CN102201749A - 三相48脉波整流变压器 - Google Patents

三相48脉波整流变压器 Download PDF

Info

Publication number
CN102201749A
CN102201749A CN201110176569XA CN201110176569A CN102201749A CN 102201749 A CN102201749 A CN 102201749A CN 201110176569X A CN201110176569X A CN 201110176569XA CN 201110176569 A CN201110176569 A CN 201110176569A CN 102201749 A CN102201749 A CN 102201749A
Authority
CN
China
Prior art keywords
phase
winding
pulse wave
wave rectifier
output winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110176569XA
Other languages
English (en)
Inventor
曾庆赣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU HUAPENG TRANSFORMER CO Ltd
Original Assignee
JIANGSU HUAPENG TRANSFORMER CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU HUAPENG TRANSFORMER CO Ltd filed Critical JIANGSU HUAPENG TRANSFORMER CO Ltd
Priority to CN201110176569XA priority Critical patent/CN102201749A/zh
Publication of CN102201749A publication Critical patent/CN102201749A/zh
Priority to US14/007,274 priority patent/US9013905B2/en
Priority to DE112012001465.0T priority patent/DE112012001465T5/de
Priority to PCT/CN2012/070580 priority patent/WO2012129980A1/zh
Priority to JP2014501406A priority patent/JP5879428B2/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • H01F30/14Two-phase, three-phase or polyphase transformers for changing the number of phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/02Adaptations of transformers or inductances for specific applications or functions for non-linear operation
    • H01F38/06Adaptations of transformers or inductances for specific applications or functions for non-linear operation for changing the wave shape
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P13/00Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output
    • H02P13/06Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output by tap-changing; by rearranging interconnections of windings

Abstract

本发明涉及整流变压器领域,是提出一台三相48脉波整流变压器带有四套阀侧输出绕组的布置、移相、联结和匝数选取方法,实现一台整流变压器的并联二十四脉波整流,两台整流变压器的并联四十八脉波整流。本发明解决整流系统中并联整流变压器电流不平衡的技术难题,以提高整流器的带负载能力,减少整流器产生的谐波电流;在网侧,两台整流变压器组成的并联四十八脉波整流系统的5次,7次,11次,13次,17次,19次,23次和25次谐波电流可相互抵消。

Description

三相48脉波整流变压器
技术领域
本发明涉及将交流电变换为直流电的变流技术领域,尤其是一种用于变流的整流变压器。
背景技术
在申请号为201010526406.5的发明专利“三相48脉波整流变压器”中,三相48脉波整流变压器由两台三相24脉波整流变压器组成。三相24脉波整流变压器包括两套网侧输入绕组和四套阀侧输出绕组,两套网侧输入绕组并联且轴向分裂布置,四套阀侧输出绕组中的两套阀侧输出绕组与一套网侧输入绕组对应径向分裂布置,另两套阀侧输出绕组与另一套网侧输入绕组也对应径向分裂布置,对应径向分裂的两套阀侧输出绕组与另两套对应径向分裂的阀侧输出绕组也为轴向分裂布置,如图1和图2所示;该三相24脉波整流变压器的主要特征是对应径向分裂布置的两套阀侧输出绕组相互之间对称移相,相互之间移相角为7.5°,或为15°,或为22.5°。该三相48脉波整流变压器运行时,对应径向分裂布置的阀侧输出绕组的整流电流相互之间严重不平衡,有时整流电流不平衡率大于50%;整流电流不平衡的危害主要有二:降低整流系统的带负载能力,增大整流系统向电网输出的谐波电流;故必须尽量消除整流电流不平衡率,一般要求整流电流不平衡率小于10%。
径向分裂布置阀侧输出绕组之间的漏磁耦合系数大,在各绕组三相短路阻抗相等的条件下,各绕组的各相漏磁电感与绕组之间的移相角和绕组导通工作状况有关;在0°至30°之间的移相角范围内,径向分裂布置两绕组的各相漏磁电感是不相等,再加上两绕组各导通时间顺序和间隔的不同,造成两绕组对应的整流电流不平衡;仅在30°移相角时,两绕组的各相漏磁电感相等,各相导通时间顺序和间隔也相同,径向分裂布置两绕组对应的整流电流是平衡相等。原专利中对应径向分裂布置的两套阀侧输出绕组相互之间移相角为7.5°,或为15°,或为22.5°,是造成整流电流不平衡相等的主要原因。
轴向分裂阀侧输出绕组之间的漏磁耦合系数小,轴向分裂阀侧输出绕组之间相互干扰小,各阀侧输出绕组的各相漏磁电感及整流电流与轴向分裂阀侧输出绕组之间的移相角关联小;不同的轴向分裂移相角时,轴向分裂的阀侧输出绕组的各相漏磁电感及整流电流是基本相等,整流电流不平衡率可小于10%。
对三相四十八脉波整流变压器,消除各绕组间的整流电流不平衡,就能保证整流系统的带负载能力,减少整流系统向电网输出的谐波电流。
发明内容
本发明要解决的技术问题是:提出一种通过新的绕组移相,联结和匝数选取方法,实现整流电流的平衡的三相48脉波整流变压器。
本发明所采用的技术方案为:一种三相48脉波整流变压器,由两台阀侧输出绕组移相的24脉波整流变压器组成,所述的单台24脉波整流变压器具有两套网侧输入绕组和四套阀侧输出绕组,两套网侧输入绕组并联且轴向分裂布置,四套阀侧输出绕组中的两套阀侧输出绕组与一套网侧输入绕组对应径向分裂布置,另两套阀侧输出绕组与另一套网侧输入绕组也对应径向分裂布置,对应径向分裂的两套阀侧输出绕组与另两套对应径向分裂的阀侧输出绕组也为轴向分裂布置;所述的对应径向分裂布置的两套阀侧输出绕组相互之间移相角为30°,另两套对应径向分裂布置的阀侧绕组相互之间移相角也为30°,轴向分裂布置绕组之间的移相角为15°或7.5°,四套阀侧输出绕组匝数变比(等效匝数)相差小于0.5%;所述的两台24脉波整流变压器的网侧输入绕组相互之间移相,使得两台24脉波整流变压器的八套阀侧输出绕组的电压之间均匀相差7.5°,两台24脉波整流变压器的八套阀侧输出绕组与整流器对应连接形成均匀48脉波整流。
当轴向分裂阀侧输出绕组之间的移相角为15°时,单台24脉波整流变压器的四套阀侧输出绕组相互之间移相角分别为:15°、15°、15°和15°,是均匀相等的;在两台整流变压器的网侧绕组相互之间移相7.5°或22.5°,使两台整流变压器的八套阀侧输出绕组的电压之间均匀相差7.5°。
对应径向分裂布置两套阀侧输出绕组均为移相联结,分别移相,移相后两套阀侧输出绕组相角差为30°;对应径向分裂布置的另两套阀侧输出绕组均为移相联结,分别移相,移相后两套阀侧输出绕组相角差为30°,具体为:对应径向分裂布置两套阀侧输出绕组分别为三角形联结和星形联结,相互之间相角差为30°;对应径向分裂布置的另两套阀侧输出绕组均为延边三角形联结,分别移相+15°与-15°,相互之间相角差为30°。
当轴向分裂阀侧输出绕组之间的移相角为7.5°时,四套阀侧输出绕组相互之间移相角分别为:22.5°、7.5°、22.5°和7.5°,是非均匀相等的;在两台整流变压器的网侧绕组相互之间移相15°,使两台整流变压器的八套阀侧输出绕组的电压之间均匀相差7.5°。
对应径向分裂布置两套阀侧输出绕组均为延边三角形联结,分别移相+11.25°与-18.75°;对应径向分裂布置的另两套阀侧输出绕组均为延边三角形联结,分别移相-11.25°与+18.75°,具体为:对应径向分裂布置两套阀侧输出绕组均为延边三角形联结,分别移相+3.75°与-26.25°;对应径向分裂布置的另两套阀侧输出绕组均为延边三角形联结,分别移相-3.75°与+26.25°。
本发明的有益效果是:实现三相48脉波整流整流变压器的整流电流平衡相等,改进了原方法的缺陷,可提高整流器带负载能力,减少整流器产生的谐波电流;两台整流变压器组成的并联四十八脉波整流系统,在网侧的5次,7次,11次,13次,17次,19次,23次和25次谐波电流可相互抵消,提高了电网的质量。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是现有技术24脉波整流变压器的四套阀侧输出绕组布置;
图2是现有技术24脉波整流变压器的另一种四套阀侧输出绕组布置;
图3是本发明的阀侧输出绕组的一种均匀移相联结方法;
图4是本发明的阀侧输出绕组的又一种均匀移相联结方法;
图5是本发明的阀侧输出绕组的一种非均匀移相联结方法;
图6是本发明的阀侧输出绕组的又一种非均匀移相联结方法;
图7是本发明的三相48脉波整流变压器的一种绕组联结方法;
图8是本发明的三相48脉波整流变压器的又一种绕组联结方法。
具体实施方式
现在结合附图和优选实施例对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
图1或图2所示一台变压器,含有并联的轴向分裂网侧输入绕组H和四套阀侧输出绕组(图示为一相,未显示铁心),每套阀侧输出绕组包括主绕组L,和移相绕组S;四套阀侧输出绕组分别为:L1S1、L2S2、L3S3、和L4S4。L1S1与L2S2相互为径向分裂布置;L3S3与L4S4相互为径向分裂布置;L1S1和L2S2与L3S3和L4S4相互之间为轴向分裂布置。
本发明的图3或图4所示的移相联结方法和移相角度,均实现径向分裂布置阀侧输出绕组相互之间移相角度30°,即L1S1与L2S2之间的移相角为30°,L3S3与L4S4之间的移相角为30°。选择径向分裂布置阀侧输出绕组相互之间移相角度30°,是因为此时两绕组的各相漏磁电感相等,各相导通时间顺序和间隔也相同,可实现径向分裂布置绕组对应的整流电流平衡相等。
采用图3或图4所示的移相联结方法和移相角度,还使轴向分裂的绕组(L1S1和L2S2)与(L3S3和L4S4)相互之间移相15°;此时,L1S1与L3S3之间的相角差为15°,L3S3与L2S2之间的相角差为15°,L2S2与L4S4之间的相角差为15°,L4S4与L1S1之间的相角差为45°(60°为整流等效循环周期,45°相角与15°相角等效),四套阀侧绕组之间相角差是均匀相等的。下表给出对应图3的一种四套阀侧绕组的匝数和移相角等参数,四套绕组等效匝数偏差小于0.03%,表中移相角与图中规定移相角也存在一定偏差。
  绕组代号   主绕组匝数   移相匝数   等效匝数   联结方法   移相角
  L1S1   30   6   39.345   正延边三角   +7.59°
  L2S2   9   17   39.357   反延边三角   -22.52°
  L3S3   30   6   39.345   反延边三角   -7.59°
  L4S4   9   17   39.357   正延边三角   +22.52°
图5或图6为阀侧绕组非均匀移相联结方法和移相角度,图中对应径向分裂布置阀侧绕组之间的移相角均为30°,即L1S1与L2S2之间的相角差为30°,L3S3与L4S4之间的相角差为30°;对应轴向分裂的绕组(L1S1和L2S2)与(L3S3和L4S4)相互之间移相7.5°。以图5为例,L1S1与L3S3之间的相角差为22.5°,L3S3与L2S2之间的相角差为7.5°,L2S2与L4S4之间的相角差为37.5°(37.5°等效22.5°),L4S4与L1S1之间的相角差为7.5°,四套阀侧绕组之间相角差是非均匀相等的。四套阀侧绕组之间采用非均匀相等的移相角,可为主绕组和移相绕组匝数选择提供更多的方案,能同样组成均匀48脉波整流变压器;下表给出对应图5的一种四套阀侧绕组的匝数和移相角等参数,四套绕组等效匝数偏差小于0.21%,表中移相角与图中规定移相角也存在一定偏差。
  绕组代号   主绕组匝数   移相匝数   等效匝数   联结方法   移相角
  L1S1   17   6   26.514   正延边三角   +11.30°
  L2S2   10   10   26.458   反延边三角   -19.10°
  L3S3   17   6   26.514   反延边三角   -11.30°
  L4S4   10   10   26.458   正延边三角   +19.10°
图7所示为两台图3所示联结方法的均匀移相的整流变压器组成的三相48脉波整流变压器,两台整流变压器网侧绕组采用延边三角移相联结方法,分别移相+3.75°与-3.75°,网侧绕组相互之间移相7.5°;两台整流变压器八套阀侧绕组相互之间相角均匀间隔7.5°,即48脉波整流电压的单个纹波电角区间7.5°。此外,若网侧绕组相互之间移相22.5°,两台整流变压器八套阀侧绕组相互之间相角也是均匀间隔7.5°,但在网侧,可更好抵消整流电流不平衡造成的5次和7次谐波电流。
图8所示为两台图5所示联结方法的非均匀移相的整流变压器组成的三相48脉波整流变压器,两台整流变压器网侧绕组采用延边三角移相联结方法,分别移相+7.5°与-7.5°,网侧绕组相互之间移相15°;两台整流变压器八套阀侧绕组相互之间相角均匀间隔7.5°,即48脉波整流电压的单个纹波电角区间7.5°。
以上说明书中描述的只是本发明的具体实施方式,各种举例说明不对本发明的实质内容构成限制,所属技术领域的普通技术人员在阅读了说明书后可以对以前所述的具体实施方式做修改或变形,而不背离发明的实质和范围。

Claims (7)

1.一种三相48脉波整流变压器,由两台阀侧输出绕组移相的24脉波整流变压器组成,其特征在于:所述的单台24脉波整流变压器具有两套网侧输入绕组和四套阀侧输出绕组,两套网侧输入绕组并联且轴向分裂布置,四套阀侧输出绕组中的两套阀侧输出绕组与一套网侧输入绕组对应径向分裂布置,另两套阀侧输出绕组与另一套网侧输入绕组也对应径向分裂布置,对应径向分裂的两套阀侧输出绕组与另两套对应径向分裂的阀侧输出绕组也为轴向分裂布置;所述的对应径向分裂布置的两套阀侧输出绕组相互之间移相角为30°,另两套对应径向分裂布置的阀侧绕组相互之间移相角也为30°,轴向分裂布置绕组之间的移相角为15°或7.5°,四套阀侧输出绕组的电压数值相差小于0.5%;所述的两台24脉波整流变压器的网侧输入绕组相互之间移相,使得两台24脉波整流变压器的8套阀侧输出绕组的电压之间均匀相差7.5°,两台24脉波整流变压器的8套阀侧输出绕组与整流器对应连接形成均匀48脉波整流。
2.如权利要求1所述的三相48脉波整流变压器,其特征在于:所述的单台24脉波整流变压器,轴向分裂布置绕组之间的移相角为15°时,四套阀侧输出绕组相互之间移相角分别为15°,15°,15°和15°,是均匀相等;所述的两台24脉波整流变压器的网侧输入绕组相互之间移相7.5°或22.5°。
3.如权利要求2所述的三相48脉波整流变压器,其特征在于:对应径向分裂布置两套阀侧输出绕组均为移相联结,分别移相,移相后两套阀侧输出绕组相角差为30°;对应径向分裂布置的另两套阀侧输出绕组均为移相联结,分别移相,移相后两套阀侧输出绕组相角差为30°。
4.如权利要求2所述的三相48脉波整流变压器,其特征在于:对应径向分裂布置两套阀侧输出绕组分别为三角形联结和星形联结,相互之间相角差为30°;对应径向分裂布置的另两套阀侧输出绕组均为延边三角形联结,分别移相+15°与-15°,相互之间相角差为30°。
5.如权利要求1所述的三相48脉波整流变压器,其特征在于:所述的单台24脉波整流变压器,轴向分裂布置绕组之间的移相角为7.5°时,四套阀侧输出绕组相互之间移相角分别为22.5°、7.5°、22.5°和7.5°,是非均匀相等;所述的两台24脉波整流变压器的网侧输入绕组相互之间移相15°。
6.如权利要求5所述的三相48脉波整流变压器,其特征在于:对应径向分裂布置两套阀侧输出绕组均为延边三角形联结,分别移相+11.25°与-18.75°;对应径向分裂布置的另两套阀侧输出绕组均为延边三角形联结,分别移相-11.25°与+18.75°。
7.如权利要求5所述的三相48脉波整流变压器,其特征在于:对应径向分裂布置两套阀侧输出绕组均为延边三角形联结,分别移相+3.75°与-26.25°;对应径向分裂布置的另两套阀侧输出绕组均为延边三角形联结,分别移相-3.75°与+26.25°。
CN201110176569XA 2011-03-29 2011-06-28 三相48脉波整流变压器 Pending CN102201749A (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201110176569XA CN102201749A (zh) 2011-06-28 2011-06-28 三相48脉波整流变压器
US14/007,274 US9013905B2 (en) 2011-03-29 2012-01-19 Three-phase 48-pulse rectifier transformer
DE112012001465.0T DE112012001465T5 (de) 2011-03-29 2012-01-19 48-Puls-Dreiphasen-Gleichrichtertransformator
PCT/CN2012/070580 WO2012129980A1 (zh) 2011-03-29 2012-01-19 三相48脉波整流变压器
JP2014501406A JP5879428B2 (ja) 2011-03-29 2012-01-19 三相48パルス整流器用変圧器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110176569XA CN102201749A (zh) 2011-06-28 2011-06-28 三相48脉波整流变压器

Publications (1)

Publication Number Publication Date
CN102201749A true CN102201749A (zh) 2011-09-28

Family

ID=44662200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110176569XA Pending CN102201749A (zh) 2011-03-29 2011-06-28 三相48脉波整流变压器

Country Status (5)

Country Link
US (1) US9013905B2 (zh)
JP (1) JP5879428B2 (zh)
CN (1) CN102201749A (zh)
DE (1) DE112012001465T5 (zh)
WO (1) WO2012129980A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129980A1 (zh) * 2011-03-29 2012-10-04 江苏华鹏变压器有限公司 三相48脉波整流变压器
CN105932893A (zh) * 2016-06-24 2016-09-07 南京航空航天大学 用于电动汽车直流充电站的多脉波整流变电系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2827741C (en) * 2011-02-24 2017-08-15 Crane Electronics, Inc. Ac/dc power conversion system and method of manufacture of same
FR3002683B1 (fr) * 2013-02-28 2016-11-04 Alstom Technology Ltd Convertisseur de puissance comportant une architecture de bras non-alignes
US20140337053A1 (en) * 2013-03-15 2014-11-13 Virtual Viewbox, Inc. "Meaningful-Use"-Compliant, Single Login, Federated Patient Portal System and Methods
US9331596B2 (en) * 2013-05-15 2016-05-03 Honeywell International Inc. Composite AC-to-DC power converter with boosting capabilities using T configuration
JP6353053B2 (ja) * 2014-02-03 2018-07-04 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company 冷却装置適用例における可変速ドライブのためのマルチパルス定電圧トランス
US9831768B2 (en) 2014-07-17 2017-11-28 Crane Electronics, Inc. Dynamic maneuvering configuration for multiple control modes in a unified servo system
US9293999B1 (en) 2015-07-17 2016-03-22 Crane Electronics, Inc. Automatic enhanced self-driven synchronous rectification for power converters
US9780635B1 (en) 2016-06-10 2017-10-03 Crane Electronics, Inc. Dynamic sharing average current mode control for active-reset and self-driven synchronous rectification for power converters
US9735566B1 (en) 2016-12-12 2017-08-15 Crane Electronics, Inc. Proactively operational over-voltage protection circuit
US9742183B1 (en) 2016-12-09 2017-08-22 Crane Electronics, Inc. Proactively operational over-voltage protection circuit
RU176888U1 (ru) * 2017-09-04 2018-02-01 Евгений Николаевич Коптяев Полупроводниковый выпрямитель
RU2673250C1 (ru) * 2017-09-22 2018-11-23 Евгений Николаевич Коптяев Полупроводниковый выпрямитель
US9979285B1 (en) 2017-10-17 2018-05-22 Crane Electronics, Inc. Radiation tolerant, analog latch peak current mode control for power converters
RU180741U1 (ru) * 2018-01-15 2018-06-22 Евгений Николаевич Коптяев Полупроводниковый выпрямитель
JP7021411B2 (ja) * 2018-05-31 2022-02-17 東芝三菱電機産業システム株式会社 電力変換システム
RU182989U1 (ru) * 2018-06-18 2018-09-07 Евгений Николаевич Коптяев Симметричный полупроводниковый выпрямитель
US10425080B1 (en) 2018-11-06 2019-09-24 Crane Electronics, Inc. Magnetic peak current mode control for radiation tolerant active driven synchronous power converters
CN109545528B (zh) * 2018-12-20 2023-10-03 吉安伊戈尔电气有限公司 三相变九相升压降压自耦移相变压器
RU187622U1 (ru) * 2019-01-10 2019-03-14 Евгений Николаевич Коптяев Реверсивный многофазный выпрямитель
CN110211785A (zh) * 2019-03-19 2019-09-06 江苏五洲电力科技有限公司 一种连续调压二十四脉波整流变压器
CN113571305A (zh) * 2020-04-29 2021-10-29 河南森源电气股份有限公司 一种脉波移相整流变压器
CN112885582B (zh) * 2020-12-28 2024-02-13 万帮数字能源股份有限公司 一种一体式移相整流变压器及控制方法
CN113611504A (zh) * 2021-07-23 2021-11-05 保定天威保变电气股份有限公司 一种新型柔性直流换流变压器及装配方法
CN115250074B (zh) * 2022-09-22 2022-12-20 四川大学 具有谐波、纹波补偿功能的电解制氢整流器及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040085703A1 (en) * 2002-10-30 2004-05-06 Kim Chan Ki Multi-pulse HVDC system using auxiliary circuit
CN102013817A (zh) * 2010-10-30 2011-04-13 江苏华鹏变压器有限公司 三相48脉波整流变压器
CN202168000U (zh) * 2011-06-28 2012-03-14 江苏华鹏变压器有限公司 一种三相48脉波整流变压器

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2056655A (en) * 1932-05-07 1936-10-06 Bbc Brown Boveri & Cie Electric current interchange system
US2082015A (en) * 1935-10-30 1937-06-01 Westinghouse Electric & Mfg Co Electric valve converting system
US2134580A (en) * 1937-01-21 1938-10-25 Westinghouse Electric & Mfg Co Sectionalizing of sectional type rectifiers
US2221524A (en) * 1937-12-06 1940-11-12 Gen Electric Electric valve circuit
US2193585A (en) * 1938-03-19 1940-03-12 Westinghouse Electric & Mfg Co Rectifier connection for high voltage direct current circuits
US2218383A (en) * 1939-09-16 1940-10-15 Gen Electric Electric valve converting system
US2820189A (en) * 1956-08-14 1958-01-14 Asea Ab Static current converter using voltage commutation
US4030017A (en) * 1975-02-03 1977-06-14 Lorain Products Corporation Controlled reactance regulator circuit
HU192219B (en) * 1985-05-03 1987-05-28 Budapesti Mueszaki Egyetem Arrangement for generating high d.c. voltage from medium frequency a.c. voltage
JPS6375018A (ja) * 1986-09-18 1988-04-05 Nitto Electric Ind Co Ltd 光硬化性樹脂組成物
US4866591A (en) * 1988-08-26 1989-09-12 Sundstrand Corporation Regulated transformer rectifier unit
US4870557A (en) * 1988-09-23 1989-09-26 Westinghouse Electric Corp. Simplified quasi-harmonic neutralized high power inverters
JP2783721B2 (ja) * 1992-04-27 1998-08-06 株式会社中央製作所 インバータ制御式電気抵抗溶接機
JP3089848B2 (ja) * 1992-09-08 2000-09-18 富士電機株式会社 移相巻線付整流器用変圧器
US5455759A (en) * 1994-06-24 1995-10-03 Paice; Derek A. Symmetrical, phase-shifting, fork transformer
US5574631A (en) * 1995-04-26 1996-11-12 Westinghouse Electric Corporation Magnetic filter
US5781428A (en) * 1997-03-03 1998-07-14 Paice; Derek A. Transformer for 12-pulse series connection of converters
JP3833389B2 (ja) * 1998-01-14 2006-10-11 三菱電機株式会社 Ac/dc間電力変換装置
JP2000243636A (ja) * 1999-02-24 2000-09-08 Toshiba Corp 三相マルチレベルインバータ用変圧器
US7796413B2 (en) * 2007-01-22 2010-09-14 Eldec Corporation AC to DC Power converter for aerospace applications
US6101113A (en) * 1999-12-02 2000-08-08 Paice; Derek A Transformers for multipulse AC/DC converters
JP3933373B2 (ja) * 2000-06-15 2007-06-20 株式会社東芝 整流器及び変圧器
US6498736B1 (en) * 2001-03-27 2002-12-24 Baldor Electric Company Harmonic filter with low cost magnetics
US7280331B2 (en) * 2005-03-01 2007-10-09 Lincoln Global, Inc. Power reconnect and voltage control
GB2436647A (en) * 2006-03-29 2007-10-03 Champion Aerospace Inc Multi-phase AC-DC aircraft power converter
US20080165553A1 (en) * 2007-01-05 2008-07-10 Swamy Mahesh M Eighteen pulse rectification scheme for use with variable frequency drives
US8488354B2 (en) * 2007-01-05 2013-07-16 Yaskawa America, Inc. Eighteen pulse rectification scheme for use with variable frequency drives
US8223516B2 (en) * 2007-02-27 2012-07-17 Toshiba International Corporation Multi-pulse rectifier for AC drive systems having separate DC bus per output phase
WO2008151145A1 (en) * 2007-06-01 2008-12-11 Drs Power & Control Technologies, Inc. Four pole neutral-point clamped three phase converter with zero common mode voltage output
US8159841B2 (en) * 2008-04-04 2012-04-17 Howard Industries, Inc. Low harmonic rectifier circuit
CN201251988Y (zh) * 2008-07-23 2009-06-03 北京华泰变压器有限公司 环氧树脂浇注变频整流干式变压器
US8279640B2 (en) * 2008-09-24 2012-10-02 Teco-Westinghouse Motor Company Modular multi-pulse transformer rectifier for use in symmetric multi-level power converter
US8299732B2 (en) * 2009-01-15 2012-10-30 Rockwell Automation Technologies, Inc. Power conversion system and method
CN101635198B (zh) * 2009-06-30 2011-05-11 东莞市光华实业有限公司 一种36脉波大功率变频整流变压器
CN202034912U (zh) * 2010-10-30 2011-11-09 江苏华鹏变压器有限公司 一种三相48脉波整流变压器
CN102201749A (zh) * 2011-06-28 2011-09-28 江苏华鹏变压器有限公司 三相48脉波整流变压器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040085703A1 (en) * 2002-10-30 2004-05-06 Kim Chan Ki Multi-pulse HVDC system using auxiliary circuit
CN102013817A (zh) * 2010-10-30 2011-04-13 江苏华鹏变压器有限公司 三相48脉波整流变压器
CN202168000U (zh) * 2011-06-28 2012-03-14 江苏华鹏变压器有限公司 一种三相48脉波整流变压器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129980A1 (zh) * 2011-03-29 2012-10-04 江苏华鹏变压器有限公司 三相48脉波整流变压器
US9013905B2 (en) 2011-03-29 2015-04-21 Jiangsu Huapeng Transformer Co., Ltd. Three-phase 48-pulse rectifier transformer
CN105932893A (zh) * 2016-06-24 2016-09-07 南京航空航天大学 用于电动汽车直流充电站的多脉波整流变电系统

Also Published As

Publication number Publication date
DE112012001465T5 (de) 2014-01-02
US20140015629A1 (en) 2014-01-16
US9013905B2 (en) 2015-04-21
JP5879428B2 (ja) 2016-03-08
JP2014511035A (ja) 2014-05-01
WO2012129980A1 (zh) 2012-10-04

Similar Documents

Publication Publication Date Title
CN102201749A (zh) 三相48脉波整流变压器
CN102185495B (zh) 三相48脉波整流变压器
CA2827741C (en) Ac/dc power conversion system and method of manufacture of same
US7095636B2 (en) Electromagnetic interference filter for an autotransformer
US20140211520A1 (en) System and method for power conversion
US8982595B2 (en) T-connected autotransformer-based 40-pulse AC-DC converter for power quality improvement
CN112821785A (zh) 基于改进型双抽头双平衡电抗器的自耦型24脉波整流器
CN202168000U (zh) 一种三相48脉波整流变压器
EP3236571B1 (en) Cascaded h-bridge converter with multiphase transformer for reduction of harmonics
US20160126857A1 (en) Autotransformer with wide range of, integer turns, phase shift, and voltage
US7876586B2 (en) Multi-pulse rectifier for AC drive systems having separate DC bus per output phase and multiple isolation transformers
Abdollahi et al. Application of pulse doubling in delta/polygon-connected transformer-based 36-pulse ac-dc converter for power quality improvement
CN202034912U (zh) 一种三相48脉波整流变压器
CN103839666A (zh) 多相自耦移相整流变压器
EP2593946B1 (en) A multiphase transformer rectifier unit
US20180337612A1 (en) Ac/dc converter of nested structure
US11581131B2 (en) Asymmetric 24-pulse autotransformer rectifier unit for turboelectric propulsion, and associated systems and methods
JP2017131022A (ja) 直流高電圧発生装置
US10720854B2 (en) 72-pulse AC-DC converter for power quality improvement
CN213151912U (zh) 一种基于双线圈续流电感的大功率移相全桥电路
CN202565184U (zh) 一种直流十二相整流电源设备
US2256383A (en) Electric current converting system
GEETA et al. Enhanced Power Quality in Cascade Multilevel Converter by using Magnetic Couplings among the DC Links of the Nonregenerative Cells
AU2022270166A1 (en) Asymmetric delta multi-pulse transformer rectifier unit, and associated systems and methods
Nakhaee et al. Comparison of Three Autotransformer Based 24-Pulse AC-DC Converters Incorporated DC Ripple Reinjection Technique Feeding VCIMD and DTCIMD Loads

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Zeng Qinggan

Inventor after: Cao Bin

Inventor after: Ma Zhaowei

Inventor after: Wang Yingping

Inventor before: Zeng Qinggan

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: CENG QINGGAN TO: CENG QINGGAN CAO BIN MA ZHAOWEI WANG YINGPING

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110928