CN102099862B - 门电平可重配置的磁性逻辑 - Google Patents

门电平可重配置的磁性逻辑 Download PDF

Info

Publication number
CN102099862B
CN102099862B CN200980128470.3A CN200980128470A CN102099862B CN 102099862 B CN102099862 B CN 102099862B CN 200980128470 A CN200980128470 A CN 200980128470A CN 102099862 B CN102099862 B CN 102099862B
Authority
CN
China
Prior art keywords
resistance
volatile
logic
signal
reconfigurable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980128470.3A
Other languages
English (en)
Other versions
CN102099862A (zh
Inventor
刘·G·蔡-奥安
朱晓春
朱志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN102099862A publication Critical patent/CN102099862A/zh
Application granted granted Critical
Publication of CN102099862B publication Critical patent/CN102099862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17748Structural details of configuration resources
    • H03K19/1776Structural details of configuration resources for memories
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/18Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using galvano-magnetic devices, e.g. Hall-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)
  • Logic Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种可再编程门逻辑(400)包括并联的多个非易失性可重配置的基于电阻状态的存储器电路(I),其中所述电路可重配置以实施或改变选定门逻辑,且所述多个非易失性可重配置的基于电阻状态的存储器电路每一者适于接收逻辑输入信号(A、B)。与所述多个并联非易失性可重配置的基于电阻状态的存储器电路串联的评估开关(418)经配置以基于所述存储器电路的编程状态而提供输出信号(420)。传感器(430)经配置以接收所述输出信号,且基于所述输出信号和提供到所述传感器的参考信号而提供逻辑输出信号。可基于将自旋力矩转移(STT)磁性隧道结(MTJ)磁阻随机存取存储器(MRAM)用作可再编程存储器元件来实施可重配置逻辑。逻辑配置在无电力的情况下得以保持。

Description

门电平可重配置的磁性逻辑
技术领域
本发明涉及可编程逻辑,且更具体来说涉及使用自旋转移力矩磁阻随机存取存储器(STT MRAM)的可再编程逻辑。
背景技术
可编程逻辑阵列(PLA)为用以实施组合逻辑电路的可编程装置。所述PLA具有一组可编程“与”平面,所述组可编程“与”平面链接到一组可编程“或”平面,可接着有条件地对所述“或”平面求反以产生输出。此布局允许合成大量逻辑功能,包括“异或”或更复杂的组合功能。在制造期间以与ROM相同的方式对许多PLA进行掩模编程。此情形对于嵌入在较复杂和众多集成电路(例如,微处理器)中的PLA尤其适用。可在制造后经编程的PLA称为FPLA(现场可编程PLA)或FPGA(现场可编程门阵列)。在制造了FPGA之后,FPGA互连件仅可由消费者或设计者编程(即,“预烧”)一次以实施任何逻辑功能-因此称为“现场可编程”。FPGA通常进行较缓慢且与其专用集成电路(ASIC)对等物相比可能汲取(draw)较多电力。
对于FPGA,存在芯片空间的专用于额外开销或未使用的相当大的部分。举例来说,为了适应需要“与”门逻辑和“或”门逻辑的特定选择或混合的特定应用,所述两者必须可用于一般芯片中,且仅所述应用所需要的那些组件为有线的,或在编程时间经“预烧”。
磁阻随机存取存储器(MRAM)为基于夹在两个磁性层之间的氧化物的穿隧电阻的存储器元件。当所述两个层中的磁化平行时,穿隧电阻为“低”,且此称作状态0。当所述两个层中的磁化反平行时,穿隧电阻为“高”,且此称作状态1。在MRAM中,一个层在装置寿命期间为固定的,且另一层为“自由”层,所述“自由”层可通过可寻址写入线改变以产生能够重新对准或“翻转”极化方向的磁场。状态0或状态1可通过用分压器电路相对于已知参考电阻测量MRAM的电阻而确定。尽管所述MRAM可重新写入,但其状态为非易失性的,且因此不需要持续电力。
然而,MRAM存储器需要切换与电池供电的便携式装置不兼容的功率电平,且无法如越来越高的装置间距密度的情况下当前所需进行良好缩放。
目前,不存在在依赖于非易失性磁性存储器类型元件的单元的固定拓扑配置内提供可再编程逻辑的逻辑电路。基于前文,所属领域的技术人员将了解,需要提供可针对较高装置间距密度缩放的非易失性且可重配置(即,可再编程)的逻辑的系统。
发明内容
揭示一种可再编程逻辑装置及其形成方法,其基于使用自旋力矩转移(STT)MRAM元件来实施逻辑功能。STT MRAM用以替代常规FPGA或PLA装置来实施例如“或”门、“与”门、“非或”门和“与非”门函数等逻辑。所述逻辑的配置可通过在无需改变拓扑的情况下再编程STT MRAM元件的状态来改变以提供不同组的逻辑操作。此外,当断电时保持所述逻辑配置,且当通电时在同一配置中恢复。
STT MRAM元件为一结,其包含磁性膜、氧化物膜和磁性膜的夹层,所述夹层类似于常规MRAM呈椭圆状结构,但可缩放到更小尺寸。与常规MRAM类似,STT MRAM具有磁性膜的固定层和自由(可写入编程)层。所述自由层借助于直接通过所述结的写入电流的电子自旋极化的自旋力矩转移来编程,而非通过由外部电流诱发的磁场来编程。STT MRAM优于常规MRAM的另一优点由较小尺寸的装置中所需要的较低写入电流提供,同时实现通过结的较高电流密度,从而使写入编程步骤更有效且更可靠地产生所要状态(“1”或“0”)。
尽管关于磁性随机存取存储器(且更特定来说为自旋力矩转移磁阻隧道结磁性随机存取存储器)描述本文中所呈现的实施例,但可预期所描述的特征也被应用于包括以下各项的此类装置:相变随机存取存储器(PCRAM)、基于电阻的随机存取存储器(R-RAM),或可以非易失性方式存储基于电阻的电可编程存储器状态的任何装置(即,在无持续电力的情况下,其可通过电效应、磁效应、电磁(例如,光学)效应或此类物理效应的组合再编程到多个状态)。
前文已颇为广泛地概述了本发明的特征和技术优点,以便可更好地理解以下的本发明的具体实施方式。下文将描述形成本发明的权利要求书的主题的本发明的额外特征和优点。所属领域的技术人员应了解,所揭示的概念和特定实施例可易于用作修改或设计用于实行本发明的相同目的的其它结构的基础。所属领域的技术人员还应认识到,此类等效构造并不背离在所附权利要求书中所阐述的本发明的精神和范围。当结合附图考虑时,从以下描述将更好地理解据信为本发明所特有的新颖特征(关于其组织和操作方法两者)以及其它目的和优点。然而,应明确地理解,仅出于说明和描述的目的而提供各图中的每一者,且并不希望将其作为本发明的限制的定义。
附图说明
为了获得对本发明的更完整理解,现结合附图来参看以下描述,附图中:
图1展示其中可有利地使用本发明的实施例的示范性无线通信系统;
图2A展示处于平行磁化低电阻状态的常规磁性隧道结MTJ的基本元件;
图2B展示处于反平行磁化高电阻状态的常规磁性隧道结MTJ的基本元件;
图3A展示根据本发明的一实施例的处于1-晶体管/1-MTJ(1-T/1-MTJ)配置中的STTMTJ MRAM单元;
图3B说明根据图3A的架构的用于针对低电阻平行极化状态而编程MTJ的示范性电路配置;
图3C说明根据图3A的架构的用于针对高电阻反平行极化状态而编程MTJ的示范性电路配置;
图4A为根据本发明的一实施例的使用四个STT MTJ单元的四输入逻辑电路的实例;
图4B为图4A的示范性逻辑电路的等效电路;
图5A为针对图3到图4的四个STT MTJ单元设定的示范性[1,0,1,0]状态的电压输出;
图5B为针对图3到图4的四个STT MTJ单元设定的示范性[0,1,0,1]状态的电压输出;
图7为根据本发明的一实施例的以可编程方式配置门逻辑的方法的流程图。
图8为根据本发明的一实施例的操作可重配置门逻辑的方法的流程图。
具体实施方式
揭示一种逻辑门阵列,其基于可以可编程方式重配置以提供非易失性“与”、“与非”、“或”和“非或”逻辑功能性的STT MTJ MRAM单元。类似的可再编程逻辑功能性可使用如以上所指示的可再编程存储器元件的其它形式来实现,且在本发明的既定精神内。然而,出于描述简易的目的,本文中将STT MTJ MRAM描述为示范性实施例,且并非限制性的。
MTJ具有如下特性:可通过改变一个(“自由”)磁性层(通过薄的非导电氧化物层使其与第二“固定”磁性层分离)的相对磁化方向来更改通过结的电子电流(electroncurrent flow)的电阻。所述电阻由电子穿隧通过所述氧化物的能力来确定。当所述两个磁性层经平行磁化时,所述电阻为“低”(状态0)。当所述两个磁性层经反平行磁化时,所述电阻为“高”(状态1)。在STT MTJ中,可通过经由发送自旋极化电子的足够密度的高电流直接通过结来将所要磁化方向写入到自由层而切换结的电阻状态。所述电流足以影响自由层但不影响固定层。
图1展示其中可有利地使用本发明的实施例的示范性无线通信系统100。出于说明的目的,图1展示三个远程单元120、130和150以及两个基站140。将认识到,典型无线通信系统可具有更多远程单元和基站。远程单元120、130和150包括STT MTJ MRAM存储器芯片125A、125B和125C,其为如以下所进一步论述的本发明的实施例。图1展示从基站140到远程单元120、130和150的前向链路信号180,以及从远程单元120、130和150到基站140的反向链路信号190。
在图1中,将远程单元120展示为移动电话,将远程单元130展示为便携式计算机,且将远程单元150展示为无线区域回路系统中的固定位置远程单元。举例来说,所述远程单元可为手机、手持式个人通信系统(PCS)单元、例如个人数据助理等便携式数据单元,或例如仪表读数设备等固定位置数据单元。尽管图1说明根据本发明的教示的远程单元,但本发明并不限于这些示范性说明的单元。本发明的实施例可适当地用于包括存储器芯片的任何装置中。
图2展示磁性隧道结MTJ 200的基本元件。图2A展示处于平行磁化低电阻状态的常规磁性隧道结MTJ的基本元件。图2B展示处于反平行磁化高电阻状态的常规磁性隧道结MTJ的基本元件。MTJ 200包含固定磁化层(即,固定层210)、自由层211和势垒层212。固定层210为在装置寿命期间具有固定磁化方向的磁性层。自由层211为磁化方向可由所施加的穿隧写入电流的方向更改的磁性层。势垒层212为足够薄以准许视以下所描述的条件而定的来自固定层210或自由层211的电子的穿隧的电介质层。势垒层212可为例如氧化物(例如,MgO)等若干绝缘体材料中的一者或一者以上。通常,可使固定层210、势垒层212和自由层211的堆叠成形为平坦椭圆体的形式,其中极化方向优先地且大体上沿所述椭圆体的主轴,且平行于其上形成所述堆叠的衬底的表面。
可大体上将此配置应用于常规MRAM以及STT MTJ MRAM,差别在于,对于STTMTJ MRAM来说无需外部磁场来将极化状态写入到MTJ 201。
图3A展示处于1-晶体管/1-MTJ(1-T/1-MTJ)配置中的MRAM电路300(例如,STT MTJ),其包括结MTJ 301。MTJ 301具有邻近于反铁磁体313的固定层210,所述固定层210为导电的且在装置寿命期间保持其磁化。反铁磁体313确定固定层210的磁性极化的对准。另外,MTJ 301具有邻近于反铁磁体313的电极318和用于连接到外部电路的邻近于自由层211的电极315。经由电极318,MTJ 301连接到晶体管317的漏极电极。晶体管317的源极电极连接到源极线316。晶体管317的栅极电极连接到字线314。字线314控制晶体管317的栅极。位线335和源极线316设定电子流的方向。MTJ 301的自由层211连接到位线335。在位线335与源极线316之间施加(任一极性的)电压VDD。晶体管317充当开关。当经由字线314将电压施加到晶体管317的栅极时,电流将在位线335与源极线316之间流动(如由势垒212上的穿隧电阻所调节,其视自由层211的STT诱发的极化而定)。
在写入模式中,使VDD足够大以产生足够电流密度的自旋极化电子流从而切换自由层211的磁化。通过MTJ 301的电子电流方向确定自由层211中的诱发极化方向。在读取模式中,VDD较小,且电流密度不足以更改自由层211中的极化。
在图3B中,将位线335电压设定为VDD(假设为正)且源极线316接地,使得在字线314提供栅极电压VG以接通晶体管317的导电路径时常规电流从位线335流动到源极线316(即,电子从源极线316流动到位线335)。当VDD足够大时,此方向上的电流写入自由层211使其极化平行于固定层210,从而将MTJ 301置于低电阻状态(0)(具有电阻RMTJ(0))。在图3C中,当通过以电压VG断言(assert)字线314、通过以VDD将源极线316设定为高以及通过将位线335电压设定为较低来接通晶体管317的栅极时,电子在从位线335到源极线316(即,从自由层211到固定层210)的相反方向上流动,将自由层211切换到反平行极化状态,从而将MTJ 301置于高电阻状态(1)(其中电阻RMTJ(1)>RMTJ(0))。
如以下所描述,STT MRAM MTJ可用作门逻辑元件,门逻辑元件(例如)可用于每个此类门逻辑元件均可经再编程的门逻辑中。因此,可响应于写入指令而动态地重配置包括此种可再编程逻辑的装置以支持特定应用的要求。可编程逻辑空间的此可再用性准许芯片空间的非常有效的使用。此外,逻辑程式为非易失性的,即不需要备用电力。
图4A为根据本发明的一实施例的使用四个STT MTJ结J-1到J-4的四输入门逻辑400的实例。图4A仅展示结J-1到J-4,但每一者还可包括可通过到晶体管栅极的字线信号以图3A中所指示的方式切换的单独晶体管(未图示)。其类似于常规FPGA四输入逻辑块,只是每一单元的状态和对应电阻可被重配置(如以上所描述)。实际上,可能仅需要两个输入,例如A和B。额外反相器(未图示)可提供两个额外并列输入A_和B_。
在读取模式中(即,在逻辑操作期间),可分别地将可识别为A、A_、B和B_的输入施加到结J-1到J-4,其中,如果A=1,那么A_=0,等等。这些逻辑输入的电压电平小于写入电压,使得不改变结J-1到J-4的磁化电阻状态。每一结可处于0状态或1状态中。因此,结J-N(0)处于“0”状态,且J-N′(1)处于“1”状态。
当将输入[A、A_、B和B_]分别施加到J-1到J-4且将EVAL信号电压VE施加到晶体管开关417的栅极时,适量电流将流经晶体管开关417。电流量由输入信号[A、A_、B和B_]的电压(出于示范性目的,此处假设其为VDD或0,其中VDD处于只读电平且不引起极化改变,如以上所指示)、结J-1到J-4的有效电阻和晶体管417的有效电阻RT确定。结J-1到J-4的有效电阻为并联的,且结J-1到J-4的有效净并联电阻与晶体管417的RT串联。到A和/或B=1的输入可为高(例如,电压=VDD),或所述输入可为A和/或B=0(例如,电压=0)。将在晶体管开关417上所测量的电压VT(在求和线420处测量)输入到可包含(例如)两个饱和放大反相器430和440的传感器电路,其可用以针对所施加信号确定逻辑输出F和F_的真值表(truth table),如以下所描述。
图4B为图4A的示范性逻辑电路的等效电路。当EVAL电压VE将晶体管开关417接通到导电状态时,结J-1到J-4可由其相应等效电阻RJ-1-RJ-4表示,且晶体管开关417由等效电阻RT(418)表示。流经结J-1到J-4的所有电流的总和(例如,IT)流经求和线420到达晶体管开关418,且接着到达接地。求和线420处的电压VT根据VT=IT×RT来确定总电流。
对应于每一状态,结J-1到J-4可具有有效电阻RJ-1到RJ-4,其中RJ-N(0)为处于0状态的结J-N的电阻(其为“低”电阻)且RJ-N′(1)为处于1状态中的结J-N′的电阻(其为“高”电阻)。为了说明可如何使用图4A的拓扑以可重配置的方式来实施各种逻辑功能,借助于参看图4B的等效电路而呈现实例。为简单起见,关于RJ-N(0)、RJ-N′(1)和RT的值以及输入A和B的电压电平作出以下假设:
假设RJ-N(0)=R0,RJ-N′(1)=5*R0且RT(418)=R0/10。这些电阻值可包括寄生电阻(例如,线电阻和结开关电阻),且可有效地将其视为确定元件的电响应的复合电阻值。
假设:当将A和/或B设定为=1时,VA和/或VB=VDD,其中VDD为读取电平电压。
假设:当将A和/或B设定为=0时,VA和/或VB=0。
实例1
假设将MTJ结J1-J4设定为状态[1,0,1,0]。因此,相应电阻为RJ-1(1)=5R0,RJ-2(0)=R0,RJ-3(1)=5R0且RJ-4(0)=R0。对于A、B的所有四个可能组合和量值VDD的所得四个输入电压[A,_A,B,_B],在表1中展示所测量电压VT
表1
针对结状态[1,0,1,0]的晶体管电压VT对输入A、B
  A   A_   B   B_   VT/VDD
  1   0   1   0   0.18
  1   0   0   1   0.42
  0   1   1   0   0.42
  0   1   0   1   0.67
图5A为关于表1中所展示的输入的可能组合的电压输出VT(A,B)的代表性曲线,给定四个STT MTJ结J-1到J-4的状态设定为[1,0,1,0]。可相对于输入状态A、B来指示输出电压(即,指示为VT(A,B))。反相器430接收来自求和线420的电压VT(A,B)。如果VT(A,B)超过阈值电压,那么反相器430可经设定以触发输出。反相器430接着可放大所述输入以视所述输入而输出逻辑1电平或逻辑0电平(例如,VDD或0)。第二反相器440使反相器430的输出反相。F为来自反相器440的输出且F_为来自反相器430的输出。如果反相器430经设定以基于在VT(1,0)与VT(0,0)之间的阈值电压而触发,那么得到表2中的真值表。如表1中所展示,VT(1,0)=VT(0,1)。可见,F等同于逻辑“非或”且F_等同于逻辑“或”。
表2
结状态[1,0,1,0]对输入A、B的真值表
阈值电压设定于VT(1,0)与VT(0,0)之间
  A   B   F   _F
  1   1   0   1
  1   0   0   1
  0   1   0   1
  0   0   1   0
  “非或”   “或”
或者,如果反相器430经设定以基于在VT(1,1)与VT(1,0)之间的阈值电压触发,那么得到表3中的真值表。通过检验可见,F遵照“与非”逻辑且F_遵照“与”逻辑。
因此可见,通过设定为[1,0,1,0]的MTJ结的组合和控制关于反相器430的阈值电压,可实现四个逻辑功能“与”、“与非”、“或”和“非或”。在下一实例中,可将MTJ结重配置为不同电阻状态且通过检验而确定所得逻辑。
表3
结状态[1,0,1,0]对输入A、B的真值表
阈值电压设定于VT(1,1)与VT(1,0)之间
  A   B   F   _F
  1   1   0   1
  1   0   1   0
  0   1   1   0
  0   0   1   0
  “与非”   “与”
实例2
假设将MTJ结J-1到J-4设定为状态[0,1,0,1]。因此,相应电阻为RJ-1(0)=R0,RJ-2(1)=5R0,RJ-3(0)=R0且RJ-4(1)=5R0。使用与以上相同的分析,图5B为关于输入的可能组合的电压输出VT(A,B)的代表性曲线,给定四个STTMTJ结J-1到J-4的状态设定为[0,1,0,1]。注意,与VT(0,0)为最高的第一实例相比,VT(1,1)为最高输出。如果反相器430经设定以在VT(1,1)与VT(1,0)之间触发且相应地输出VDD或0,那么得到表4中的真值表。可见,F等同于逻辑“与”且F_等同于逻辑“与非”。
表4
结状态[0,1,0,1]对输入A、B的真值表
阈值电压设定于VT(1,1)与VT(1,0)之间
  A   B   F   F_
  1   1   1   0
  1   0   0   1
  0   1   0   1
  0   0   0   1
  “与”   “与非”
类似地,如果反相器430经设定以基于在VT(1,0)与VT(0,0)之间的阈值电压触发,那么得到表5中的真值表。可见,F等同于逻辑“或”且F_等同于逻辑“非或”。
表5
结状态[0,1,0,1]对输入A、B的真值表
阈值电压设定于VT(1,0)与VT(0,0)之间
  A   B   F   F_
  1   1   1   0
  1   0   1   0
  0   1   1   0
  0   0   0   1
  “或”   “非或”
可使用MTJ结布置额外配置以实现可再编程的非易失性逻辑。举例来说,晶体管417可由与MTJ结J-1到J-4的平行阵列串联的MTJ结替代。MTJ结可大体上与参看图3A所描述的结相同,但在此处充当具有可编程电阻的开关。如以上所描述,反相器430和440充当传感器,其基于提供到反相器430的阈值电压电平和大体上以如以上所描述在晶体管417的漏极处获得VT的相同方式在对应于MTJ开关的位线335处获得的经检测电压VT而触发逻辑输出。可接着将MTJ开关编程为两个不同电阻状态,其具有使电压VT(A,B)移位和缩放电压VT(A,B)的效应。因此,可进一步通过经由使用MTJ开关使输出电压电平和缩放范围相对于阈值电压电平移位来控制所述逻辑输出。
或者,可将晶体管开关与MTJ开关的组合布置为串联和/或并联配置以相对于触发阈值电平而提供对输出电压的更精细程度的控制。可了解,此组合实现逻辑电路之间的性能调平,所述逻辑电路可能归因于制造公差而具有(例如)元件的有效电阻的变化。
图6为根据本发明的实施例的以可编程方式配置门逻辑的方法的流程图。方法600以选择门逻辑400中的每一MTJ结(例如,J1-J4)的对应于门逻辑400需要遵照的选定逻辑功能行为的电阻状态的第一步骤(P601)开始。接着将用以设定MTJ的电阻状态的足够量值的适当写入信号电平VDD施加到每一MTJ J1-J4(P602)。VDD的极性和因此电流的方向可相应地确定电阻状态。
图7为根据本发明的一实施例的操作可重配置门逻辑的方法的流程图。方法700以指定待施加到门逻辑400中的每一MTJ(例如,J1-J4)的输入的逻辑(即,0或1)输入信号(步骤P701)开始。所述逻辑输入信号电平的量值不足以改变MTJ J1-J4的电阻状态。将所述逻辑输入信号施加到相应结输入(P702)。根据图4B的等效电路分析,流经MTJ J1-J4的电流的总和在流经评估开关418期间产生在评估开关418的输入处出现的电压信号输出(P703)。经检测的电压信号输出被输入到包含反相器430和440的传感器电路。反相器还接收电压参考信号(P704),其视反相器430的输入处出现的经检测电压信号而定来确定反相器430的逻辑输出。反相器430和440基于经检测电压信号和电压参考信号而输出相应逻辑输出信号(P705)。因此,MTJ J1-J4的配置状态与提供到反相器430的参考电压的组合确定逻辑输入的逻辑输出。
如可编程逻辑阵列设计领域的一般技术人员将认识到,当适当地将MTJ结的单元编程时,通过组合由图4A的逻辑电路提供的基本逻辑操作可实现较复杂的逻辑功能(例如,“异或”、“异或非”,等等)。可进一步了解,可实现更复杂的逻辑功能。举例来说,可通过四个以上STT MTJ单元来配置相同数目个输入,以视每一单元的状态和触发电平而定获得逻辑功能行为。
因此,可编程逻辑阵列设计领域的一般技术人员可了解,可将以上所描述的STTMTJ结组合到包含用以实施与FPGA和相关PLA相同的功能性的具有高可再编程性控制程度的门逻辑的单元阵列中。为以上所描述的真值表的等效物的查找表(LUT)是此种实施方案的一实例。此外,可了解,出于执行复杂逻辑操作的目的,此类门逻辑阵列还可在需要时经再编程,即多个单元中的结中的每一者可以可重配置方式在两个状态之间切换,使得由相同阵列可实现不同逻辑处理。
虽然已详细描述本发明及其优点,但应理解,在不脱离由所附权利要求书所界定的本发明的精神和范围的情况下,可在本文中进行各种改变、替代和更改。此外,本申请案的范围并不希望限于说明书中所描述的过程、机器、制造、物质组成、手段、方法和步骤的特定实施例。如所属领域的一般技术人员将易于从本发明的揭示内容了解,根据本发明,可利用目前存在或日后将开发的执行与本文中所描述的对应实施例大体上相同功能或实现大体上相同结果的过程、机器、制造、物质组成、手段、方法或步骤。因此,所附权利要求书希望在其范围内包括此类过程、机器、制造、物质组成、手段、方法或步骤。

Claims (16)

1.一种非易失性可再编程门逻辑电路,其包含非易失性的基于电阻的存储器单元,其中所述非易失性的基于电阻的存储器单元包含:
并联的多个可重配置的非易失性的基于电阻的结电路,每一可重配置的非易失性的基于电阻的结电路经配置以接收输入逻辑信号;
评估开关,其与所述多个可重配置的非易失性的基于电阻的结电路串联,其中所述评估开关经配置以基于所述多个可重配置的非易失性的基于电阻的结电路的电阻状态的配置而提供输出信号;以及
传感器电路,其配置以接收所述输出信号和阈值电压作为输入,并基于所述输出信号和所述阈值电压来输出一个或多个逻辑信号,所述一个或多个逻辑信号代表施加到所述输入逻辑信号的逻辑功能,所述逻辑功能由所述阈值电压和所述多个可重配置的非易失性的基于电阻的结电路的电阻状态的所述配置来决定,其中,所述阈值电压可受控制来改变所述逻辑功能。
2.根据权利要求1所述的非易失性可再编程门逻辑电路,其中所述评估开关为选定串联和/或并联组合中的一个或多个晶体管。
3.根据权利要求1所述的非易失性可再编程门逻辑电路,其中所述评估开关为选定串联和/或并联组合中的一个或多个可重配置的非易失性的基于电阻的结电路。
4.根据权利要求1所述的非易失性可再编程门逻辑电路,其中所述评估开关为选定串联和/或并联组合中的一个或多个晶体管和/或一个或多个可重配置的非易失性的基于电阻的结电路。
5.根据权利要求1所述的非易失性可再编程门逻辑电路,其中所述可重配置的非易失性的基于电阻的结电路包含以下各项中的一者或一者以上:相变随机存取存储器(PC-RAM)电路、基于电阻的随机存取存储器(R-RAM)电路、磁阻随机存取存储器电路,和自旋转移力矩磁阻隧道结磁阻随机存取存储器电路。
6.根据权利要求5所述的非易失性可再编程门逻辑电路,其中所述自旋转移力矩磁阻隧道结磁阻随机存取存储器电路包含:
磁性隧道结;以及
第一金属互连件,其经配置以将位线写入信号和/或输入读取信号提供到所述磁性隧道结,其中所述位线写入信号配置所述磁性隧道结的电阻状态,且所述输入读取信号经施加以确定所述电阻状态。
7.根据权利要求6所述的非易失性可再编程门逻辑电路,其中,所述评估开关操作地耦合到所述磁性隧道结和源极线,以针对读取和/或写入操作而准许电流流经所述磁性隧道结。
8.根据权利要求6所述的非易失性可再编程门逻辑电路,其中所述磁性隧道结包含:
顶部电极,其与所述金属互连件通信;
自由磁化层,其邻近于所述顶部电极;
隧道势垒层,其邻近于所述自由磁化层;
固定磁化层,其邻近于所述隧道势垒;以及
底部电极,其邻近于所述固定磁化层并与所述评估开关通信。
9.根据权利要求1所述的非易失性可再编程门逻辑电路,其中,所述评估开关包含:
第二金属互连件,其与所述多个并联的可重配置的非易失性的基于电阻的结电路串联通信;以及
开关元件,其具有与所述第二金属互连件通信的源极电极、经配置以接收控制信号从而改变所述开关元件的导电路径的电阻状态的栅极电极,以及源极电极,其中所述开关元件选自至少晶体管、磁阻随机存取存储器单元和自旋转移力矩磁阻隧道结磁阻随机存取存储器单元。
10.根据权利要求9所述的非易失性可再编程门逻辑电路,其中所述传感器电路的所述输出信号包含逻辑1和/或逻辑0。
11.一种重配置非易失性可再编程门逻辑电路的写入方法,所述门逻辑电路包含非易失性的基于电阻的存储器单元,其中所述方法包含:
将输入逻辑信号施加到并联的多个可重配置的非易失性的基于电阻的结电路,及
使用评估开关,其与所述多个可重配置的非易失性的基于电阻的结电路串联以基于所述多个可重配置的非易失性的基于电阻的结电路的电阻状态的配置而提供输出信号;
接收所述输出信号和阈值电压作为传感器电路处的输入;
在所述传感器电路处基于所述输出信号和所述阈值电压来输出一个或多个逻辑信号,所述一个或多个逻辑信号代表施加到所述输入逻辑信号的逻辑功能,所述逻辑功能由所述阈值电压和所述多个可重配置的非易失性的基于电阻的结电路的电阻状态的所述配置来决定,其中,所述阈值电压可受控制来改变所述逻辑功能,其中所述输入逻辑信号的电流方向确定所述非易失性的基于电阻的结电路的电阻状态。
12.根据权利要求11所述的写入方法,其进一步包含选择所述输入逻辑信号中的每一输入逻辑信号的所述电流方向以确定每一可重配置的非易失性的基于电阻的结电路的一组电阻状态,所述电阻状态对应于选定逻辑功能。
13.一种操作非易失性可再编程门逻辑电路的方法,所述门逻辑电路包含非易失性的基于电阻的存储器单元,其中方法包含:
将输入逻辑信号施加到并联的多个可重配置的非易失性的基于电阻的结电路;
使用评估开关,其与所述多个可重配置的非易失性的基于电阻的结电路串联以基于所述多个可重配置的非易失性的基于电阻的结电路的电阻状态的配置而提供输出信号;
接收所述输出信号和阈值电压作为传感器电路处的输入;
在所述传感器电路处基于所述输出信号和所述阈值电压来输出一个或多个逻辑信号,所述一个或多个逻辑信号代表施加到所述输入逻辑信号的逻辑功能,所述逻辑功能由所述阈值电压和所述多个可重配置的非易失性的基于电阻的结电路的电阻状态的所述配置来决定,其中,所述阈值电压可受控制来改变所述逻辑功能;以及
将读取输入信号施加到所述多个可重配置的非易失性的基于电阻的结电路中的每一者,其中所述读取输入信号小于写入输入信号的量值,且太小以致无法改变所述非易失性的基于电阻的结电路的电阻状态。
14.根据权利要求13所述的方法,其进一步包含:
在所述多个可重配置的非易失性的基于电阻的结电路与评估开关之间的互连件处,基于所述多个可重配置的非易失性的基于电阻的结电路的电阻状态的配置而读取输出信号。
15.根据权利要求14所述的方法,其进一步包含:
由所述传感器电路来检测所述输出信号,该传感器电路以操作方式耦合到所述互连件;以及
基于经检测的输出信号和所述阈值电压而输出选定的一个或多个逻辑信号。
16.根据权利要求15所述的方法,其中所述传感器电路的所述输出信号包含逻辑1和/或逻辑0。
CN200980128470.3A 2008-08-15 2009-08-14 门电平可重配置的磁性逻辑 Active CN102099862B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/192,386 2008-08-15
US12/192,386 US8295082B2 (en) 2008-08-15 2008-08-15 Gate level reconfigurable magnetic logic
PCT/US2009/053885 WO2010019881A1 (en) 2008-08-15 2009-08-14 Gate level reconfigurable magnetic logic

Publications (2)

Publication Number Publication Date
CN102099862A CN102099862A (zh) 2011-06-15
CN102099862B true CN102099862B (zh) 2014-11-12

Family

ID=41228396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980128470.3A Active CN102099862B (zh) 2008-08-15 2009-08-14 门电平可重配置的磁性逻辑

Country Status (7)

Country Link
US (1) US8295082B2 (zh)
EP (1) EP2313892B1 (zh)
JP (2) JP5485272B2 (zh)
KR (1) KR101308579B1 (zh)
CN (1) CN102099862B (zh)
TW (1) TW201030744A (zh)
WO (1) WO2010019881A1 (zh)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100184803A1 (en) * 2007-03-09 2010-07-22 Link Medicine Corporation Treatment of Lysosomal Storage Diseases
US7728622B2 (en) * 2007-03-29 2010-06-01 Qualcomm Incorporated Software programmable logic using spin transfer torque magnetoresistive random access memory
US7969767B2 (en) * 2009-05-29 2011-06-28 Qualcomm Incorporated Spin transfer torque—magnetic tunnel junction device and method of operation
US8058906B2 (en) * 2009-06-16 2011-11-15 The University Of Notre Dame Du Lac Non-majority MQCA magnetic logic gates and arrays based on misaligned magnetic islands
US8469832B2 (en) * 2009-11-03 2013-06-25 Wonderland Nurserygoods Company Limited Swing apparatus with detachable infant holding device
US8416600B2 (en) * 2009-11-25 2013-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. Reverse connection MTJ cell for STT MRAM
US8625337B2 (en) * 2010-05-06 2014-01-07 Qualcomm Incorporated Method and apparatus of probabilistic programming multi-level memory in cluster states of bi-stable elements
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US8411485B2 (en) 2010-06-14 2013-04-02 Crossbar, Inc. Non-volatile variable capacitive device including resistive memory cell
US9013911B2 (en) 2011-06-23 2015-04-21 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US8569172B1 (en) 2012-08-14 2013-10-29 Crossbar, Inc. Noble metal/non-noble metal electrode for RRAM applications
US8476925B2 (en) 2010-08-01 2013-07-02 Jian-Gang (Jimmy) Zhu Magnetic switching cells and methods of making and operating same
US8400066B1 (en) 2010-08-01 2013-03-19 Lawrence T. Pileggi Magnetic logic circuits and systems incorporating same
KR101638976B1 (ko) 2010-08-25 2016-07-13 삼성전자주식회사 재구성 가능한 논리 장치
US8315079B2 (en) 2010-10-07 2012-11-20 Crossbar, Inc. Circuit for concurrent read operation and method therefor
US8374020B2 (en) 2010-10-29 2013-02-12 Honeywell International Inc. Reduced switching-energy magnetic elements
US8373438B2 (en) 2010-10-29 2013-02-12 Alexander Mikhailovich Shukh Nonvolatile logic circuit
US8427199B2 (en) * 2010-10-29 2013-04-23 Honeywell International Inc. Magnetic logic gate
US8358154B2 (en) 2010-10-29 2013-01-22 Honeywell International Inc. Magnetic logic gate
US8358149B2 (en) * 2010-10-29 2013-01-22 Honeywell International Inc. Magnetic logic gate
US8502185B2 (en) 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US8730719B1 (en) * 2010-12-03 2014-05-20 Iii Holdings 1, Llc MRAM with metal gate write conductors
US8207757B1 (en) * 2011-02-07 2012-06-26 GlobalFoundries, Inc. Nonvolatile CMOS-compatible logic circuits and related operating methods
US8552759B2 (en) * 2011-02-21 2013-10-08 Northwestern University Programmable logic based on a magnetic diode and applications of same
US8634233B2 (en) * 2011-05-19 2014-01-21 Regents Of The University Of Minnesota Systems and methods for direct communication between magnetic tunnel junctions
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8427197B2 (en) * 2011-06-15 2013-04-23 Honeywell International Inc. Configurable reference circuit for logic gates
US8619459B1 (en) 2011-06-23 2013-12-31 Crossbar, Inc. High operating speed resistive random access memory
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US9166163B2 (en) 2011-06-30 2015-10-20 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
US9059705B1 (en) * 2011-06-30 2015-06-16 Crossbar, Inc. Resistive random accessed memory device for FPGA configuration
US9058865B1 (en) 2011-06-30 2015-06-16 Crossbar, Inc. Multi-level cell operation in silver/amorphous silicon RRAM
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
US9729155B2 (en) 2011-07-29 2017-08-08 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
CN103828238A (zh) * 2011-07-29 2014-05-28 科洛斯巴股份有限公司 使用双端非易失性存储器的现场可编程门阵列
US10056907B1 (en) 2011-07-29 2018-08-21 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8593173B2 (en) * 2011-09-26 2013-11-26 Qualcomm Incorporated Programmable logic sensing in magnetic random access memory
US20130187247A1 (en) * 2012-01-23 2013-07-25 Qualcomm Incorporated Multi-bit magnetic tunnel junction memory and method of forming same
KR101646431B1 (ko) * 2012-03-30 2016-08-05 인텔 코포레이션 프로그램가능 장치 어레이들을 위한 스핀 전달 토크 기반 메모리 요소들
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US8658476B1 (en) 2012-04-20 2014-02-25 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US9001552B1 (en) 2012-06-22 2015-04-07 Crossbar, Inc. Programming a RRAM method and apparatus
US10096653B2 (en) 2012-08-14 2018-10-09 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US11068620B2 (en) 2012-11-09 2021-07-20 Crossbar, Inc. Secure circuit integrated with memory layer
US9105342B2 (en) 2013-01-31 2015-08-11 International Business Machines Corporation Read circuit for memory
US9298946B2 (en) * 2013-09-09 2016-03-29 Qualcomm Incorporated Physically unclonable function based on breakdown voltage of metal-insulator-metal device
US8891326B1 (en) * 2013-09-11 2014-11-18 Avalanche Technology, Inc. Method of sensing data in magnetic random access memory with overlap of high and low resistance distributions
KR102116792B1 (ko) 2013-12-04 2020-05-29 삼성전자 주식회사 자기 메모리 장치, 이의 동작 방법 및 이를 포함하는 반도체 시스템
CN103794224B (zh) * 2014-01-27 2017-01-11 华中科技大学 一种基于相变磁性材料的非易失性逻辑器件及逻辑操作方法
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
JP6325120B2 (ja) * 2014-03-07 2018-05-16 インテル コーポレイション 抵抗変化型メモリデバイスを用いた物理的複製防止機能回路
US9336872B2 (en) * 2014-03-11 2016-05-10 Everspin Technologies, Inc. Nonvolatile logic and security circuits
CN105474322B (zh) 2014-03-18 2018-05-11 华为技术有限公司 阻变存储器逻辑运算阵列的操作方法、装置及设备
US9813049B2 (en) 2015-08-12 2017-11-07 Qualcomm Incorporated Comparator including a magnetic tunnel junction (MTJ) device and a transistor
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
KR102582672B1 (ko) * 2016-11-01 2023-09-25 삼성전자주식회사 자기 터널 접합 소자를 포함하는 논리 회로
US11625523B2 (en) 2016-12-14 2023-04-11 iCometrue Company Ltd. Logic drive based on standard commodity FPGA IC chips
TWI824467B (zh) 2016-12-14 2023-12-01 成真股份有限公司 標準大宗商品化現場可編程邏輯閘陣列(fpga)積體電路晶片組成之邏輯驅動器
KR102245385B1 (ko) 2017-03-28 2021-04-27 에스케이하이닉스 주식회사 자기 소자를 포함하는 lut, 이를 포함하는 fpga 및 기술 매핑 방법
US10447274B2 (en) 2017-07-11 2019-10-15 iCometrue Company Ltd. Logic drive based on standard commodity FPGA IC chips using non-volatile memory cells
US10957679B2 (en) 2017-08-08 2021-03-23 iCometrue Company Ltd. Logic drive based on standardized commodity programmable logic semiconductor IC chips
US10630296B2 (en) * 2017-09-12 2020-04-21 iCometrue Company Ltd. Logic drive with brain-like elasticity and integrality based on standard commodity FPGA IC chips using non-volatile memory cells
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10607674B2 (en) * 2017-10-26 2020-03-31 Purdue Research Foundation Stochastic switching device with adjustable randomness
KR102409505B1 (ko) 2017-12-22 2022-06-14 에스케이하이닉스 주식회사 비휘발성 메모리 소자를 포함하는 lut, lut를 포함하는 fpga 및 fpga 디자인 방법
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10438995B2 (en) * 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10608642B2 (en) 2018-02-01 2020-03-31 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips comprising non-volatile radom access memory cells
US10623000B2 (en) 2018-02-14 2020-04-14 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips
CN110197680B (zh) * 2018-02-24 2021-11-23 上海磁宇信息科技有限公司 一种采用全耗尽绝缘硅fd-soi场效应管的mram存储芯片
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10734573B2 (en) 2018-03-23 2020-08-04 Spin Memory, Inc. Three-dimensional arrays with magnetic tunnel junction devices including an annular discontinued free magnetic layer and a planar reference magnetic layer
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US10468084B2 (en) * 2018-04-03 2019-11-05 Globalfoundries Inc. Logic-in-memory computations for non-volatile resistive random access memory (RAM) array
US10608638B2 (en) 2018-05-24 2020-03-31 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US11309334B2 (en) 2018-09-11 2022-04-19 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips comprising non-volatile random access memory cells
US10892011B2 (en) 2018-09-11 2021-01-12 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips comprising non-volatile random access memory cells
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10937762B2 (en) 2018-10-04 2021-03-02 iCometrue Company Ltd. Logic drive based on multichip package using interconnection bridge
US11616046B2 (en) 2018-11-02 2023-03-28 iCometrue Company Ltd. Logic drive based on chip scale package comprising standardized commodity programmable logic IC chip and memory IC chip
US11211334B2 (en) 2018-11-18 2021-12-28 iCometrue Company Ltd. Logic drive based on chip scale package comprising standardized commodity programmable logic IC chip and memory IC chip
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
US10788547B2 (en) 2019-01-17 2020-09-29 Sandisk Technologies Llc Voltage-controlled interlayer exchange coupling magnetoresistive memory device and method of operating thereof
US11049538B2 (en) 2019-01-17 2021-06-29 Western Digital Technologies, Inc. Voltage-controlled interlayer exchange coupling magnetoresistive memory device and method of operating thereof
US10985154B2 (en) 2019-07-02 2021-04-20 iCometrue Company Ltd. Logic drive based on multichip package comprising standard commodity FPGA IC chip with cryptography circuits
US11227838B2 (en) 2019-07-02 2022-01-18 iCometrue Company Ltd. Logic drive based on multichip package comprising standard commodity FPGA IC chip with cooperating or supporting circuits
US11887930B2 (en) 2019-08-05 2024-01-30 iCometrue Company Ltd. Vertical interconnect elevator based on through silicon vias
JP2021048223A (ja) * 2019-09-18 2021-03-25 キオクシア株式会社 不揮発性記憶装置
US11637056B2 (en) 2019-09-20 2023-04-25 iCometrue Company Ltd. 3D chip package based on through-silicon-via interconnection elevator
KR102281832B1 (ko) 2019-10-23 2021-07-26 한국과학기술연구원 스핀 토크를 이용한 연산 기능 로직 소자
CN110971217B (zh) * 2019-11-12 2023-08-29 杭州电子科技大学 一种基于mtj的非易失可编程开关
US11600526B2 (en) 2020-01-22 2023-03-07 iCometrue Company Ltd. Chip package based on through-silicon-via connector and silicon interconnection bridge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959465A (en) * 1994-12-29 1999-09-28 Stmicroelectronics Ltd. Fast Nor-Nor PLA operating from a single-phase clock
CN1244017A (zh) * 1998-08-05 2000-02-09 国际商业机器公司 非易失性磁存储单元和器件
US6249453B1 (en) * 2000-04-18 2001-06-19 The University Of Chicago Voltage controlled spintronic devices for logic applications
US7098494B2 (en) * 2004-06-16 2006-08-29 Grandis, Inc. Re-configurable logic elements using heat assisted magnetic tunneling elements

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3518951B2 (ja) * 1996-06-24 2004-04-12 ローム株式会社 機能複製装置および機能複製方法
JP4356542B2 (ja) * 2003-08-27 2009-11-04 日本電気株式会社 半導体装置
EP1560221B1 (en) * 2004-01-29 2008-09-03 Sharp Kabushiki Kaisha Semiconductor memory device
US7177182B2 (en) * 2004-03-30 2007-02-13 Impinj, Inc. Rewriteable electronic fuses
DE102005001938B3 (de) * 2005-01-14 2006-04-13 Siemens Ag Nichtflüchtig rekonfigurierbare digitale Logikeinheit
KR100735748B1 (ko) * 2005-11-09 2007-07-06 삼성전자주식회사 가변성 저항체들을 데이터 저장요소들로 채택하는 메모리셀들을 갖는 반도체 소자들, 이를 채택하는 시스템들 및 그구동방법들
TWI449040B (zh) * 2006-10-06 2014-08-11 Crocus Technology Sa 用於提供內容可定址的磁阻式隨機存取記憶體單元之系統及方法
US7728622B2 (en) 2007-03-29 2010-06-01 Qualcomm Incorporated Software programmable logic using spin transfer torque magnetoresistive random access memory
US7764537B2 (en) * 2007-04-05 2010-07-27 Qualcomm Incorporated Spin transfer torque magnetoresistive random access memory and design methods
US7852663B2 (en) * 2008-05-23 2010-12-14 Seagate Technology Llc Nonvolatile programmable logic gates and adders
US8344433B2 (en) * 2009-04-14 2013-01-01 Qualcomm Incorporated Magnetic tunnel junction (MTJ) and methods, and magnetic random access memory (MRAM) employing same
US20100302838A1 (en) * 2009-05-26 2010-12-02 Magic Technologies, Inc. Read disturb-free SMT reference cell scheme

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959465A (en) * 1994-12-29 1999-09-28 Stmicroelectronics Ltd. Fast Nor-Nor PLA operating from a single-phase clock
CN1244017A (zh) * 1998-08-05 2000-02-09 国际商业机器公司 非易失性磁存储单元和器件
US6249453B1 (en) * 2000-04-18 2001-06-19 The University Of Chicago Voltage controlled spintronic devices for logic applications
US7098494B2 (en) * 2004-06-16 2006-08-29 Grandis, Inc. Re-configurable logic elements using heat assisted magnetic tunneling elements

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开平10-13213A 1998.01.16 *
W. Zhao等.Integration of Spin-RAM technology in FPGA circuits.《SOLIDSTATE AND INTEGRATED CIRCUIT TECHNOLOGY,2006. ICSICT ’06. 8TH INTERNATIONAL CONFERENCE ON》.2006, *

Also Published As

Publication number Publication date
JP5485272B2 (ja) 2014-05-07
KR20110044910A (ko) 2011-05-02
WO2010019881A1 (en) 2010-02-18
KR101308579B1 (ko) 2013-09-13
JP2014099237A (ja) 2014-05-29
US8295082B2 (en) 2012-10-23
TW201030744A (en) 2010-08-16
EP2313892B1 (en) 2014-04-30
JP5735091B2 (ja) 2015-06-17
EP2313892A1 (en) 2011-04-27
US20100039136A1 (en) 2010-02-18
JP2012500446A (ja) 2012-01-05
CN102099862A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
CN102099862B (zh) 门电平可重配置的磁性逻辑
RU2420865C1 (ru) Программно-управляемая логическая схема, использующая магниторезистивные устройства с передачей спинового вращения
US8503222B2 (en) Non-volatile logic circuit
US8203871B2 (en) Reconfigurable magnetic logic device using spin torque
JP4855821B2 (ja) 磁気記憶装置
EP1826770A1 (en) Magnetic tunneling junction cell based xor logic circuit and method of opearting the same
US8901962B2 (en) Programmable logic device structure using third dimensional memory
US7652398B2 (en) Magnetic logic device
US6392923B1 (en) Magnetoresistive midpoint generator and method
WO2014079747A1 (en) Rram implication logic gates
WO2007067832A2 (en) Mram with a write driver and method therefor
JP6687122B2 (ja) 再構成可能回路およびその使用方法
US8405443B2 (en) Pass transistor circuit with memory function, and switching box circuit including the pass transistor circuit
US10998906B1 (en) Logic device using spin torque
Mahmoudi et al. 11 Stateful STT-MRAM-Based Logic for Beyond–Von Neumann Computing
JP2006508484A (ja) 逐次プログラム式mram用電流経路変更方式
KR20090062026A (ko) 재구성가능한 논리회로 및 그 재구성방법
Guillemenet et al. Research Article On the Use of Magnetic RAMs in Field-Programmable Gate Arrays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant