CN1024001C - 羧酸的制备方法 - Google Patents

羧酸的制备方法 Download PDF

Info

Publication number
CN1024001C
CN1024001C CN89101691A CN89101691A CN1024001C CN 1024001 C CN1024001 C CN 1024001C CN 89101691 A CN89101691 A CN 89101691A CN 89101691 A CN89101691 A CN 89101691A CN 1024001 C CN1024001 C CN 1024001C
Authority
CN
China
Prior art keywords
hydrogen
rhodium
nickel
catalyzer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN89101691A
Other languages
English (en)
Other versions
CN1036947A (zh
Inventor
吉里安·彼姆伯莱特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Chemicals Ltd
Original Assignee
BP Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Chemicals Ltd filed Critical BP Chemicals Ltd
Publication of CN1036947A publication Critical patent/CN1036947A/zh
Application granted granted Critical
Publication of CN1024001C publication Critical patent/CN1024001C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

提供了一种由醇(如甲醇)制备羧酸(如乙酸)的方法。该方法使用了含有承载在炭,最好是高表面积炭上的铑和镍的催化剂。该方法在有氢和卤化物助催化剂的存在下操作,可以在非常温和的条件(1~50大气压,150~300℃)下得到高的羧酸产率。

Description

本发明涉及制备羧酸的方法,特别是涉及通过于非均相催化剂存在下进行醇的羰基化由具有n个碳原子的醇制备具有n+1个碳原子的羧酸的方法。本发明的一个最佳实施方案是通过甲醇的羰基化来制备乙酸。
甲醇的羰基化是早已公知内容。早在1953年,Reppe就在Justus    Liebing′s    Ann.Chem.,1953,582,1中提出铁、钴、和镍的羰合物类在有卤化物助催化剂存在、在250-270℃和200-350巴的条件下对经甲醇羰基化生成乙酸的反应产生催化作用。
此后,Halcon又提出甲醇的羰基化可以在较温和的条件下(35巴及150℃)用乙酸镍/四苯基锡/甲基碘体系来催化。还有一些专利文献提出当反应介质中加有有机胺或膦时,在低至30巴的压力及有碘化物存在条件下羰基镍或镍化合物是有效的催化剂。Halcon在其文章中坚持认为氢可以稳定催化剂。最近,在GB-A-2089803中有人指出,用钼和钨作助催化剂的镍催化剂在有三价有机磷或有机氮和碘化物助催化剂存在下可以在液相中(33巴,185℃)以高产率从甲醇得到乙酸。并再一次指出氢不会阻碍反应进程并能稳定催化剂,此外还讨论了将承载的催化剂组分用于气相操作的可能性。Halcon还在DE-A-3335595中提出了在83巴下使用钼/镍/碘化锂/碘经物催化剂组分高产率从甲醇/乙酸甲酯制备乙酸的方法。US-A-4,428,537表明在液相中,镧盐为镍催化剂的有效助催化剂。从Monsanto的专利可以知道,在非常温和的条件(35巴,180℃)和有碘化物助催化剂存在的条件下,铑的羰基配合物对于甲醇的羰基化是非常活泼的。从以上描述我们可以得到这样的结论,即在比Reppe提出的条件更为温和的条件下,镍和铑催化剂对于甲醇的均匀液相羰基化都具有很高的活性,并且在使用镍催化剂时,氢是可以允许的且有时有助于稳定催化剂。但是,由于包括去掉催化剂的分离步骤以及循环问题在内的众多原因,最好还是使用非均相催化剂在气相中进行操作。
对于用于气相反应的镍催化剂已有过很多报道。在202-345℃和约14kg/cm2下甲醇在活性炭上以高转化率转化为乙酰化合物。但是,在一氧化碳进料中有大量的氢被认为是不好的。DE-A-3,323,654报道了在280-310℃下,活性炭上的镍与助催化剂(如钯和钯/铜)一起是甲醇羰基化的活泼催化剂。藤本(Fujimoto)等人对承载在活性炭上的镍进行了仔细的研究,并就下列问题发表了文章:金属的承载量和反应条件(发表在Ind.Chem.Prod.Res.Dev.,1983,22,436;ibid 1982,21 429)、炭载体上的镍的特点(发表在Catalytic Features of Carbon Supported Catalysts,ACS Series,328,1987)以及向气体进料中加入氢可使活性及乙酸的产量增加(发表在ChemistryLetters,1987,895)。
对于承载的铑催化剂也有人进行过仔细的研究。并表明沸石载体,不管是Y形(J.Catalysis,1979,59,53)或Na-X沸石,与[Rh(NH3)Cl]Cl2一起都是有效的催化剂,并发现其中速度与均相反应时的情况类似。US-A-4,328,125提出,如果使金属羰基化合物Mn(CO)m(X)-2 p(其中M=Rh、Co、Ru、Os、Ir或Fe;X为阴离子、卤阴离子、氢负离子或烷基)与含有季铵盐的阴离子交换树脂键合,也会成为有效的羰基化催化剂。
Jarrel等人在J.Catalysis,1975,40,255指出,通过RhCl(CO)(PPh32和苯乙烯/二乙 烯基苯共聚物进行配位体交换而形成的模板键合的铑(Ⅰ)配合物对羰基化是有活性的,尽管在温和条件(20巴(表),95℃)下转化率较低(20%)。Monsanto研究了很多种承载铑催化剂的改良剂(ⅠB、ⅢB、ⅣB、ⅤB、ⅥB、Ⅷ族以及镧系和锕系的金属)。载体主要为活性炭,操作条件一般为低压(1个的大气压),这可以参照US-A-3,717,670;EP120631;GB-A-1,223,121和GB-A-1,277,242。虽然Ni曾被提出作为改良剂(US-A-3,717,670和US-A-1,277,242),但没有强调其应用,以及没有提及用氢进行活化的问题。可以得出这样的结论,承载的铑催化剂的应用是公知的,并且镍被用来作为其改良剂,但不管是对于单独的铑还是含铑/镍的催化剂,都没有观察到氢的活化效果。在某些先有技术文献中曾提到用氢活化承载的镍催化剂,例如Fujimoto等人在Ind.Chem.Prod.Res.Dev.就曾提到。但是在其他文献,如EP-A-0069514,认为显著数量的氢是有害的。
我们发现了一种炭承载的铑催化剂,它对于在非常温和的条件下通过使用一氧化碳和氢的混合物而进行的甲醇向乙酸的转化是有活性的。
因此,本发明提供了一种从具有n个碳原子的醇制备具有n+1个碳原子的羧酸的方法,该方法包括在有含有承载在载体上的铑和镍催化剂和卤素或卤化物助催化剂存在下、在加热和加压条件下使醇与一氧化碳和氢的气体混合物接触。
关于具有n个碳的醇,它适宜为具有1-12个碳的脂族醇,其中包括甲醇、乙醇、丙醇、异丙醇、丁醇、戊醇和己醇,以及高级醇如癸醇(包括其异构体)。较好的醇为甲醇,从其可得到乙酸。该甲醇可以是纯的,也可以含有一般的杂质(如水和乙醇)。可以使用多元醇,也可以使用芳族含羟基化合物(如苯酚)。
醇与一氧化碳及氢的气态混合物接触,进行该接触过程时可以分别进料或预先混合。但是,作为本发明的一个优点,可以使用这样得到的一氧化碳和氢的气体混合物,即含甲烷气体混合物进行蒸汽重整和部分氧化后的混合物,可以调节也可以不调节一氧化碳和氢的比例。在通过甲醇的羰基化来制备乙酸的工业生成中,一氧化碳的制备是先得到其与氢的混合物,再将其与氢分离,然后用于羰基化。直接使用混合物,由于去掉了分离步骤,因而有相当的经济效益。在这样的混合物中可能含有少量的杂质,例如甲烷、氮和二氧化碳。这是本发明方法允许的情况。一氧化碳的含量可为氢的1-95%(体积)。最好是一氧化碳和的氢的摩尔比为10∶1-1∶4。
本发明的一个特点是催化剂包括承载在炭载体上的铑和镍两种金属。当在氢的存在不同时使用铑和镍时,可产生出乎意料的协同作用。特别是同时含有铑和镍的催化剂的活性要大于单独采用镍和铑所产生的催化活性。因此,炭承载的镍/铑催化剂对于,例如在非常温和的操作条件下的甲醇向乙酸的转化,有高活性和选择性。
虽然不能肯定地知道金属在反应过程中的实际形式,但可以相信金属起码部分被羰基化。因此,这就有可能即可以使用单质金属也可以使用金属化合物(如盐)。炭载体适宜采用任何活化的或非活化的高表面积炭或高表面积石墨。较好的载体为高表面积的活性炭。该材料的例子为表面积大于500m2/g的高表面积炭。
该催化剂适宜于这样制备,首先用金属的可溶性化合物(例如盐)的一种或多种溶液(宜为水溶液)来浸渍载体,然后除掉溶剂,干燥,从而得到该催化剂。在用于本发明前,最好将该催化剂进行活化,适宜的活化方法是使其在升温下(宜于在约100-650℃下,典型地在约400℃下)与还原气体,如氢进行接触。
该催化剂宜包括0.05-10%(重)的镍和0.1-7%(重)的铑。镍与铑的重量比宜为0.05∶1-10∶1。
关于助催化剂,可以使用卤素或卤化物。它们可以是例如卤化氢,烷基或芳基卤,金属卤化物或者铵、膦、季砷或季锑卤化物。助催化剂最好含有碘作为其卤素部分。最好助催化剂为烷基磺,例如甲基碘。
本方法在升温升压下进行。适宜的温度为150-300℃,适宜的压力为1-50大气压。
该方法可间歇或连续进行,最好连续进行,醇可为液态或气态。连续操作的液体时空速宜为0.1-5,气体与液体蒸汽的比例宜为1∶5~100∶1,但也可高一些或低一些。
本方法通过下列实施例或比较例来进一步说 明。
实例A
催化剂的制备
在催化剂的制备中用作载体的活性炭为市售的高孔隙度炭(exSpeakman;AC610),其BET表面积为1600-1800m2/g,微孔体积为0.74cm3/g,总孔体积为0.82cm3/g。
1.用这样的步骤来制备镍/铑/活性炭催化剂。即用硝酸镍的水溶液浸渍上述活性炭,并且在空气烘炉中在110℃下干燥24小时。然后在氢气流中在400℃下将催化剂活化3小时,然后冷却,并用含有微量氧和水杂质的氮吹扫。将以硝酸铑溶液形式存在的铑浸渍在如此得到的材料上,并将该催化剂在空气炉中在110℃下干燥24小时。在使用前,将该催化剂在大气压下及氢气流中及280℃下就地活化1小时。
2.按1的步骤制备承载在活性炭上的镍催化剂,所不同的是省去了浸渍铑的步骤。
3.按1的步骤制备承载在活性炭上铑催化剂,但其中省去了浸渍铑的步骤。
实施例1
使用一个处于升压下的催化剂固定床连续型反应器。将甲醇和甲基碘混合并用压力泵进料,并使其在预热炉中与热进料气体接触,将该混合气体送入反应炉中2ml的催化剂床。使产品通过一个减压阀,并进入一个连接于管线上的气体色谱仪。
将催化剂(2.5%(重)Ni/1%(重)Rh)(2ml;0.836g)放入反应管。在使用前该催化剂在280℃,氢气流(GHSV2,400h-1)中就地活化1小时。然后将反应管冷却到180℃并且加入反应剂。在下述条件下可得到表1中所示的转化率:气体进料比为CO∶H=1∶2,总压为9巴(表),LHSV=1,气体进料∶甲醇∶甲基磺=100∶19∶1,床温为188℃。
对比实验1
重复实施例1的步骤,但不同的是用2.5%的承载在活性炭上的Ni催化剂来代替2.5%Ni/1%Rh/活性炭催化剂。其转化率列于表1。(表见文后)
对比实验2
重复实施例1的步骤,但不同的是用1%Rh/活性炭催化剂来代替2.5%Ni/1%Rh/活性炭催化剂。其转化列于表1。
对比实验1和2仅供比较之用,和本发明所是不同的是其中的催化剂缺乏重复组分。
表1的结果表明承载在活性炭上的Ni/Rh催化剂在温和条件下对于生成乙酸的甲醇的羰基化活性是很高的。同时也表明了Rh和Ni的协同效果,双金属催化剂的活性并不等于单金属催化剂的活性的叠加。相对于单金属催化剂的叠加活性,协同作用降低了甲烷的产量而增加了对乙酸的选择性。
实施例3和4
重复实施例1的步骤,不同之处为改变了气体进料中的氢的比例。其结果列于表2。(表见文后)
对比实验3
重复实施例1,不同之处是从进料中去掉了氢气。结果列于表2。该实验只是为了比较,不属于本发明范畴之内。
表2的结果表明,氢气使含铑催化剂对生产乙酸的活性增高,但对甲烷的选择性没有带来大的变化。
对比实验4和实施例5和6
采用氢比例不同的气体进料,重复实施例2,结果列于表3。(表见文后)
对比实验4和本发明不同,它没有氢,只用来作为对比。
表3的结果表明,氢确实活化了铑/活性炭催化剂,但其程度不如Ni/Rh/活性炭催化剂的情况,特别是在CO∶H2=1∶2时,更不能令人满意。
表1
产生下列物质的各种甲醇转化率
实施例 催化剂 CO∶H2
CH4Me2O MeOAc AcOH Me2CO 总计
2.5%Ni/1%Rh/
1    1∶2    7.5    0    3.2    79.7    2.4    92.8
活性炭
CT1    2.5%Ni/活性炭    1∶2    4.3    3.3    4.1    0    0    11.7
CT2    1%Rh/活性炭    1∶2    10.5    2.0    33.7    8.2    0    54.4
表2
对应于产生下列物质的甲醇转化率
CO∶H2
实施例
之比
CH4Me2O MeOAc AcOH Me2CO 总计
CT3    1∶0    0.3    2.0    30.7    28.8    0.5    62.4
3    4∶1    3.7    0    6.4    76.9    2.9    89.9
4    2∶1    4.4    0    3.4    79.3    4.2    91.9
1    1∶2    7.5    0    3.2    79.7    2.4    92.8
表3
对应于产生下列物质的甲醇转化率
CO∶H2
实施例
之比
CH4Me2O MeOAc AcOH Me2CO 总计
CT4    1∶0    4.8    0    33.4    7.9    1.3    47.4
5    4∶1    7.1    0    34.1    19.2    1.6    62.1
6    2∶1    6.4    1.6    36.5    10.7    0.6    55.3
2    1∶2    10.5    2.0    33.7    8.2    0    54.4

Claims (6)

1、一种从具有n个碳原子的醇制备具有n+1个碳原子的羧酸的方法,该方法包括在含有承载在炭载体上的铑和镍的催化剂和卤素或卤化物助催化剂的存在下,在150-300℃的温度和1-50大气压的压力下使醇与一氧化碳和氢的气体混合物接触。
2、权利要求1的方法,其中催化剂的镍铑重量比约为2.5∶1。
3、权利要求1或2的方法,其中催化剂含有约2.5%(重)的镍。
4、权利要求1或2的方法,其中催化剂含有约1%(重)的铑。
5、权利要求1的方法,其中的含有n个碳的醇为甲醇,含有n+1个碳的羧酸为乙酸。
6、权利要求1的方法,其中气体混合物中一氧化碳对氢的摩尔比为5∶1-1∶4。
CN89101691A 1988-03-26 1989-03-25 羧酸的制备方法 Expired - Lifetime CN1024001C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB888807284A GB8807284D0 (en) 1988-03-26 1988-03-26 Chemical process
GB8807284.8 1988-03-26

Publications (2)

Publication Number Publication Date
CN1036947A CN1036947A (zh) 1989-11-08
CN1024001C true CN1024001C (zh) 1994-03-16

Family

ID=10634197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89101691A Expired - Lifetime CN1024001C (zh) 1988-03-26 1989-03-25 羧酸的制备方法

Country Status (13)

Country Link
US (1) US5258549A (zh)
EP (1) EP0335625B1 (zh)
JP (1) JP2868528B2 (zh)
KR (1) KR0132673B1 (zh)
CN (1) CN1024001C (zh)
AT (1) ATE90931T1 (zh)
AU (1) AU612804B2 (zh)
DE (1) DE68907247T2 (zh)
GB (1) GB8807284D0 (zh)
MY (1) MY110253A (zh)
NO (1) NO169889C (zh)
NZ (1) NZ228449A (zh)
SU (1) SU1715203A3 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8807284D0 (en) * 1988-03-26 1988-04-27 Bp Chem Int Ltd Chemical process
JP2660880B2 (ja) * 1991-06-21 1997-10-08 東京瓦斯株式会社 酢酸製造方法
US5488143A (en) * 1992-06-30 1996-01-30 Korea Institute Of Science And Technology Processes for the carbonylation of methanol to form acetic acid, methyl acetate and acetic anhydride
KR960007736B1 (ko) * 1993-07-27 1996-06-11 한국과학기술연구원 원료 가스 중에 함유된 철 카르보닐 화합물의 제거 방법
GB9223170D0 (en) * 1992-11-05 1992-12-16 British Petroleum Co Plc Process for preparing carboxylic acids
US5510525A (en) * 1993-07-22 1996-04-23 Gas Research Institute Direct catalytic oxidative carbonylation of lower alkanes to acids
US5916840A (en) * 1994-07-01 1999-06-29 Monsanto Company Process for preparing carboxylic acid salts and catalysts useful in such process
US5900505A (en) * 1997-02-04 1999-05-04 Eastman Chemical Company Heterogeneous vapor phase carbonylation process
AU3703199A (en) 1998-03-31 1999-10-18 Haldor Topsoe A/S Process for production of acetic acid
US6159896A (en) * 1999-02-16 2000-12-12 Eastman Chemical Company Iridium catalyst for carbonylation of lower aliphatic alcohols
US6160163A (en) * 1999-02-16 2000-12-12 Eastman Chemical Company Method for the vapor-phase carbonylation of lower aliphatic alcohols using a supported platinum catalyst and halide promoter
US6137000A (en) * 1999-02-16 2000-10-24 Eastman Chemical Company Method for carbonylation of lower aliphatic alcohols using a supported iridium and lanthanide series catalyst
CN1086604C (zh) * 1999-04-06 2002-06-26 华南理工大学 用于甲(乙)醇直接气相羰基化的含钼组分催化剂制备方法
US6160155A (en) * 1999-04-29 2000-12-12 General Electric Company Method and catalyst system for producing aromatic carbonates
US6355837B1 (en) 1999-08-25 2002-03-12 Eastman Chemical Company Vapor phase carbonylation process using group 4 metal promoted iridium catalyst
US6353132B1 (en) 1999-08-25 2002-03-05 Eastman Chemical Company Vapor phase carbonylation process using group 5 metal promoted iridium catalyst
US6355595B1 (en) 1999-08-25 2002-03-12 Eastman Chemical Company Group 5 metal promoted iridium carbonylation catalyst
US6506933B1 (en) 2000-05-22 2003-01-14 Eastman Chemical Company Vapor phase carbonylation process using gold catalysts
US6441222B1 (en) 2000-05-22 2002-08-27 Eastman Chemical Company Vapor phase carbonylation process using iridium-gold co-catalysts
US6509293B1 (en) 2000-05-22 2003-01-21 Eastman Chemical Company Gold based heterogeneous carbonylation catalysts
US6177380B1 (en) 2000-05-22 2001-01-23 Eastman Chemical Company Iridium-gold carbonylation co-catalysts
DE10061572A1 (de) 2000-12-11 2002-06-27 Bosch Gmbh Robert Brennstoffeinspritzventil
US6903045B2 (en) 2001-06-19 2005-06-07 Eastman Chemical Company Tin promoted platinum catalyst for carbonylation of lower alkyl alcohols
US6613938B2 (en) 2001-06-19 2003-09-02 Eastman Chemical Company Method for carbonylation of lower aliphatic alcohols using tin promoted platinum catalyst
US6617471B2 (en) 2001-06-20 2003-09-09 Eastman Chemical Company Method for carbonylation of lower aliphatic alcohols using tin promoted iridium catalyst
US6548444B2 (en) 2001-06-20 2003-04-15 Eastman Chemical Company Tin promoted iridium catalyst for carbonylation of lower alkyl alcohols
US6646154B2 (en) 2001-06-20 2003-11-11 Eastman Chemical Company Method for carbonylation of lower alkyl alcohols using tungsten promoted group VIII catalyst
US6537944B1 (en) 2001-06-20 2003-03-25 Eastman Chemical Company Tungsten promoted catalyst for carbonylation of lower alkyl alcohols
WO2003093211A1 (en) * 2002-05-06 2003-11-13 Eastman Chemical Company Continuous carbonylation process
CA2496839A1 (en) 2004-07-19 2006-01-19 Woodland Chemical Systems Inc. Process for producing ethanol from synthesis gas rich in carbon monoxide
ES2539761T3 (es) * 2006-04-05 2015-07-03 Woodland Biofuels Inc. Sistema y método para convertir biomasa en etanol a través del gas de síntesis
US7737298B2 (en) * 2006-06-09 2010-06-15 Eastman Chemical Company Production of acetic acid and mixtures of acetic acid and acetic anhydride
US7582792B2 (en) * 2006-06-15 2009-09-01 Eastman Chemical Company Carbonylation process
US7253304B1 (en) 2006-06-20 2007-08-07 Eastman Chemical Company Carbonylation process
US7629491B2 (en) * 2006-06-26 2009-12-08 Eastman Chemical Company Hydrocarboxylation process
US20090247783A1 (en) * 2008-04-01 2009-10-01 Eastman Chemical Company Carbonylation process
US20110171162A1 (en) * 2008-09-19 2011-07-14 Nektar Therapeutics Polymer conjugates of thymosin alpha 1 peptides
US9012683B2 (en) 2010-11-12 2015-04-21 Eastman Chemical Company Coproduction of acetic acid and acetic anhydride
US9421522B2 (en) 2011-12-28 2016-08-23 Eastman Chemical Company Iridium catalysts for carbonylation

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650245A (en) * 1949-04-08 1953-08-25 British Celanese Synthesis of acetic acid from co and methanol
US2650246A (en) * 1949-11-04 1953-08-25 British Celanese Production of acetic acid from methanol
SE364255B (zh) * 1967-04-05 1974-02-18 Monsanto Co
US3717670A (en) * 1968-08-02 1973-02-20 Monsanto Co Production of carboxylic acids and esters
US3769329A (en) * 1970-03-12 1973-10-30 Monsanto Co Production of carboxylic acids and esters
US4328125A (en) * 1979-05-14 1982-05-04 University Of Illinois Foundation Heterogeneous anionic transition metal catalysts
FR2484404A1 (fr) * 1980-05-06 1981-12-18 Rhone Poulenc Ind Preparation d'acides carboxyliques par carbonylation
US4659518A (en) * 1980-12-24 1987-04-21 The Halcon Sd Group, Inc. Preparation of carboxylic acids
JPS6043767B2 (ja) * 1981-06-26 1985-09-30 薫 藤元 アルコ−ルのカルボニル化用触媒
EP0090443B1 (en) * 1982-03-30 1988-06-22 Shell Internationale Researchmaatschappij B.V. A process for carbonylating methanol to acetic acid and/or methyl acetate
DE3463257D1 (en) * 1983-03-25 1987-05-27 Texaco Development Corp A process for producing carboxylic acids by carbonylation of alkanols over a carbon catalyst
DE3323654A1 (de) * 1983-07-01 1985-01-03 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von essigsaeure und methylacetat
GB8807284D0 (en) * 1988-03-26 1988-04-27 Bp Chem Int Ltd Chemical process

Also Published As

Publication number Publication date
DE68907247D1 (de) 1993-07-29
EP0335625A3 (en) 1990-02-07
US5258549A (en) 1993-11-02
GB8807284D0 (en) 1988-04-27
NO891230D0 (no) 1989-03-21
EP0335625B1 (en) 1993-06-23
MY110253A (en) 1998-03-31
NO169889C (no) 1992-08-19
KR0132673B1 (ko) 1998-04-13
NZ228449A (en) 1992-01-29
CN1036947A (zh) 1989-11-08
EP0335625A2 (en) 1989-10-04
AU3164189A (en) 1989-09-28
DE68907247T2 (de) 1993-10-21
NO891230L (no) 1989-09-27
AU612804B2 (en) 1991-07-18
KR890014432A (ko) 1989-10-23
ATE90931T1 (de) 1993-07-15
SU1715203A3 (ru) 1992-02-23
NO169889B (no) 1992-05-11
JPH01299248A (ja) 1989-12-04
JP2868528B2 (ja) 1999-03-10

Similar Documents

Publication Publication Date Title
CN1024001C (zh) 羧酸的制备方法
US3717670A (en) Production of carboxylic acids and esters
US3689533A (en) Production of carboxylic acids and esters
CN1024666C (zh) γ-丁内酯催化氢化制备四氢呋喃和丁二醇的方法
IL29769A (en) Production of carboxylic acids and esters
EP0120631A1 (en) A process for producing carboxylic acids by carbonylation of alkanols over a carbon catalyst
CN115739187B (zh) 一种负载型铁基催化剂及其制备和在(r)-香茅醛的合成中的应用
JPS63255253A (ja) アミン類の製造方法
KR930003649B1 (ko) 에틸리덴 디 아세테이트 제조용 고체촉매, 그의 제조방법 및 이를 이용한 연속식, 공정에 의한 에틸리덴 디 아세테이트의 제조방법
JPS58246A (ja) アルコ−ルのカルボニル化用触媒
CN1042128C (zh) 醇类的制备方法
EP0092350B1 (en) A process for converting olefins to carboxylic acids or esters using soluble iridium compounds
CN114522735B (zh) 一种用于乙烯基酯类化合物氢甲酰化反应的固体催化剂及其制备方法
US4552976A (en) Process for oxidative dicarbonylation of butadiene
JPH05995A (ja) 酢酸製造方法
CN114534724A (zh) 一种甲醇无卤素气相羰基化制备醋酸及醋酸酯的方法
JP7188543B2 (ja) アリル化合物の異性化方法
JPS60139341A (ja) 触媒によるオレフインのα,β―不飽和カルボン酸への酸化
JP6988642B2 (ja) アリル化合物の異性化方法
CN114522730B (zh) 一种用于吗啉氮甲酰化反应的固体多相催化剂及其制备和应用
JP2528866B2 (ja) 酢酸および酢酸メチル製造法
CN116178127A (zh) 一种烯烃和水或酸性水溶液制羧酸化合物反应的方法
CN116947611A (zh) 一种氢甲酰化反应的方法和装置
JP3541448B2 (ja) アセトアミドの製造方法
JP4014287B2 (ja) 3−アシロキシシクロヘキセンの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned