保温时间,对于商品纯级的304型不锈钢比高纯级的同种合金,要普遍短一些。
本发明处理方法的特殊的温度和时间条件,可有效地抑制辐照加速的应力腐蚀开裂,以及起因于敏化作用的普通晶粒间应力腐蚀开裂。本发明的固溶退火处理温度/时间所产生的减轻应力腐蚀开裂的作用,似应是合金晶粒界面杂质较有效的脱附的结果。
下述的评估试验可做为实施本发明的特定实例,以及说明本发明在减少奥氏体不锈钢合金由于强辐照而发生晶粒间应力腐蚀开裂方面有显著的抑制作用。
进行应力腐蚀评估的不锈钢合金的成分如下:(表1见文后)
在制备不锈钢合金评估用的试验样品时,首先 使样品都经过固溶退火热处理(如下文的详细说明),其条件包括本发明范围内的和以外的,之后将所有样品在核反应堆中在温度288℃(550°F)下进行辐照,使快中子积分通量范围达到2.22×1021中子/厘米2至3.08×1021中子/厘米2(E>1兆电子伏)。用扫描电子显微镜在辐照试验样品的断裂面上所观察到的晶粒间应力腐蚀程度,做为辐照加速应力腐蚀开裂现象的计量。
试验样品所用的热处理的温度和时间条件在下列表3中给出:(表2,3见文后)
试验样品的应力腐蚀试验结果,对于热处理的温度及时间的关系在图1曲线中给出。由图1的数据可知,经温度1204℃(2200°F)约20分钟、或温度1260℃(2300°F)约5分钟、或温度1316℃(2400°F)约1分钟的热处理,商品纯轧制退火的304型不锈钢的辐照加速的应力腐蚀开裂(以晶粒间应力腐蚀开裂百分数计量)可从约90%降至约0%。此外,高纯度轧制退火的304型不锈钢经1204℃(2200°F)约45分钟的热处理,其辐照加速的应力腐蚀开裂可由约50%降至约0%。
值得注意的是,对于有效热处理存在有明显的最大加热时间,如图1所示,例如对于商品纯304型不锈钢在1316℃(2400°F)加热时间若比1分钟长时,就不能完全消除辐照加速应力腐蚀开裂。随着加热时间的增加,腐蚀开裂呈现显著增加,因此对于商品纯304型不锈钢1316℃(2400°F)时的近似最大加热时间约为1分钟。
本发明的固溶退火温度和时间条件,在奥氏体不锈钢中不仅可以消除辐照加速的应力腐蚀开裂,而且还提高了这种合金在辐照时的机械性能。例如,图2表明经应力腐蚀试验的商品纯304型不锈钢,其延伸率的峰值范围增长至13-16%,与之相比,对于轧制退火商品纯304型不锈钢约为0.6%,以上结果是两者被辐照至相同的中子积分通量后获得的。由温度/时间固溶退火而获得的增强的延展性,对于采用经受辐照的不锈钢组合件的设计人员来说,是非常有利的,因为根据轧制退火不锈钢辐照试验结果,设计人员目前普遍采用在温度288℃和中子积分通量大于6×1020中子/厘米2时的延伸率下限是1.1%,与此类似,图3表明,在应力腐蚀试验中达到的最大应力(或抗拉强度极限)可增加至峰值范围636370-806687kpa(101-117ksi),与之相比,对于辐照的商品纯轧制退火304型不锈钢为310264kpa(45ksi)。
表1.304型不锈钢熔炼成分
重量(g)
熔炼号
Cr    Ni    C    Si    Mn    P    S    N    B
10103  18.30  9.75  0.015  0.05  1.32  0.005  0.005  0.08  <0.001
22092  18.58  9.44  0.017  0.02  1.22  0.002  0.003  0.037  0.0002
447990  18.58  8.78  0.054  0.48  1.56  0.030  0.013  0.087  -
21770  18.60  8.13  0.040  0.61  1.75  0.026  0.010  0.08  -
表2.未辐照的304型不锈钢HNO3/Cr+6腐蚀试验结果
材料    固溶退火温度    失重    腐蚀速率
(℃) (毫克/厘米3)* (毫克/厘米3·小时)**
商品纯304型不锈钢    1000/60(分)    23.0    0.96
1100/60(分)    16.0    0.67
1200/60(分)    10.5    0.44
1260/15(分)    7.75    0.32
1316/15(分)    6.25    0.26
高纯304型不锈钢 1010-1316 - 0.25***
注:*在试验溶液中暴露24小时后测定
**时间为24小时计算的速率-失重(毫克/厘米3)/24小时
***由大量试验计算平均值
表3.304型不锈钢辐照样品的成分和热处理
固溶热处理    快中子(E>1兆电子伏)积分
不锈钢等级 样品号 熔炼号 (℃/分) 通量(×1021中子/厘米2
1    447990    轧制退火的    3.08
2    447990    1204/45    2.58
商品纯    3    447990    1204/30    2.58
4    21770    1204/20    2.99
5    447990    1204/05    3.08
6    21770    1260/20    2.99
7    21770    1260/10    3.06
8    447990    1260/05    3.08
9    447990    1316/30    2.58
10    21770    1316/20    2.99
11    21770    1316/10    3.06
12    21770    1316/01    2.80
高纯    13    10103    轧制退火的    2.80
14    22092    轧制退火的    2.22
15    10103    轧制退火的    2.22
16    10103    1204/45    2.60
17    10103    1204/45    2.80
18    22092    1316/15    3.01

Claims (5)

1、抑制在奥氏体不锈钢中主要由于高强辐照而发生应力腐蚀开裂的方法,此方法包括热处理一种不锈钢,将其大块不锈钢在温度范围至少为1121℃(2050°F)至1316℃(2400°F)内保持至少1分钟至45分钟,其热处理时间和热处理温度近似成反比,所述的不锈钢合金的基本组成如下,以近似重量百分数表示:
铬  18-20
镍  8-14
碳  最高0.08
锰  最高2.0
硅  最高1.0
钼  最高3.0
铁  余量。
2、根据权利要求1的抑制奥氏体不锈钢中发生应力腐蚀开裂的方法,其中热处理包括将大块不锈钢在温度范围1204℃(2200°F)至1316℃(2400°F)内保持1分钟至20分钟。
3、根据权利要求1的抑制奥氏体不锈钢中发生应力腐蚀开裂的方法,其中所述的不锈钢包括304型。
4、根据权利要求1的抑制奥氏体不锈钢中发生应力腐蚀开裂的方法,其中所述的不锈钢合金的基本组成如下,以近似重量百分数表示:
铬  18-20
镍  8-12
碳  最高0.08
锰  最高2.0
硅  最高1.0
铁  余量。
5、根据权利要求1的抑制奥氏体不锈钢中发生应力腐蚀开裂的方法,其中热处理包括将大块单相奥氏体不锈钢在温度约1260℃(2300°F)下保持大约1至20分钟。
CN89101613A 1988-06-13 1989-03-23 抑制奥氏体不锈钢中辐照加速应力腐蚀开裂的方法 Expired - Fee Related CN1024564C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/206,144 US4878962A (en) 1988-06-13 1988-06-13 Treatment for inhibiting irradiation induced stress corrosion cracking in austenitic stainless steel
US206,144 1988-06-13

Publications (2)

Publication Number Publication Date
CN1038672A CN1038672A (zh) 1990-01-10
CN1024564C true CN1024564C (zh) 1994-05-18

Family

ID=22765163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89101613A Expired - Fee Related CN1024564C (zh) 1988-06-13 1989-03-23 抑制奥氏体不锈钢中辐照加速应力腐蚀开裂的方法

Country Status (9)

Country Link
US (1) US4878962A (zh)
EP (1) EP0347130B1 (zh)
JP (1) JPH0225515A (zh)
KR (1) KR920004702B1 (zh)
CN (1) CN1024564C (zh)
DE (1) DE68908964T2 (zh)
ES (1) ES2045435T3 (zh)
MX (1) MX166288B (zh)
NO (1) NO892408L (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009229A1 (fr) * 1997-08-19 1999-02-25 Mitsubishi Heavy Industries, Ltd. Acier inoxydable austenitique resistant au rayonnement neutronique
DE19953142A1 (de) * 1999-09-14 2001-03-15 Emitec Emissionstechnologie Mantelleiteranordnung für korrosive Umgebungsbedingungen und Verfahren zur Herstellung einer Mantelleiteranordnung
US8529713B2 (en) * 2008-09-18 2013-09-10 The Invention Science Fund I, Llc System and method for annealing nuclear fission reactor materials
US8721810B2 (en) 2008-09-18 2014-05-13 The Invention Science Fund I, Llc System and method for annealing nuclear fission reactor materials
US8784726B2 (en) * 2008-09-18 2014-07-22 Terrapower, Llc System and method for annealing nuclear fission reactor materials
CN106917031A (zh) * 2015-12-25 2017-07-04 上海电气上重铸锻有限公司 Z3cn18-10控氮奥氏体不锈钢锻件的制造方法
CN111009331B (zh) * 2019-12-17 2021-12-17 苏州热工研究院有限公司 堆内构件围板-成型板螺栓iascc敏感性分析计算应用方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1807453A (en) * 1929-08-23 1931-05-26 Homer F Tielke Rolling mill piercing point, plug and guide, and method of making same
US2888373A (en) * 1956-09-11 1959-05-26 Thompson Ramo Wooldridge Inc Method for differentially age hardening austenitic steels and products produced thereby
US3052576A (en) * 1958-02-06 1962-09-04 Soc Metallurgique Imphy Metal composition having improved oxidation- and corrosion-resistance and magnetic characteristics, and method of preparing same
US3131055A (en) * 1960-03-11 1964-04-28 Soc Metallurgique Imphy Alloy based on iron, containing nickel, chromium and aluminium, and process for obtaining same
GB1055317A (en) * 1963-04-10 1967-01-18 Atomic Energy Authority Uk Improvements in or relating to heat treatment of steel
GB993613A (en) * 1963-11-22 1965-06-02 Sandvikens Jernverks Ab Alloy steels and articles made therefrom
US3649251A (en) * 1970-03-25 1972-03-14 Int Nickel Co Austenitic stainless steels adapted for exhaust valve applications
US3957545A (en) * 1970-07-28 1976-05-18 Nippon Kokan Kabushiki Kaisha Austenitic heat resisting steel containing chromium and nickel
US3873378A (en) * 1971-08-12 1975-03-25 Boeing Co Stainless steels
FR2175526A1 (en) * 1972-03-13 1973-10-26 Siderurgie Fse Inst Rech Heat treatment of stainless steel - contg boron and having austenitic grain structure
US4086107A (en) * 1974-05-22 1978-04-25 Nippon Steel Corporation Heat treatment process of high-carbon chromium-nickel heat-resistant stainless steels
JPS604895B2 (ja) * 1980-05-30 1985-02-07 株式会社日立製作所 耐応力腐食割れ性に優れた構造物及びその製造法
US4353755A (en) * 1980-10-29 1982-10-12 General Electric Company Method of making high strength duplex stainless steels
US4576641A (en) * 1982-09-02 1986-03-18 The United States Of America As Represented By The United States Department Of Energy Austenitic alloy and reactor components made thereof
US4699671A (en) * 1985-06-17 1987-10-13 General Electric Company Treatment for overcoming irradiation induced stress corrosion cracking in austenitic alloys such as stainless steel
JPS62120463A (ja) * 1985-11-21 1987-06-01 Toshiba Corp 耐粒界腐食性ステンレス鋼
FR2591612A1 (fr) * 1985-12-17 1987-06-19 Commissariat Energie Atomique Acier inoxydable austenitique utilisable en particulier comme materiau de gainage dans les reacteurs a neutrons rapides.
JPS62267419A (ja) * 1986-05-13 1987-11-20 Kawasaki Steel Corp オ−ステナイト系ステンレス厚鋼板の製造方法
US4816084A (en) * 1986-09-15 1989-03-28 General Electric Company Method of forming fatigue crack resistant nickel base superalloys
US4798633A (en) * 1986-09-25 1989-01-17 Inco Alloys International, Inc. Nickel-base alloy heat treatment

Also Published As

Publication number Publication date
KR920004702B1 (ko) 1992-06-13
DE68908964D1 (de) 1993-10-14
KR900000485A (ko) 1990-01-30
EP0347130A1 (en) 1989-12-20
ES2045435T3 (es) 1994-01-16
NO892408L (no) 1989-12-14
CN1038672A (zh) 1990-01-10
MX166288B (es) 1992-12-28
JPH0225515A (ja) 1990-01-29
US4878962A (en) 1989-11-07
DE68908964T2 (de) 1994-03-03
EP0347130B1 (en) 1993-09-08
NO892408D0 (no) 1989-06-12

Similar Documents

Publication Publication Date Title
JP2006214001A (ja) 耐クリープ性が優れたジルコニウム合金組成物
US4512820A (en) In-pile parts for nuclear reactor and method of heat treatment therefor
Farrell et al. Tensile properties of neutron-irradiated 6061 aluminum alloy in annealed and precipitation-hardened conditions
CN1024564C (zh) 抑制奥氏体不锈钢中辐照加速应力腐蚀开裂的方法
JPH03166346A (ja) 耐応力腐食割れの改善のための合金718の熱処理
EP0092623B1 (en) Precipitation hardening austenitic superalloys
EP0964072B1 (en) Austenitic stainless steel with resistance to deterioration by neutron irradiation
JPS6223928A (ja) ステンレス鋼のごときオ−ステナイト系合金において放射線照射がもたらす応力腐食割れを低減させるための処理法
EP0090115B1 (en) Cold worked ferritic alloys and components
Begley et al. Development of columbium-base alloys
RU2124065C1 (ru) Аустенитный железохромоникелевый сплав для пружинных элементов атомных реакторов
JPS5985850A (ja) Ni基合金の熱処理法
JPH05171359A (ja) 窒素とホウ素の含有量を極めて低くしたオーステナイト系ステンレス鋼
RU2351671C2 (ru) Титановый сплав для трубопроводов и трубных систем теплообменного оборудования атомной энергетики
Shiraishi et al. Helium embrittlement in Fe-Ni-Cr austenitic alloys and ferritic MA 956 alloy
Jackson Mechanical properties of continuously cooled uranium-2. 4 weight percent niobium alloy
JPS62182258A (ja) 高延性高耐食ジルコニウム基合金部材の製造法及びその部材
JP2767169B2 (ja) 耐粒界腐食性および耐応力腐食割れ性に優れたFe−Cr−Ni−Si系形状記憶合金
Kiuchi et al. Alloy development for first wall materials used in water-cooling type fusion reactors
Katcher et al. A review of Haynes® 230® and 617 alloys for high temperature gas cooled reactors
Burke et al. The effect of cooling rate on precipitate morphology in Alloy X-750
JP2024021985A (ja) 冷間加工品
JPS6252024B2 (zh)
Muller Effects of processing variables on the hydrogen content and resultant mechanical properties of uranium and uranium-3/4 wt% titanium alloy
Vandermeulen et al. The effect of irradiation on the mechanical properties of ferritic-martensitic steels

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee