CN102336972B - 一种超疏水纳米磁性薄膜的制备方法 - Google Patents

一种超疏水纳米磁性薄膜的制备方法 Download PDF

Info

Publication number
CN102336972B
CN102336972B CN 201110167967 CN201110167967A CN102336972B CN 102336972 B CN102336972 B CN 102336972B CN 201110167967 CN201110167967 CN 201110167967 CN 201110167967 A CN201110167967 A CN 201110167967A CN 102336972 B CN102336972 B CN 102336972B
Authority
CN
China
Prior art keywords
nano
iron oxide
sized iron
super
shell particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110167967
Other languages
English (en)
Other versions
CN102336972A (zh
Inventor
刘伟良
张丽东
徐文华
王丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Institute of Light Industry
Original Assignee
Shandong Institute of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Institute of Light Industry filed Critical Shandong Institute of Light Industry
Priority to CN 201110167967 priority Critical patent/CN102336972B/zh
Publication of CN102336972A publication Critical patent/CN102336972A/zh
Application granted granted Critical
Publication of CN102336972B publication Critical patent/CN102336972B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种超疏水纳米磁性薄膜的制备方法,首先,制备纳米氧化铁-二氧化硅核壳粒子,然后,将所述纳米氧化铁-二氧化硅核壳粒子加入醇类溶剂中,再加入硅烷偶联剂和催化剂,制得表面被乙烯基修饰的纳米氧化铁-二氧化硅核壳粒子,最后,将所述表面被修饰的纳米氧化铁-二氧化硅核壳粒子分散到苯类有机溶剂中,然后加入引发剂,苯乙烯,制得纳米氧化铁-二氧化硅-聚苯乙烯复合材料,之后将所述纳米氧化铁-二氧化硅-聚苯乙烯复合材料超声波分散后,通过流涎法或提拉法制得超疏水纳米磁性薄膜。此方法制备过程简单、成本低,可用于磁记录、磁分离、生物医学、环保和军事等领域。

Description

一种超疏水纳米磁性薄膜的制备方法
技术领域
本发明涉及有机无机纳米磁性复合材料,尤其是具有磁性的超疏水材料,属于功能高分子复合材料领域。
背景技术
纳米技术是当今社会的一种重要的实用技术,因而纳米技术已成为当今世界大国争夺的战略制高点。纳米磁性材料是20世纪80年代出现的一种新型磁性材料。纳米磁性高分子材料作为新型的纳米无机/高分子磁功能复合材料在磁记录、磁分离、生物医学、环保、军事等方面具有广阔应用前景。因此研究和开发新型纳米磁性材料已引起了世界各国的广泛兴趣。
作为一种新型的磁性材料,超疏水纳米磁性薄膜同时具有了磁性能和超疏水性能。浸润性决定着材料的超疏水性能,是固体表面的一个重要特征,一般来说疏水性材料是指其表面与水滴的接触角高于90°的固体材料,超疏水材料是指其表面与水滴的接触角高于或近似于150°的材料。不管是在我们的平常生活中还是在工农业的生产中,超疏水材料都起着很重要的作用。正是由于其具有超疏水的性能,因而可以使得材料的磁性免受雨水的破坏,表面免遭污染,从而保证其正常使用。
目前,超疏水磁性材料的制备方法主要有仿生合成法、化学沉积法、溶胶凝胶法和模板法等。中国专利文件CN101037218A通过模板法制得了表面具有微-纳结构的超疏水氧化钇粉末材料;中国专利文件CN1850356A通过静电纺丝技术和低温碳化技术制备了一种超疏水的磁性碳膜;中国专利文件CN101912964A通过化学沉积法制备了一种超疏水磁性粉末;中国专利文件CN101117606A制备了用于疏水磁性润滑轴承的疏水磁性润滑脂。目前,制备的超疏水磁性材料的普遍问题是成本昂贵、操作比较困难、工艺要求条件较高,因而限制了超疏水纳米磁性材料的实际应用范围。
发明内容
本发明所要解决的技术问题是提供一种制作成本低,制作过程简单,并且很好的把有机材料和无机材料结合起来,同时具备了磁性和超疏水性的复合材料薄膜的制备方法。
为解决上述技术问题,本发明的技术方案是:一种超疏水磁性薄膜的制备方法,包括步骤:
1.制备纳米氧化铁-二氧化硅核壳粒子
将纳米氧化铁分散醇类溶剂中,然后加入正硅酸乙酯、催化剂,在20~40℃下反应6~15小时后,将其离心分离和干燥,得到纳米氧化铁-二氧化硅的核壳纳粒子;
2.对纳米氧化铁-二氧化硅核壳粒子进行表面修饰
将所述纳米氧化铁-二氧化硅核壳粒子分散到硅烷偶联剂、催化剂和醇类溶剂的混合液中,在20~40℃下反应20~25小时后,将其离心分离和干燥,得到表面被乙烯基修饰的纳米氧化铁-二氧化硅核壳粒子;
3.制备纳米氧化铁-二氧化硅-聚苯乙烯复合材料
将所述表面被乙烯基修饰的纳米氧化铁-二氧化硅核壳粒子加入到苯类有机溶剂中,然后加入引发剂和苯乙烯,在70~90℃下反应3~8小时后,再用醇类溶剂洗涤、离心3~5次后,干燥,得到纳米氧化铁-二氧化硅-聚苯乙烯复合材料;
4.制备超疏水纳米磁性薄膜
将所述得到纳米氧化铁-二氧化硅-聚苯乙烯复合材料分散于醇类溶剂中,经超声波分散10~20分钟后,通过一定方法制得所述超疏水纳米磁性薄膜。
上述步骤1中所述的纳米氧化铁为纳米四氧化三铁粒子(Fe3O4)、纳米三氧化二铁粒子(γ-Fe2O3)或其他纳米级尺寸的铁氧体粒子,所述催化剂为氨水,所述醇类溶剂为甲醇、乙醇或丁醇,用量为正硅酸乙酯的30~40倍,反应时间优选8~15小时,所述正硅酸乙酯与所述氨水的质量比为1∶1~3,反应结束后,洗涤离心3~5遍,然后在100℃下干燥3小时。
上述步骤2中所述醇类溶剂为甲醇、乙醇或丁醇,所述硅烷偶联剂为乙烯基三乙氧基硅烷或3-(异丁烯酰氧)丙基三甲氧基硅烷,所述催化剂为氨水,反应时间优选20~25小时,所述纳米氧化铁-二氧化硅粒子、所述醇类溶剂、所述硅烷偶联剂与所述氨水的质量比为1∶100~150∶8~12∶8;反应结束后,醇洗离心三遍,然后在100℃下干燥3小时。
上述步骤3中所述苯类有机溶剂为甲苯或二甲苯,所述引发剂为过氧化二苯甲酰或者偶氮二异丁腈,反应优选3~8小时,表面被修饰的纳米氧化铁-二氧化硅核壳粒子、引发剂和苯乙烯单体质量比为1∶0.2~0.3∶8~15;苯类有机溶剂用量为苯乙烯单体质量的3~5倍。
上述步骤4中所述醇类溶剂为甲醇、乙醇或丁醇,超声波分散时间优选10~20分钟,所述一定方法为流涎法或提拉法。
本发明的有益效果是:为超疏水纳米磁性材料的制备提供了新的途径,制备过程简单、重复性好,便于推广使用,所制得的薄膜具有优良的超疏水性能和软磁性能,既能使得材料的磁性免受雨水的破坏,又能表面自清洁,免遭污染,从而保证其正常使用,在磁记录、磁分离、生物医学、环保和军事等方面具有广阔应用前景。
附图说明
图1是本发明实施例一获得的超疏水磁性薄膜的扫描电镜图。
图2是本发明实施例一获得的超疏水磁性薄膜与水的接触角测试图。
图3是本发明实施例一获得的超疏水磁性薄膜的磁滞回线谱图。
具体实施方式
以下通过具体的实施例对本发明的上述内容作出进一步详细说明,但不应将此理解为本发明的内容仅限于下述实例。
实施例一:
1.制备纳米氧化铁-二氧化硅核壳粒子
将1.5gγ-Fe2O3放入到三口烧瓶内,然后加入25mL氨水,200mL无水乙醇和50mL蒸馏水,超声波分散10分钟后,再加入5mL正硅酸乙酯,30℃下,搅拌反应12小时,洗涤离心3~5遍,然后在100℃下干燥3小时,制得纳米γ-Fe2O3-二氧化硅的核壳纳粒子。
2.对纳米γ-Fe2O3-二氧化硅核壳粒子进行表面修饰
称取上述纳米γ-Fe2O3-二氧化硅核壳粒子1g,分散到100mL无水乙醇中,然后加入10mL乙烯基三乙氧基硅烷和10mL氨水,在30℃下反应24小时,然后离心分离和干燥,得到表面被乙烯基修饰的纳米γ-Fe2O3-二氧化硅核壳粒子。
3.制备纳米γ-Fe2O3-二氧化硅-聚苯乙烯复合材料
将所述表面被乙烯基修饰的纳米γ-Fe2O3-二氧化硅核壳粒子1g分散于50mL甲苯中,然后加入0.2g过氧化二苯甲酰,10mL苯乙烯,在80℃下进行反应5小时,再经洗涤、离心和干燥,得到纳米γ-Fe2O3-二氧化硅-聚苯乙烯复合材料。
4.制备超疏水纳米磁性薄膜
将所述得到的纳米γ-Fe2O3-二氧化硅-聚苯乙烯复合材料超声波分散15分钟后,通过流涎法制备出超疏水纳米磁性薄膜。
如图1所示,由超疏水纳米磁性薄膜表面的扫描电子显微镜照片可见,该表面具有粗糙的二级结构形貌。
如图2所示,由接触角测试仪测试得到,该超疏水纳米磁性薄膜表面与水的接触角为155°,滚动角为2°。
如图3所示,由振动样品磁强计测试得到,该超疏水纳米磁性材料的磁滞回线图谱为典型的软磁性材料图谱。
实施例二:
1.制备纳米氧化铁-二氧化硅核壳粒子
将1g Fe3O4放入到三口烧瓶内,然后加入20mL氨水,150mL无水乙醇和40mL蒸馏水,超声波分散10分钟后,再加入4mL正硅酸乙酯,25℃下,搅拌反应15小时,洗涤离心3遍,最后在100℃下干燥3小时,制得纳米Fe3O4-二氧化硅核壳粒子。
2.对纳米Fe3O4-二氧化硅核壳粒子进行表面修饰
称取上述纳米Fe3O4-二氧化硅核壳粒子1g,分散到120mL无水乙醇中,之后加入10mL乙烯基三乙氧基硅烷和10mL氨水,在25℃下反应24小时,然后离心分离和干燥,得到表面被乙烯基修饰的纳米Fe3O4-二氧化硅核壳粒子。
3.制备纳米氧化铁-二氧化硅-聚苯乙烯复合材料
将所述表面被乙烯基修饰的纳米Fe3O4-二氧化硅核壳粒子1g分散于50mL甲苯中,之后加入0.25g过氧化二苯甲酰,8mL苯乙烯,在80℃下进行反应5小时,再经洗涤、离心和干燥,得到纳米Fe3O4-二氧化硅-聚苯乙烯复合材料。
4.制备超疏水纳米磁性薄膜
将所述得到的Fe3O4-二氧化硅-聚苯乙烯复合材料超声波分散15分钟后,通过提拉法制备出超疏水纳米磁性薄膜。
实施例三:
1.制备纳米氧化铁-二氧化硅核壳粒子
将1g γ-Fe2O3放入到三口烧瓶内,然后加入20mL氨水,150mL无水乙醇和40mL蒸馏水,超声波分散10分钟后,再加入4mL正硅酸乙酯,30℃下,搅拌反应12小时,洗涤离心3遍,最后100℃干燥3小时,制得纳米γ-Fe2O3-二氧化硅的核壳纳粒子。
2.对纳米氧化铁-二氧化硅核壳粒子进行表面修饰
称取上述纳米γ-Fe2O3-二氧化硅的核壳纳粒子1g,分散到120mL无水乙醇中,然后加入12mL 3-(异丁烯酰氧)丙基三甲氧基硅烷和10mL氨水,在30℃下反应24小时,然后离心分离和干燥,得到表面被修饰的纳米γ-Fe2O3-二氧化硅的核壳纳粒子。
3.制备纳米氧化铁-二氧化硅-聚苯乙烯复合材料
将所述表面被乙烯基修饰的纳米γ-Fe2O3-二氧化硅的核壳纳粒子1g分散于50mL甲苯中,之后加入0.2g偶氮二异丁腈,10mL苯乙烯,在80℃下进行反应6小时,再经洗涤、离心和干燥,得到纳米γ-Fe2O3-二氧化硅-聚苯乙烯复合材料。
4.制备得到超疏水纳米磁性薄膜
将所述得到的纳米γ-Fe2O3-二氧化硅-聚苯乙烯复合材料超声波分散20分钟后,通过流涎制备出超疏水纳米磁性薄膜。
实施例四:
1.制备纳米氧化铁-二氧化硅核壳粒子
将1g γ-Fe2O3放入到三口烧瓶内,然后加入20mL氨水,150mL无水乙醇和40mL蒸馏水,超声波分散10分钟后,再加入3mL正硅酸乙酯,25℃下,搅拌反应8小时,洗涤离心5遍,最后100℃干燥3小时,制得纳米γ-Fe2O3-二氧化硅核壳粒子。
2.对纳米γ-Fe2O3-二氧化硅核壳粒子进行表面修饰
称取上述纳米γ-Fe2O3-二氧化硅核壳粒子1g,分散到150mL无水乙醇中,之后加入10mL乙烯基三乙氧基硅烷和10mL氨水,在25℃下反应25小时,然后离心分离和干燥,得到表面被乙烯基修饰的纳米γ-Fe2O3-二氧化硅核壳粒子。
3.制备纳米氧化铁-二氧化硅-聚苯乙烯复合材料
将所述表面被修饰的纳米γ-Fe2O3-二氧化硅核壳粒子1g分散于50mL甲苯中,之后加入0.3g过氧化二苯甲酰,12mL苯乙烯,在80℃下进行反应5小时,再经洗涤、离心和干燥,得到纳米γ-Fe2O3-二氧化硅-聚苯乙烯复合材料。
4.制备超疏水纳米磁性薄膜
将所述得到的纳米γ-Fe2O3-二氧化硅-聚苯乙烯复合材料超声波分散15分钟后,通过流涎法制备出超疏水磁性薄膜。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
一切从本发明的构思出发,不经过创造性劳动所作出的结构变换均落在本发明的保护范围之内。

Claims (5)

1.一种超疏水纳米磁性薄膜的制备方法,其特征在于,包括步骤:
1)制备纳米氧化铁-二氧化硅核壳粒子
将纳米氧化铁分散于醇类溶剂中,然后加入正硅酸乙酯、催化剂,在20~40℃下反应6~15小时后,将其离心分离和干燥,得到纳米氧化铁-二氧化硅的核壳纳米粒子;
2)对纳米氧化铁-二氧化硅核壳粒子进行表面修饰
将所述纳米氧化铁-二氧化硅核壳粒子分散到硅烷偶联剂、催化剂和醇类溶剂的混合液中,在20~40℃下反应20~25小时后,将其离心分离和干燥,得到表面被乙烯基修饰的纳米氧化铁-二氧化硅核壳粒子,其中所述硅烷偶联剂为乙烯基三乙氧基硅烷;
3)制备纳米氧化铁-二氧化硅-聚苯乙烯复合材料
将所述表面被乙烯基修饰的纳米氧化铁-二氧化硅核壳粒子加入到苯类有机溶剂中,然后加入引发剂和苯乙烯,在70~90℃下反应3~8小时后,再用醇类溶剂洗涤、离心3~5次后,干燥,得到纳米氧化铁-二氧化硅-聚苯乙烯复合材料;
4)制备超疏水纳米磁性薄膜
将所述得到的纳米氧化铁-二氧化硅-聚苯乙烯复合材料分散于醇类溶剂中,经超声波分散5~15分钟后,通过一定方法制得所述超疏水纳米磁性薄膜。
2.如权利要求1所述的一种超疏水纳米磁性薄膜的制备方法,其特征在于:在所述制备纳米氧化铁-二氧化硅核壳粒子的过程中,所述纳米氧化铁为纳米四氧化三铁粒子、纳米三氧化二铁粒子或其他纳米级尺寸的铁氧体粒子,所述催化剂为氨水,所述醇类溶剂为甲醇、乙醇或丁醇,用量为正硅酸乙酯质量的30~40倍,反应时间为6~15小时,所述正硅酸乙酯与所述氨水的质量比为1∶1~3。
3.如权利要求1所述的一种超疏水纳米磁性薄膜的制备方法,其特征在于:在所述对纳米氧化铁-二氧化硅核壳粒子进行表面修饰的过程中,所述醇类溶剂为甲醇、乙醇或丁醇,催化剂为氨水,反应时间为20~25小时,所述纳米氧化铁-二氧化硅核壳粒子、所述醇类溶剂、所述硅烷偶联剂与所述催化剂的质量比为1∶100~150∶8~12∶8。
4.如权利要求1所述的一种超疏水纳米磁性薄膜的制备方法,其特征在于:所述制备纳米氧化铁-二氧化硅-聚苯乙烯复合材料的过程中,所述苯类有机溶剂为甲苯或二甲苯,用量为苯乙烯质量的3~5倍,所述引发剂为过氧化二苯甲酰或者偶氮二异丁腈,反应3~8小时,表面被修饰的纳米氧化铁-二氧化硅核壳粒子、引发剂和苯乙烯单体质量比为1∶0.2~0.3∶8~15。
5.如权利要求1所述的一种超疏水纳米磁性薄膜的制备方法,其特征在于:所述制备超疏水纳米磁性薄膜的过程中,所述醇类溶剂为甲醇、乙醇或丁醇,所述一定方法为流涎法或提拉法。
CN 201110167967 2011-06-22 2011-06-22 一种超疏水纳米磁性薄膜的制备方法 Expired - Fee Related CN102336972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110167967 CN102336972B (zh) 2011-06-22 2011-06-22 一种超疏水纳米磁性薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110167967 CN102336972B (zh) 2011-06-22 2011-06-22 一种超疏水纳米磁性薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN102336972A CN102336972A (zh) 2012-02-01
CN102336972B true CN102336972B (zh) 2013-01-23

Family

ID=45512945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110167967 Expired - Fee Related CN102336972B (zh) 2011-06-22 2011-06-22 一种超疏水纳米磁性薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN102336972B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150183965A1 (en) * 2012-06-28 2015-07-02 Dow Global Technologies Llc A composite material method of producing the same, and articles made therefrom
US9427938B2 (en) 2012-12-17 2016-08-30 Dow Global Technologies Llc Multi-layered structure and a method of sealing or shaping using a multi-layered structure
CN103224642B (zh) * 2013-04-28 2014-08-20 黑龙江大学 一种磁性疏水薄膜的制备方法
CN103509202A (zh) * 2013-09-26 2014-01-15 南昌航空大学 一种以磁粉为填料制备超疏水涂层的方法
CN104694001B (zh) * 2014-12-12 2017-08-25 杭州师范大学 一种超疏水超顺磁硅树脂复合材料涂层的制备方法
CN105037664A (zh) * 2015-07-14 2015-11-11 苏州英芮诚生化科技有限公司 一种采用溶胀共聚法制备的超顺磁性高级功能聚合物单分散微球
CN105175652A (zh) * 2015-07-14 2015-12-23 苏州英芮诚生化科技有限公司 一种超顺磁性聚合物单分散微球及其制备方法
CN106115072B (zh) * 2016-06-28 2018-07-27 东营市一大早乳业有限公司 一种不沾型酸奶包装材料的制备方法
US11248099B2 (en) * 2016-07-15 2022-02-15 Saudi Arabian Oil Company Corrosion-resistant coatings and methods of making the same
CN107652586A (zh) * 2017-09-13 2018-02-02 铜陵海源超微粉体有限公司 一种高疏水性聚苯乙烯‑聚偏氯乙烯材料的制备方法
CN109103221B (zh) 2018-08-17 2020-08-28 京东方科技集团股份有限公司 像素界定层及其制备原料和制备方法、显示基板
CN109126745A (zh) * 2018-09-28 2019-01-04 成都其其小数科技有限公司 一种用于油水分离的可循环利用的超疏水粉末及制备方法
CN109331838B (zh) * 2018-10-09 2021-04-30 华侨大学 一种贵金属@硅酸镍超疏水催化薄膜的制备方法
CN109396459B (zh) * 2018-12-20 2021-11-19 淮海工学院 一种磁性纳米棒的制备方法及其应用
CN109913978A (zh) * 2019-03-06 2019-06-21 武汉理工大学 一种核-壳结构复合纤维及其制备方法和在聚合物基柔性复合薄膜中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563129A (zh) * 2004-03-23 2005-01-12 中山大学 纳米无机粒子/聚合物复合材料的力化学制备方法
CN101165083A (zh) * 2006-10-16 2008-04-23 中国科学院化学研究所 纳米二氧化硅微粒增强的超疏水聚苯乙烯薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060058442A1 (en) * 2004-09-10 2006-03-16 Marc Weydert Tire with silica reinforced tread containing specialized high vinyl styrene/butadiene elastomer and alkoxyorganomercaptosilane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563129A (zh) * 2004-03-23 2005-01-12 中山大学 纳米无机粒子/聚合物复合材料的力化学制备方法
CN101165083A (zh) * 2006-10-16 2008-04-23 中国科学院化学研究所 纳米二氧化硅微粒增强的超疏水聚苯乙烯薄膜及其制备方法

Also Published As

Publication number Publication date
CN102336972A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
CN102336972B (zh) 一种超疏水纳米磁性薄膜的制备方法
CN102140179B (zh) 苯乙烯接枝二氧化硅超疏水薄膜的制备方法
CN104445215B (zh) 中空二氧化硅纳米材料的制备方法
CN101559951B (zh) 一种制备纳米级二氧化硅空心微球的方法
CN103738969B (zh) 介孔二氧化硅及其制备方法
CN104085882B (zh) 一种寡层含氧氟化石墨烯的制备方法
CN101633499B (zh) Pan基碳纳米空心球的制备方法
CN105664936A (zh) 一种以多巴胺为碳源制备核壳结构纳米复合材料的方法
CN101318658B (zh) 以多壁碳纳米管为模板制备二氧化硅纳米管的方法
CN107413204A (zh) 利用氧化石墨烯限域的氧化锌诱导生长制备高取向二维金属有机骨架纳米片式膜的方法
CN103013182A (zh) 一种纳米二氧化硅的表面改性方法
CN103638944A (zh) 一种磁性复合催化剂Ag/HNTs/Fe3O4的制备方法
CN105175781B (zh) 有机球形二氧化硅修饰的碳纳米管棒状纳米复合材料及制备方法
CN104386699B (zh) 双模板法制备多壳层介孔氧化硅纳米材料的方法
CN108453265A (zh) 一种二氧化硅纳米管限域镍纳米颗粒及其制备方法
CN102921357A (zh) 海胆状结构纳米免疫磁珠的制备方法及其应用
CN103241723A (zh) 一种介孔碳/二氧化硅复合纳米微球的制备方法
CN109626356A (zh) 一种低细胞毒性中空多孔纳米炭及其制备方法
CN103433032A (zh) 一种核壳中空结构WO3@mSiO2微球及其制备方法和应用
CN105655078B (zh) 具有核壳结构的磁性复合材料及其制备方法
CN103071465B (zh) 微米级球形粉煤灰聚合粒子的制备方法
CN102936028A (zh) 微波-超声波法制备片状氢氧化镧纳米晶的方法
Maleki et al. A novel and eco-friendly o-phenylendiamine stabilized on silica-coated magnetic nanocatalyst for the synthesis of indenoquinoline derivatives under ultrasonic-assisted solvent-free conditions
CN107266715B (zh) 纳米白炭黑的改性方法
CN105111496A (zh) 一步法同时制备超疏水高分子材料和超疏水二氧化硅颗粒的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130123

Termination date: 20130622