CN106816363B - 基于m面Al2O3图形衬底的半极性AlN薄膜及其制备方法 - Google Patents

基于m面Al2O3图形衬底的半极性AlN薄膜及其制备方法 Download PDF

Info

Publication number
CN106816363B
CN106816363B CN201710021593.3A CN201710021593A CN106816363B CN 106816363 B CN106816363 B CN 106816363B CN 201710021593 A CN201710021593 A CN 201710021593A CN 106816363 B CN106816363 B CN 106816363B
Authority
CN
China
Prior art keywords
substrate
layer
aln
thickness
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710021593.3A
Other languages
English (en)
Other versions
CN106816363A (zh
Inventor
许晟瑞
赵颖
范晓萌
李培咸
牛牧童
张进成
林志宇
姜腾
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Electronic Science and Technology
Original Assignee
Xian University of Electronic Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Electronic Science and Technology filed Critical Xian University of Electronic Science and Technology
Priority to CN201710021593.3A priority Critical patent/CN106816363B/zh
Publication of CN106816363A publication Critical patent/CN106816363A/zh
Application granted granted Critical
Publication of CN106816363B publication Critical patent/CN106816363B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种基于m面Al2O3衬底的半极性AlN薄膜及制备方法,主要解决现有技术工艺复杂,制作周期长和费用昂贵的问题。该薄膜自下而上包括:200‑500μm厚的m面Al2O3衬底层、20‑100nm厚的AlN成核层、1000‑3000nm厚的Al组分渐变AlGaN层和500‑1000nm厚的半极性AlN层,其中m面Al2O3衬底层的表面设有通过金刚石砂纸打磨形成的锯齿条纹,Al组分渐变AlGaN层的Al组分从0.01渐变至1,本发明减小应力,简化图形衬底制作的工艺流程,缩短制作周期和减小费用成本,提高了AlN材料的质量,可用于制作半极性AlN基的紫外和深紫外半导体器件。

Description

基于m面Al2O3图形衬底的半极性AlN薄膜及其制备方法
技术领域
本发明属于微电子技术领域,特别涉及一种半极性AlN薄膜的制备方法,可用于制作半极性AlN基的紫外和深紫外半导体器件。
技术背景
Ⅲ-Ⅴ族氮化物半导体材料,如AlN基、GaN基、InN基等半导体材料,它们的禁带宽度往往差异较大,比如AlN为6.2eV、GaN为3.42eV、InN为0.7eV,因此人们通常利用这些Ⅲ-Ⅴ族化合物半导体材料形成各种异质结结构。特别是InGaN材料体系在蓝光LED上取得了巨大的成功,2014年赤崎勇、天野昊和中村修二因为在蓝光LED方面的巨大贡献而获得了诺贝尔物理学奖。此外,AlGaN体系的材料由于禁带宽度很大,发光波长很小,如果调节Ga和Al的比例,可以使发光波长覆盖到紫外和深紫外,由于这种特点,目前AlN相关的材料及器件是目前的研究热点。常规AlN材料主要是在极性c面Al2O3生长的,主要是利用其AlGaN/AlN异质结界面处的高密度和高电子迁移率的二维电子气来实现高电子迁移率晶体管。这种二维电子气是由于异质结中较大的导带不连续性以及较强的极化效应产生的,这种极化效应会导致量子限制斯塔克效应,在光电器件中有较大危害大。由于在半极性AlN材料中这种极化效应较弱,因此在半极性面上制作LED有较为广阔的前景。AlN目前主要是在蓝宝石衬底上异质外延得到的。但是在常规蓝宝石衬底上制备的半极性AlN材料的结晶质量很差。
为了减少缺陷,在Al2O3衬底上长高质量的AlN外延层,对此,许多研究者采用了不同的方法对Al2O3衬底进行处理,其效果也比较明显。参见Microstructural analysis ofan epitaxial AlN thick film trench-patterned template by three-dimensionalreciprocal lattice space mapping technique, Applied physics Express, 9,111001(2016) 和MOCVD growth of semi-polar AlxGa1-xN on m-plane sapphire forapplications in deep-ultraviolet light emitters,Physical Status Solidi A 208,12, 2724–2729(2011)。但是这些工艺较为复杂,因此制作周期很长且费用昂贵。
发明内容
本发明的目的在于克服上述已有技术的不足,提供一种无需进行光刻的基于m面Al2O3图形衬底制备半极性AlN薄膜的方法,用来减小应力,简化工艺,缩短制作周期和减小费用成本。
为实现上述目的,本发明基于m面Al2O3图形衬底的半极性AlN薄膜,自下而上包括如下:m面Al2O3衬底层、AlN成核层、Al组分的渐变AlGaN层和半极性AlN 层,其特征在于:
m面Al2O3衬底层的表面设有通过金刚石砂纸打磨形成的衬底条纹,用来提高AlN材料的质量,
AlGaN层采用Al组分从0.01渐变至1的渐变AlGaN层,用以降低AlN材料的应力。
进一步,所述的AlN成核层厚度为20-100nm。
进一步,所述的Al组分渐变AlGaN层厚度为1000-3000nm。
进一步,所述的半极性AlN层厚度为500-1000nm。
为实现上述目的,本发明基于m面Al2O3图形衬底的半极性AlN薄膜的制备方法,包括如下步骤:
(1)衬底打磨
将m面Al2O3衬底水平放置,将金刚石砂纸放置在衬底表面,在金刚石砂纸上施加1-20牛顿的力对m面Al2O3衬底进行平行打磨,打磨出平行于Al2O3衬底基准边的条纹图案或垂直于Al2O3衬底基准边的锯齿状条纹图案;
(2)衬底清洗
将打磨后的m面Al2O3衬底先放入HF酸或HCl酸中超声波清洗1-20min,然后放入丙酮溶液中超声波清洗1-20min,再使用无水乙醇溶液超声清洗1-20min,再用去离子水超声清洗1-20min,最后用氮气吹干;
(3)热处理
将清洗后的m面Al2O3衬底置于金属有机物化学气相淀积MOCVD反应室中,抽真空使反应室的压力小于2×10-2Torr;接着向反应室通入氢气与氨气的混合气体,在 MOCVD反应室压力达到为30-750Torr条件下,将衬底加热到温度为890-1100℃,并保持1-20min,完成对衬底基片的热处理;
(4)外延半极性AlN层
(4a)在热处理后的m面Al2O3衬底上生长采用金属有机物化学气相淀积MOCVD 工艺生长厚度为20-100nm的AlN成核层;
(4b)在AlN成核层之上采用MOCVD工艺在反应室压力为30-750Torr,温度为 900-1050℃的条件下,通过不断改变铝源流量和镓源流量使得Al组分从0.01渐变至 1,生长出厚度为1000-3000nm的Al组分渐变AlGaN层;
(4c)在渐变Al组分的AlGaN层之上,采用MOCVD工艺生长厚度为500-1000nm 的半极性AlN层。
本发明具有如下优点:
1.本发明由于采用金刚石砂纸在m面Al2O3衬底上打磨出平行基准边方向或垂直基准边方向的条纹图案来制备图形衬底,使得在提高材料质量的同时简化了工艺流程,缩短了制作周期并且大大节约了成本。
2.本发明由于采用了Al组分渐变AlGaN层,大大降低了材料应力。
本发明的技术方案可通过以下附图和实施例进一步说明。
附图说明
图1是本发明的半极性AlN薄膜剖面示意图;
图2是图1中由金刚石砂纸打磨出的m面Al2O3图形衬底剖面图;
图3是本发明制作半极性AlN薄膜的流程图。
具体实施方式
以下结合附图对本发明作进一步详细描述:
参照图1,本发明的半极性AlN薄膜,包括:m面Al2O3衬底层、AlN成核层、 Al组分渐变AlGaN层和半极性AlN层。
所述m面Al2O3衬底层,其表面设有通过金刚石砂纸打磨形成的锯齿状衬底条纹,如图2所示,该衬底条纹为平行于Al2O3衬底基准边或垂直于Al2O3衬底基准边的条形图案,用于以提高AlN材料的质量;
所述AlN成核层,位于在m面Al2O3衬底层之上,其厚度为20-100nm;
所述Al组分渐变AlGaN层:位于AlN成核层之上,其采用从Al组分由0.01 渐变至1,用以降低材料的应力,该Al组分渐变AlGaN层厚度为1000-3000nm;
所述半极性AlN层,位于Al组分渐变AlGaN层之上,其厚度为500-1000nm。
参照图3,本发明给出制备半极性AlN薄膜的三种实施例。
实施例1,制备AlN成核层厚度为60nm,渐变AlGaN层厚度为1500nm和半极性AlN层厚度为800nm的基于m面Al2O3图形衬底的半极性AlN薄膜。
步骤1,对m面Al2O3衬底进行磨制。
将m面Al2O3衬底水平放置,将颗粒直径为7μm的金刚石砂纸放置在衬底表面,在金刚石砂纸上施加10N的力,使砂纸平行于Al2O3衬底的基准边打磨衬底,在Al2O3衬底上磨出锯齿形条纹图案,如图2所示。
步骤2,对磨制好的Al2O3衬底进行清洗。
将磨制好的m面Al2O3衬底先放入HF酸中超声波清洗10min,然后在放入丙酮溶液中超声波清洗10min,接下来使用无水乙醇溶液同样超声清洗10min,最后再用去离子水超声清洗10min,再用氮气吹干。
步骤3,对衬底基片进行热处理。
将m面Al2O3衬底置于金属有机物化学气相淀积MOCVD反应室中,先抽真空将反应室的压力降低到小于2×10-2Torr,接着向反应室通入氢气与氨气的混合气体,使反应室压力为40Torr,再将衬底加热到1000℃持续10min。
步骤4,生长60nm厚的AlN成核层。
将热处理后的衬底温度降低为950℃,向反应室同时通入氢气、铝源和氨气,其流量分别为为1100sccm、20μmol/min和4000sccm,在保持压力为40Torr的条件下生长厚度为60nm的AlN成核层。
步骤5,在AlN成核层上生长1500nm厚的Al组分渐变AlGaN层。
将已经生长了AlN成核层的衬底温度升高为970℃,调节铝源和镓源的流量使 Al组分从0.01逐渐提高到1,在AlN成核层上生长厚度为1500nm的Al组分渐变 AlGaN层。
步骤6,生长900nm厚的半极性AlN层。
将已经生长了Al组分渐变AlGaN层的衬底温度保持在970℃,同时向反应室通入流量为40μmol/min的铝源、流量为1100sccm氢气和流量为4500sccm的氨气,在保持压力为40Torr的条件下生长厚度为900nm的半极性AlN层。
步骤7,将通过上述过程生长的半极性AlN材料从MOCVD反应室中取出,完成半极性AlN薄膜的制备。
实施例2,制备AlN成核层厚度为20nm,Al组分渐变AlGaN层厚度为1000nm 和半极性AlN层厚度为500nm的基于m面Al2O3图形衬底的半极性AlN薄膜。
步骤一,对m面Al2O3衬底进行磨制。
将m面Al2O3衬底水平放置,将颗粒直径为1μm的金石刚砂纸放置在衬底表面,在金刚石砂纸上施加1N的力使砂纸垂直于Al2O3衬底的基准边打磨衬底,在Al2O3衬底上磨出条纹图案,如图2所示。
步骤二,对磨制好的Al2O3衬底进行清洗。
将磨制好的Al2O3衬底先放入HF酸中超声波清洗1min,然后放入丙酮溶液中超声波清洗1min,接下来使用无水乙醇溶液同样超声清洗1min,最后再用去离子水超声清洗1min,再用氮气吹干。
步骤三,对衬底基片进行热处理。
将m面Al2O3衬底置于金属有机物化学气相淀积MOCVD反应室中,先抽真空将反应室的压力降低到小于2×10-2Torr,然后向反应室通入氢气与氨气的混合气体,使反应室压力为30Torr,将衬底加热到890℃,对衬底基片进行5min的热处理。
步骤四,生长20nm厚的AlN成核层。
将热处理后的衬底温度升高为920℃,向反应室同时通入流量为15μmol/min的铝源、流量为1100sccm氢气和流量为3500sccm的氨气,在保持压力为30Torr的条件下,生长厚度为20nm的AlN成核层。
步骤五,在AlN成核层上生长1000nm厚的Al组分渐变AlGaN层。
将已经生长了AlN成核层的基片温度降低为900℃,调节铝源和镓源的流量,生长Al组分从0.01逐渐提高到1,且厚度为1000nm的Al组分渐变AlGaN层。
步骤六,生长500nm厚的半极性AlN层。
将已经生长了渐变AlGaN层的基片温度保持在900℃,向反应室同时通入流量为20μmol/min的铝源、流量为1100sccm氢气和流量为2500sccm的氨气,在保持压力为 30Torr的条件下,生长厚度为500nm的半极性AlN层。
步骤七,将通过上述过程生长的半极性AlN材料从MOCVD反应室中取出,完成半极性AlN薄膜的制备。
实施例3,制备AlN成核层厚度为100nm,渐变AlGaN层厚度为3000nm和半极性AlN层厚度为1000nm的基于m面Al2O3图形衬底的半极性AlN薄膜。
步骤A,将m面Al2O3衬底水平放置,将颗粒直径为15μm的金刚石砂纸放置在衬底表面,在金刚石砂纸上施加20N的力使砂纸平行于Al2O3衬底的基准边打磨衬底,在Al2O3衬底上磨出锯齿状条纹图案,如图2所示。
步骤B,将磨制好的Al2O3衬底先放入HF酸中超声波清洗20min,然后在放入丙酮溶液中超声波清洗20min,接下来使用无水乙醇溶液同样超声清洗20min,最后再用去离子水超声清洗20min,再用氮气吹干。
步骤C,将m面Al2O3衬底置于金属有机物化学气相淀积MOCVD反应室中,先抽真空将反应室的压力降低到小于2×10-2Torr,然后向反应室通入氢气与氨气的混合气体,使反应室压力为750Torr,将衬底加热到1100℃,对衬底基片进行20min的热处理。
步骤D,将热处理后的衬底基片温度降低为1010℃,向反应室同时通入流量为 30μmol/min的铝源、流量为1100sccm氢气和流量为4500sccm的氨气,在保持压力为 750Torr的条件下,生长厚度为100nm的AlN成核层。
步骤E,将已经生长了AlN成核层的基片温度升高到1050℃,调节铝源和镓源的流量,生长Al组分从0.01逐渐提高到1,且厚度为3000nm的Al组分渐变AlGaN层。
步骤F,将已经生长了Al组分渐变AlGaN层的衬底温度保持在1050℃,向反应室同时通入流量为110μmol/min的铝源、流量为1100sccm氢气和流量为5500sccm的氨气,在保持压力为750Torr的条件下,生长厚度为1000nm的半极性AlN层。
步骤G,将通过上述过程生长的半极性AlN材料从MOCVD反应室中取出,完成半极性AlN薄膜的制备。
以上描述仅是本发明的三个具体实例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明的原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (8)

1.一种基于m面Al2O3衬底的半极性AlN薄膜,自下而上包括:m面Al2O3衬底层、AlN成核层、AlGaN层和半极性AlN层,其特征在于:该m面Al2O3衬底层的表面设有锯齿形条纹,AlGaN层采用Al组分从0.01渐变至1的渐变AlGaN层。
2.根据权利要求1所述的薄膜,其特征在于:AlN成核层的厚度为20-100nm。
3.根据权利要求1所述的薄膜,其特征在于:Al组分渐变AlGaN层的厚度为1000-3000nm。
4.根据权利要求1所述的薄膜,其特征在于:半极性AlN层的厚度为500-1000nm。
5.一种基于m面Al2O3图形衬底的半极性AlN薄膜制备方法,包括如下步骤:
(1)衬底打磨
将m面Al2O3衬底水平放置,将金刚石砂纸放置在衬底表面,在金刚石砂纸上施加1-20牛顿的力对m面Al2O3衬底进行平行打磨,打磨出平行于Al2O3衬底基准边或垂直于Al2O3衬底基准边的锯齿状条纹图案;
(2)衬底清洗
将打磨后的m面Al2O3衬底先放入HF酸或HCl酸中超声波清洗1-20min,然后放入丙酮溶液中超声波清洗1-20min,再使用无水乙醇溶液超声清洗1-20min,再用去离子水超声清洗1-20min,最后用氮气吹干;
(3)衬底热处理
将清洗后的m面Al2O3衬底置于金属有机物化学气相淀积MOCVD反应室中,然后开始抽真空使反应室的压力小于2×10-2Torr;接着向反应室通入氢气与氨气的混合气体,在MOCVD反应室压力达到为30-750Torr条件下,将衬底加热到温度为890-1100℃,并保持1-20min,完成对衬底基片的热处理;
(4)外延半极性AlN层
(4a)在热处理后的m面Al2O3衬底上采用金属有机物化学气相淀积MOCVD工艺生长厚度为20-100nm的AlN成核层;
(4b)在AlN成核层之上采用MOCVD工艺在反应室压力为30-750Torr,温度为900-1050℃的条件下,通过不断改变铝源流量和镓源流量使得Al组分从0.01渐变至1,生长出厚度为1000-3000nm的Al组分渐变AlGaN层;
(4c)在渐变Al组分的AlGaN层之上,采用MOCVD工艺生长厚度为500-1000nm的半极性AlN层。
6.根据权利要求5所述的方法,其中步骤(1)的金刚石砂纸,采用颗粒直径为1-15μm的砂纸。
7.根据权利要求5所述的方法,其中步骤(4a)中采用MOCVD工艺生长AlN成核层的工艺条件如下:
反应室压力为30-750Torr,
温度为920-1010℃,
铝源流量为15-45μmol/min,
氢气流量为1100sccm,
氨气流量为3500-4500sccm。
8.根据权利要求5所述的方法,其中步骤(4c)采用MOCVD工艺生长半极性AlN层的工艺条件如下:
反应室压力为30-750Torr,
温度为900-1050℃,
铝源流量为20-110μmol/min,
氨气流量为2500-5500sccm。
CN201710021593.3A 2017-01-12 2017-01-12 基于m面Al2O3图形衬底的半极性AlN薄膜及其制备方法 Active CN106816363B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710021593.3A CN106816363B (zh) 2017-01-12 2017-01-12 基于m面Al2O3图形衬底的半极性AlN薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710021593.3A CN106816363B (zh) 2017-01-12 2017-01-12 基于m面Al2O3图形衬底的半极性AlN薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106816363A CN106816363A (zh) 2017-06-09
CN106816363B true CN106816363B (zh) 2019-12-31

Family

ID=59109778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710021593.3A Active CN106816363B (zh) 2017-01-12 2017-01-12 基于m面Al2O3图形衬底的半极性AlN薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106816363B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129111A (zh) * 2019-12-10 2020-05-08 深圳市汇芯通信技术有限公司 半导体器件及其制作方法和集成电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673074B2 (en) * 2008-07-16 2014-03-18 Ostendo Technologies, Inc. Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE)
US7973997B2 (en) * 2009-08-31 2011-07-05 Korea University Research And Business Foundation Transparent structures
CN101847578B (zh) * 2010-04-23 2011-09-21 西安电子科技大学 基于m面Al2O3衬底上半极性GaN的生长方法
WO2014026292A1 (en) * 2012-08-15 2014-02-20 Mcmaster University Arbitrarily thin ultra smooth film with built-in separation ability and method of forming the same
CN103117209B (zh) * 2013-02-01 2015-05-13 中山大学 一种渐变AlGaN层的制备方法及采用该方法得到的器件

Also Published As

Publication number Publication date
CN106816363A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
CN104037287B (zh) 生长在Si衬底上的LED外延片及其制备方法
CN100587919C (zh) 用于氮化物外延生长的纳米级图形衬底的制作方法
US10128107B1 (en) Wafers having III-Nitride and diamond layers
CN109103303B (zh) 一种发光二极管外延片的制备方法及发光二极管外延片
CN109545933B (zh) 一种非极性图形化AlN/蓝宝石复合衬底及其制备方法
CN108321280A (zh) 一种非极性紫外led及其制备方法
CN103730545A (zh) 一种AlGaN基垂直结构深紫外LED的制造方法
WO2019178916A1 (zh) 一种二维AlN材料及其制备方法与应用
CN112599648B (zh) 基于h-BN的V型隧穿结LED外延结构及其制备方法
CN105590839A (zh) 氮化物底层、发光二极管及底层制备方法
JP4996448B2 (ja) 半導体基板の作成方法
KR102018449B1 (ko) 단결정 ⅲa족 나이트라이드 층을 포함하는 반도체 웨이퍼
JP5931737B2 (ja) 光学素子の製造方法
CN115101639A (zh) InGaN基光电子器件的复合衬底及其制备方法和应用
CN106816363B (zh) 基于m面Al2O3图形衬底的半极性AlN薄膜及其制备方法
CN106816362B (zh) 基于c面Al2O3图形衬底的AlN薄膜及其制备方法
CN106856162B (zh) 基于r面Al2O3图形衬底的非极性a面AlN薄膜及其制备方法
CN106816504B (zh) 基于m面SiC衬底的半极性AlN薄膜及其制备方法
CN106784228B (zh) 基于r面SiC图形衬底的非极性a面AlN薄膜及其制备方法
CN103053013A (zh) 半导体层叠基板、半导体芯片和半导体层叠基板的制造方法
WO2009119159A1 (ja) 光デバイス用基板及びその製造方法
JP3772816B2 (ja) 窒化ガリウム結晶基板、その製造方法、窒化ガリウム系半導体素子および発光ダイオード
CN106784227B (zh) 基于c面SiC图形衬底的极性c面AlN薄膜及其制备方法
CN213150800U (zh) 一种具有纳米夹层的氮化铝成核层结构
CN103794694A (zh) 具有拉伸应变的硅基锗薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant