CN102119243B - 利用氢化物气相外延(HVPE)生长平面非极性的{1-100}m面和半极性的{11-22}氮化镓 - Google Patents

利用氢化物气相外延(HVPE)生长平面非极性的{1-100}m面和半极性的{11-22}氮化镓 Download PDF

Info

Publication number
CN102119243B
CN102119243B CN200980127776.7A CN200980127776A CN102119243B CN 102119243 B CN102119243 B CN 102119243B CN 200980127776 A CN200980127776 A CN 200980127776A CN 102119243 B CN102119243 B CN 102119243B
Authority
CN
China
Prior art keywords
semi
growth
polar
gan
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980127776.7A
Other languages
English (en)
Other versions
CN102119243A (zh
Inventor
A·乌西科夫
A·塞尔金
R·G·W·布朗
H·S·埃尔古罗里
P·斯皮伯格
V·伊文特索夫
O·科瓦伦科夫
L·沙波瓦洛娃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ostendo Technologies Inc
Original Assignee
Ostendo Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ostendo Technologies Inc filed Critical Ostendo Technologies Inc
Publication of CN102119243A publication Critical patent/CN102119243A/zh
Application granted granted Critical
Publication of CN102119243B publication Critical patent/CN102119243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种生长平面非极性m面或半极性Ⅲ族氮化物材料如m面氮化镓(GaN)外延层的方法,其中使用氢化物气相外延(HVPE)在适当衬底如m面的蓝宝石衬底上生长成Ⅲ族氮化物材料。该方法包括在氨和氩的气氛下高温原位预处理衬底,在该退火衬底上生长中间层,例如氮化铝(AlN)或氮化镓铝(AlGaN),并使用HVPE在中间层上生长非极性m面Ⅲ族氮化物外延层。

Description

利用氢化物气相外延(HVPE)生长平面非极性的{1-100}m面和半极性的{11-22}氮化镓
相关申请的交叉引用
本申请要求于2008年7月16日提交的美国临时专利申请No.61/081,145的优先权。
背景技术
1.发明领域
本发明涉及利用氢化物气相外延(hydride vapor phase epitaxy,HVPE)进行平面非极性{1-100}和半极性{11-22}氮化镓(GaN)的生长。
2.现有技术
氮化镓(GaN)和其相关的化合物是用于制造尖端可见光和紫外线高功率和高性能光电器件和电子器件的主要备选材料。这些器件通常通过包括分子束外延(MBE)、金属有机化学气相沉积(MOCVD)或氢化物气相外延(HVPE)的生长工艺外延生长而成。
衬底的选择对于获得期望的GaN生长取向是关键的。对于Ⅲ族氮化物(Ⅲ-N)生长来说最广泛使用的一些衬底包括SiC、Al2O3和LiAlO2。各种结晶学取向的这些衬底是可市购的。
图1(a)和1(b)是六方纤维锌矿GaN晶胞中的主要结晶方向和结晶面的图示。具体来说,这些图示示出了六方纤锌矿GaN结构中主要的不同结晶生长方向以及结晶面,其中图1(a)显示了结晶方向a1、a2、a3、c、<10-10>和<11-20>,图1(b)显示了晶面a(11-20)、m(10-10)和r(10-12)。图1(b)的填充图旨在例示主要的晶面,而并非代表该结构的材料。
由于其大的生长稳定性窗口,生长平面的c面GaN是较容易的。因此,几乎所有的GaN基器件都是平行于极性c面生长的。然而,由于c面的生长,每个材料层都因自发极化而受到电子和空穴分离到层相对面的困扰。此外,相邻层之间界面处的应变会引起压电偏振,进一步产生电荷分离。
图2(a)和图2(b),是夹在势垒(barriers)之间的量子阱中因偏振产生的能带弯曲和电子空穴分离的图示,显示了该效应,其中图2(a)是能量(eV)相对于深度(μm)的图示并代表着c面的量子阱,而图2(b)是能量(eV)相对于深度(μm)的图示并代表着非极性的量子阱。
这种极化效应降低了电子和空穴再结合的可能,使得最后的器件性能变差。用于减少或消除GaN光电器件中的压电极化效应的一种可能方法是在晶体的半极性晶面如[11-22]晶面或者晶体的非极性晶面如GaN的a-{11-20}和m-{1-100}晶面族上生长器件。这种晶面包含相同数量的Ga和N原子并且是电荷中性的。
平面{1-100}的m面GaN生长已经通过HVPE和MBE方法得以发展,但仅在m面的GaN衬底上成功了。然而,在本文描述的本发明之前,在蓝宝石上的平面半极性和非极性GaN的生长还未利用HVPE加以完成。
附图说明
下面参阅附图,其中同样的附图标记代表全文中相应的部件:
图1(a)和1(b)是六角GaN中主要的结晶方向和结晶面的图示。
图2(a)和2(b)是因偏振产生的能带弯曲和电子空穴分离的图示。
图3(a)、3(b)和3(c)提供了通过在m面上的半极性平面GaN的X射线衍射进行的结构表征。
图4是s表面粗糙度值rms为3.75nm的(尺寸)原子力显微镜(AFM)表面图像。
图5是流程图,显示了根据本发明优选实施方式的使用HVPE来生长平面半极性Ⅲ族氮化物的过程步骤。
图6进一步例示了根据本发明优选实施方式的图5中过程步骤的结果。
具体实施方式
本发明的总体目标是使用HVPE来生长平面的半极性{11-22}面的GaN材料。该方法包括:在氨和氩的气氛下高温原位预处理衬底,在退火的衬底上生长中间层如氮化铝(AlN)或氮化镓铝(AlGaN),并使用HVPE在中间层上生长非极性的m面Ⅲ族氮化物外延层。
本发明利用m面GaN的半极性性能来大大减小偏振场(polarization field),并利用生长期间半极性GaN稳定性的优点提高了生长变量如温度、压力和前体流量的灵活性。
在优选实施方式的下面说明中,要参照形成其一部分的附图,且其中通过例示可实施本发明的特定实施方式的方式加以展示。可以理解的是,在不脱离本发明的范围下可使用其他的实施方式并且进行结构变化。
概述
(Ga,In,Al,B)N材料沿极性[0001]c方向的生长,会由于引起沿主要导电方向上电荷分离的偏振场而使光电器件有较低的性能。因此,最近进行的研究集中在沿这些材料的a-[11-20]和m-[1-100]方向进行半极性和非极性方向的生长,以消除这种效应且显著地改善器件性能。GaN的a面和m面生长都已通过HVPE和MBE进行了探究,但仅在非常小也非常昂贵的m面GaN衬底上成功了。对于m面和半极性生长来说,随着HVPE生长期间稳定的、可市购的m-蓝宝石衬底的出现,大面积衬底的可获得性已成为一个问题,本发明使其成为可能。本发明是第一次通过HVPE在m-蓝宝石上成功生长出了半极性的{11-22}和{10-13}晶面的GaN。
技术描述
m面蓝宝石衬底在氨和氯化氢气氛下退火。生长之前,AlN或AlGaN层在GaN膜生长前形成为中间层。最后,通过HVPE生长GaN层。图1(a)和图1(b)例示了在纤维锌矿晶体结构中主要的半极性GaN(11-22)晶面。
为了完成半极性GaN的生长,分别针对AlN、AlGaN和GaN层试验了6-15的V/Ⅲ比和900-1050℃的温度系列。生长在大气压力下进行。半极性晶面,对于AlN、AlGaN和GaN,在该宽范围的温度、反应器压力和前体流量中是稳定的。
导致最佳质量GaN膜的最佳AlGaN中间层,对于厚度低于100nm的中间层,在超过900℃的温度、V/Ⅲ比为15-25的情况下得以实现。对于GaN层的外延,最优选的条件在接近大气压、900-1050℃温度范围和V/Ⅲ比低于15的情况得以实现。
获得的半极性GaN材料的2μm×2μm原子力显微镜(AFM)表面图像显示在图4中。对于(尺寸)扫描来说,表面粗糙度数值(均方根)是3.75nm。
图3(c)是ω(度)相对计数/秒的图示,显示了对于18μm厚的(11-22)半极性GaN层的X射线衍射摇摆曲线,半最大值处的同轴(on-axis)(11-22)全宽度(FWHM)测量低达402弧秒。正如下面的表1所看到的,对于33μm厚的GaN的同轴(11-22)FWHM值测量为低达293弧秒,离轴(11-10)反射具有250弧秒的FWHM值。经发现,通过改变成核层和外延的GaN膜自身的生长条件,这些粗糙度和半高宽数值没有显著变化。
  半极性同轴数值   半极性离轴数值
  293   250
表1摇摆曲线FWHM数值
工艺步骤
图5是例示用于根据本发明的优选实施方式使用HVPE生长平面半极性Ⅲ族氮化物外延膜的过程步骤流程图,其中平面半极性Ⅲ族氮化物外延膜可包括平面半极性{11-22}或(10.3)GaN外延层。图6进一步例示了图5中每个过程步骤的结果。
框600显示了适当的衬底(700)。衬底(700)可包括m-蓝宝石或者适合用于半极性面Ⅲ族氮化物生长的任何衬底。
框602表示了例如在生长步骤前,于氩和氨气氛中对衬底(700)的原位预处理。
框604表示了在衬底(700)上生长中间层(704)。中间层(704)通常包括氮化铝(AlN)层或氮化镓铝(AlGaN)层,但可包括适用于半极性面Ⅲ族氮化物生长的任何其他中间层(704)。此外,中间层(704)可在衬底预处理后和半极性面Ⅲ族氮化物生长前生长。
框606表示了使用HVPE生长半极性面Ⅲ族氮化物外延层(706)。半极性面Ⅲ族氮化物外延层(706)通常包括非极性(11-22)面GaN外延层,但也可包括其他半极性面Ⅲ族氮化物外延层如(10-13)。此外,半极性面Ⅲ族氮化物外延层(706)可在中间层(704)上生长成。优选地,最终结果是具有半极性面Ⅲ族氮化物的平面外延层的器件、或自支撑晶片(free standing wafer)、或衬底、或模板。
可能的修改和变型
虽然优选的实施方式描述了使用AlN或AlGaN中间层在m-蓝宝石上半极性GaN的HVPE生长,在其上可形成半极性面Ⅲ族氮化物外延膜的替代适当衬底包括但不限制于6H或4H的m面SiC、自支撑的m-GaN、LiGaO2和LiAlO2
生长之前,适当的衬底可以以许多不同的方式进行原位或外部处理,或者根本不对其进行处理。
半极性的外延膜可在不同成核层如在各种条件和方法下生长的GaN、AlN或AlGaN上或者在未处理的衬底(bare substrate)上成核并生长。
外延膜可以是任何半极性面的Ⅲ族氮化物材料,包括但不限制于具有各种厚度的GaN、AlN、AlGaN和InGaN。
对于半极性面的Ⅲ族氮化物材料生长所需的生长参数可根据反应器而变化。
最后,可以理解的是,可根据需要省略、增加或重新设置过程步骤。
这种变型不会根本上改变本发明的整体实施。
优点和改进
非极性{1-100}面的GaN生长已经通过HVPE和MBE成功完成,但仅在m面GaN衬底上成功了。然而,本发明通过HVPE第一次成功完成了高质量的平面半极性{11-22}和{10-13}面的GaN生长。
平面半极性GaN的生长,由于其具有大生长窗口稳定性,要优于使用HVPE的平面a-{11-20}GaN的生长。当改变对于AlN(AlGaN)中间层和GaN外延膜的生长变量如温度、V/Ⅲ比、前体流量时,这会显示出来。
为了实现最佳质量的半极性(11-22)GaN层,对于AlN(AlGaN)中间层和GaN层,分别试验了为6-15和15-25的V/Ⅲ比,以及900-1050℃和900-1050℃的温度系列。不同于平面的非极性a面GaN膜,这种条件的变化不会显著影响晶体和表面质量,其中晶体与表面质量对于生长条件的改变极其敏感且受限于小的生长窗口。
与GaN的半极性性质相结合的生长稳定性优点在Ⅲ族氮化物的非极性器件研究中产生了新的可能性。
结论
这是对本发明的优选实施方式的描述的总结。本发明的一个或多个实施方式的上述描述旨在于例示和描述的目的。它并不旨在详尽的或者将本发明限制于公开的精确形式。根据上述的教导,许多修改和变型是可能的,例如对本文描述过程的另外调整,都基本上不偏离本发明的实质。目的在于,本发明的保护范围并不由该详细描述进行限定,而是由本文附加的权利要求书限定。

Claims (2)

1.一种生长平面半极性的氮化镓外延膜的方法,包括: 
提供m面蓝宝石衬底; 
在氨和氯化氢气氛中退火该衬底; 
在超过900℃的温度和V/III比为15-25的情况下,在退火的衬底上生长氮化镓铝(AlGaN)的中间层,和 
在900-1050℃的温度和V/III比低于15的情况下,使用氢化物气相外延(HVPE)在中间层上生长半极性{11-22}或{10-13}面的氮化镓。 
2.根据权利要求1所述的生长平面半极性的氮化镓外延膜的方法,其特征在于中间层是厚度低于100nm的氮化镓铝(AlGaN)层。 
CN200980127776.7A 2008-07-16 2009-07-16 利用氢化物气相外延(HVPE)生长平面非极性的{1-100}m面和半极性的{11-22}氮化镓 Active CN102119243B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US8114508P 2008-07-16 2008-07-16
US61/081145 2008-07-16
US61/081,145 2008-07-16
US12/503,656 2009-07-15
US12/503,656 US8673074B2 (en) 2008-07-16 2009-07-15 Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE)
US12/503656 2009-07-15
PCT/US2009/050867 WO2010009325A2 (en) 2008-07-16 2009-07-16 Growth of planar non-polar {1-1 0 0} m-plane and semi-polar {1 1-2 2} gallium nitride with hydride vapor phase epitaxy (hvpe)

Publications (2)

Publication Number Publication Date
CN102119243A CN102119243A (zh) 2011-07-06
CN102119243B true CN102119243B (zh) 2014-06-25

Family

ID=41529507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980127776.7A Active CN102119243B (zh) 2008-07-16 2009-07-16 利用氢化物气相外延(HVPE)生长平面非极性的{1-100}m面和半极性的{11-22}氮化镓

Country Status (7)

Country Link
US (1) US8673074B2 (zh)
EP (1) EP2313543B1 (zh)
JP (1) JP5526129B2 (zh)
KR (1) KR101650752B1 (zh)
CN (1) CN102119243B (zh)
HK (1) HK1159703A1 (zh)
WO (1) WO2010009325A2 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130364A (ja) * 2007-11-23 2009-06-11 Samsung Electro-Mechanics Co Ltd 窒化物半導体発光素子及びその製造方法
US8629065B2 (en) 2009-11-06 2014-01-14 Ostendo Technologies, Inc. Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
CN101901758B (zh) * 2010-06-24 2012-05-23 西安电子科技大学 基于m面SiC衬底的非极性m面GaN薄膜的MOCVD生长方法
KR101105868B1 (ko) 2010-11-08 2012-01-16 한국광기술원 화학적 리프트 오프 방법을 이용한 ⅰⅰⅰ족 질화물 기판의 제조방법
CN102146585A (zh) * 2011-01-04 2011-08-10 武汉华炬光电有限公司 非极性面GaN外延片及其制备方法
US8778783B2 (en) 2011-05-20 2014-07-15 Applied Materials, Inc. Methods for improved growth of group III nitride buffer layers
US8980002B2 (en) 2011-05-20 2015-03-17 Applied Materials, Inc. Methods for improved growth of group III nitride semiconductor compounds
US8853086B2 (en) 2011-05-20 2014-10-07 Applied Materials, Inc. Methods for pretreatment of group III-nitride depositions
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US10435812B2 (en) 2012-02-17 2019-10-08 Yale University Heterogeneous material integration through guided lateral growth
US8728938B2 (en) 2012-06-13 2014-05-20 Ostendo Technologies, Inc. Method for substrate pretreatment to achieve high-quality III-nitride epitaxy
US8992684B1 (en) 2012-06-15 2015-03-31 Ostendo Technologies, Inc. Epitaxy reactor internal component geometries for the growth of superior quality group III-nitride materials
US9577143B1 (en) 2012-06-15 2017-02-21 Ostendo Technologies, Inc. Backflow reactor liner for protection of growth surfaces and for balancing flow in the growth liner
US9023673B1 (en) * 2012-06-15 2015-05-05 Ostendo Technologies, Inc. Free HCL used during pretreatment and AlGaN growth to control growth layer orientation and inclusions
US9711352B2 (en) 2013-03-15 2017-07-18 Yale University Large-area, laterally-grown epitaxial semiconductor layers
WO2014144993A1 (en) 2013-03-15 2014-09-18 Ostendo Technologies, Inc. Enhanced performance active pixel array and epitaxial growth method for achieving the same
WO2014176283A1 (en) * 2013-04-22 2014-10-30 Ostendo Technologies, Inc. Semi-polar iii-nitride films and materials and method for making the same
KR101539073B1 (ko) * 2013-11-28 2015-07-24 주식회사 루미스탈 반극성 GaN 템플레이트를 제조하기 위한 방법
CN106233429B (zh) * 2014-04-16 2019-06-18 耶鲁大学 获得平坦的半极性氮化镓表面的方法
CN106233471A (zh) 2014-04-16 2016-12-14 耶鲁大学 蓝宝石衬底上的氮‑极性的半极性GaN层和器件
TW201810383A (zh) 2016-08-12 2018-03-16 耶魯大學 通過在生長期間消除氮極性面的生長在異質基板上的無堆疊錯誤的半極性及非極性GaN
US11287563B2 (en) 2016-12-01 2022-03-29 Ostendo Technologies, Inc. Polarized light emission from micro-pixel displays and methods of fabrication thereof
CN106816362B (zh) * 2017-01-12 2019-12-31 西安电子科技大学 基于c面Al2O3图形衬底的AlN薄膜及其制备方法
CN106816363B (zh) * 2017-01-12 2019-12-31 西安电子科技大学 基于m面Al2O3图形衬底的半极性AlN薄膜及其制备方法
CN106856162B (zh) * 2017-01-12 2019-12-31 西安电子科技大学 基于r面Al2O3图形衬底的非极性a面AlN薄膜及其制备方法
JP7039684B2 (ja) * 2017-07-20 2022-03-22 スウェガン、アクチボラグ 高電子移動度トランジスタのためのヘテロ構造及びその製造方法
JP6894825B2 (ja) * 2017-10-27 2021-06-30 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
CN109285922A (zh) * 2018-09-09 2019-01-29 复旦大学 一种双波段长波长发光铟镓氮量子阱外延片及其制备方法
US20220090294A1 (en) * 2019-01-17 2022-03-24 Collaborative Research In Engineering, Science And Technology Center Method for growing a semi-polar gallium nitride epitaxial layer using aluminum nitride / gallium nitride superlattices
CN109881157B (zh) * 2019-03-19 2020-12-22 南京航空航天大学 一种周期性调控二氧化钒薄膜相变性质的方法
CN114134572B (zh) * 2021-11-12 2024-06-21 中国电子科技集团公司第四十六研究所 一种hvpe法生长氮化铝的辅助加热体装置及方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440823B1 (en) * 1994-01-27 2002-08-27 Advanced Technology Materials, Inc. Low defect density (Ga, Al, In)N and HVPE process for making same
US5679152A (en) * 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
US6072197A (en) * 1996-02-23 2000-06-06 Fujitsu Limited Semiconductor light emitting device with an active layer made of semiconductor having uniaxial anisotropy
US5923950A (en) * 1996-06-14 1999-07-13 Matsushita Electric Industrial Co., Inc. Method of manufacturing a semiconductor light-emitting device
WO1998039827A1 (fr) 1997-03-07 1998-09-11 Sharp Kabushiki Kaisha Element electroluminescent semi-conducteur a base de nitrure de gallium muni d'une zone active presentant une structure de multiplexage a puits quantique et un dispostif semi-conducteur a sources de lumiere utilisant le laser
ATE550461T1 (de) * 1997-04-11 2012-04-15 Nichia Corp Wachstumsmethode für einen nitrid-halbleiter
US6069021A (en) * 1997-05-14 2000-05-30 Showa Denko K.K. Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
JP3813740B2 (ja) * 1997-07-11 2006-08-23 Tdk株式会社 電子デバイス用基板
US6201262B1 (en) * 1997-10-07 2001-03-13 Cree, Inc. Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure
US6218269B1 (en) * 1997-11-18 2001-04-17 Technology And Devices International, Inc. Process for producing III-V nitride pn junctions and p-i-n junctions
US6890809B2 (en) * 1997-11-18 2005-05-10 Technologies And Deviles International, Inc. Method for fabricating a P-N heterojunction device utilizing HVPE grown III-V compound layers and resultant device
US6064078A (en) * 1998-05-22 2000-05-16 Xerox Corporation Formation of group III-V nitride films on sapphire substrates with reduced dislocation densities
JP3946427B2 (ja) 2000-03-29 2007-07-18 株式会社東芝 エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法
JP3968968B2 (ja) * 2000-07-10 2007-08-29 住友電気工業株式会社 単結晶GaN基板の製造方法
US6649287B2 (en) * 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
US6656272B2 (en) * 2001-03-30 2003-12-02 Technologies And Devices International, Inc. Method of epitaxially growing submicron group III nitride layers utilizing HVPE
US6613143B1 (en) * 2001-07-06 2003-09-02 Technologies And Devices International, Inc. Method for fabricating bulk GaN single crystals
US6616757B1 (en) * 2001-07-06 2003-09-09 Technologies And Devices International, Inc. Method for achieving low defect density GaN single crystal boules
US7501023B2 (en) * 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US6936357B2 (en) * 2001-07-06 2005-08-30 Technologies And Devices International, Inc. Bulk GaN and ALGaN single crystals
JP4383172B2 (ja) * 2001-10-26 2009-12-16 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン 窒化物バルク単結晶層を用いる発光素子構造及びその製造方法
CA2464083C (en) * 2001-10-26 2011-08-02 Ammono Sp. Z O.O. Substrate for epitaxy
WO2003089694A1 (en) 2002-04-15 2003-10-30 The Regents Of The University Of California NON-POLAR (A1,B,In,Ga) QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES
US7208393B2 (en) * 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US20060138431A1 (en) * 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
JP4201541B2 (ja) 2002-07-19 2008-12-24 豊田合成株式会社 半導体結晶の製造方法及びiii族窒化物系化合物半導体発光素子の製造方法
US7427555B2 (en) * 2002-12-16 2008-09-23 The Regents Of The University Of California Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
KR101086155B1 (ko) * 2002-12-16 2011-11-25 독립행정법인 과학기술진흥기구 수소화합물 기상 성장법에 의한 평면, 비극성 질화 갈륨의 성장
US7808011B2 (en) * 2004-03-19 2010-10-05 Koninklijke Philips Electronics N.V. Semiconductor light emitting devices including in-plane light emitting layers
US7846757B2 (en) * 2005-06-01 2010-12-07 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,A1,In,B)N thin films, heterostructures, and devices
DE202004016475U1 (de) * 2004-10-22 2005-01-05 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Nutfolger für eine Schallwalze eines Stufengetriebes
KR101145753B1 (ko) * 2005-03-10 2012-05-16 재팬 사이언스 앤드 테크놀로지 에이젼시 평면의 반극성 갈륨 질화물의 성장을 위한 기술
TWI377602B (en) * 2005-05-31 2012-11-21 Japan Science & Tech Agency Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd)
TW200703463A (en) 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US8148244B2 (en) * 2005-07-13 2012-04-03 The Regents Of The University Of California Lateral growth method for defect reduction of semipolar nitride films
KR101347848B1 (ko) * 2005-09-09 2014-01-06 재팬 사이언스 앤드 테크놀로지 에이젼시 유기금속 화학기상증착법을 통한 반극성(Al,In,Ga,B)N의 성장강화방법
KR20080098039A (ko) * 2006-01-20 2008-11-06 더 리전츠 오브 더 유니버시티 오브 캘리포니아 금속유기 화학 기상 증착을 통한 준극성 (Al,In,Ga,B)N의 성장을 향상시키기 위한 방법
JP5896442B2 (ja) * 2006-01-20 2016-03-30 国立研究開発法人科学技術振興機構 Iii族窒化物膜の成長方法
EP1984545A4 (en) * 2006-02-17 2013-05-15 Univ California PROCESS FOR THE PRODUCTION OF N-TYPE SEMIPOLAR OPTOELECTRONIC DEVICES (AL, IN, GA, B)
US7727333B1 (en) * 2006-03-27 2010-06-01 Technologies And Devices International, Inc. HVPE apparatus and methods for growth of indium containing materials and materials and structures grown thereby
JP5332168B2 (ja) 2006-11-17 2013-11-06 住友電気工業株式会社 Iii族窒化物結晶の製造方法
JP4462289B2 (ja) * 2007-05-18 2010-05-12 ソニー株式会社 半導体層の成長方法および半導体発光素子の製造方法
JP4935700B2 (ja) * 2008-02-01 2012-05-23 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法、ウエハ、iii族窒化物系化合物半導体素子

Also Published As

Publication number Publication date
KR20110043669A (ko) 2011-04-27
US20100012948A1 (en) 2010-01-21
WO2010009325A2 (en) 2010-01-21
CN102119243A (zh) 2011-07-06
KR101650752B1 (ko) 2016-08-24
US8673074B2 (en) 2014-03-18
JP5526129B2 (ja) 2014-06-18
WO2010009325A3 (en) 2010-03-11
EP2313543A2 (en) 2011-04-27
JP2011528318A (ja) 2011-11-17
EP2313543B1 (en) 2013-05-29
HK1159703A1 (zh) 2012-08-03

Similar Documents

Publication Publication Date Title
CN102119243B (zh) 利用氢化物气相外延(HVPE)生长平面非极性的{1-100}m面和半极性的{11-22}氮化镓
US7338828B2 (en) Growth of planar non-polar {1 -1 0 0} m-plane gallium nitride with metalorganic chemical vapor deposition (MOCVD)
EP1593760B1 (en) Method for preparing non-polar single crystalline A-plane nitride semiconductor wafer
US8629065B2 (en) Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
US20060189020A1 (en) Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
US20120091467A1 (en) IN-SITU DEFECT REDUCTION TECHNIQUES FOR NONPOLAR AND SEMIPOLAR (Al, Ga, In)N
US20100029064A1 (en) Group iii-nitrides on si substrates using a nanostructured interlayer
JP7013070B2 (ja) シリコン基板上のErAINバッファ上に成長したIII-N材料
JP2002274997A (ja) GaN系化合物半導体結晶の製造方法
US8552533B2 (en) Compound semiconductor substrate and method for manufacturing the same
WO2022215670A1 (ja) 積層膜構造体及びその製造方法
WO2015043961A1 (en) A semiconductor wafer and a method for producing the semiconductor wafer
JP2022054987A (ja) 窒化物半導体積層体の製造方法および窒化物半導体積層体
WO2010008037A1 (ja) AlGaNバルク結晶の製造方法およびAlGaN基板の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1159703

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1159703

Country of ref document: HK