CN102099506B - 带材上的金属/cnt-和/或富勒烯-复合材料-涂层 - Google Patents

带材上的金属/cnt-和/或富勒烯-复合材料-涂层 Download PDF

Info

Publication number
CN102099506B
CN102099506B CN200980127356.9A CN200980127356A CN102099506B CN 102099506 B CN102099506 B CN 102099506B CN 200980127356 A CN200980127356 A CN 200980127356A CN 102099506 B CN102099506 B CN 102099506B
Authority
CN
China
Prior art keywords
sheet metal
metal strip
carbon nanotube
soccerballene
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980127356.9A
Other languages
English (en)
Other versions
CN102099506A (zh
Inventor
H·施密特
I·伯斯克
U·阿德勒
D·罗德
S·普里格梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
TE Connectivity Germany GmbH
KME Special Products GmbH and Co KG
Original Assignee
Tyco Electronics AMP GmbH
KME Germany GmbH
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Electronics AMP GmbH, KME Germany GmbH, Wieland Werke AG filed Critical Tyco Electronics AMP GmbH
Publication of CN102099506A publication Critical patent/CN102099506A/zh
Application granted granted Critical
Publication of CN102099506B publication Critical patent/CN102099506B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1234Honeycomb, or with grain orientation or elongated elements in defined angular relationship in respective components [e.g., parallel, inter- secting, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及金属带材或经预冲压的金属带材上的金属/碳纳米管(CNT)-和/或富勒烯-复合物涂层,所述金属带材或经预冲压的金属带材具有改善的摩擦系数和/或良好的接点过渡电阻和/或良好的耐摩擦腐蚀性和/或良好的耐磨损性和/或良好的成形性。本发明还涉及根据本发明的涂布的金属带材的制备方法。

Description

带材上的金属/CNT-和/或富勒烯-复合材料-涂层
技术领域
本发明涉及金属带材上的金属/碳纳米管(CNT)-和/或富勒烯-复合材料-涂层,所述金属带材具有改善的摩擦系数(Reibwert)、良好的接点过渡电阻(Kontaktübergangswiderstand)、良好的耐摩擦腐蚀性、良好的耐磨损性和良好的成形性。本发明还涉及根据本发明的经涂布的金属带材的制备方法。
背景技术
Sumiolijama于1991年发现了碳纳米管(CNT)(参见S.lijama,Nature,1991,354,56)。lijama在一定反应条件下的富勒烯生成器的煤烟中发现了直径仅为数十纳米而长度直至数微米的管状结构。由他发现的化合物由多个聚集的被称作多壁碳纳米管(MWCNT)的石墨管组成。不久之后,lijama和Ichihashi发现了直径仅约1纳米的单壁CNT,其被相应地称作单壁碳纳米管(SWCNT)(参见S.lijama,T.Ichihashi,Nature,1993,363,6430)。
CNT的突出特征包括,例如其约40GPa或1TPa的机械抗拉伸强度和刚度(比钢的抗拉伸强度和刚度高20或5倍)。
CNT中存在导体材料和半导体材料。碳纳米管属于富勒烯家族且具有1纳米至数百纳米的直径。碳纳米管是由碳形成的精微的很小的管状结构(分子纳米管)。其壁如同富勒烯的壁或者如同石墨平面仅由碳组成,其中碳原子采取具有六个角和各三个键合对象(Bindungspartnern)的蜂窝状结构(通过sp2杂化确定)。管的直径通常为1至50纳米,但是也制备了具有仅0.4纳米直径的管。对于单管已经达到了数微米的长度以及对于管束已经达到了直至20厘米的长度。
通常通过从气相或等离子体中沉积碳来合成碳纳米管。对于电子工业来说,载流量(Strombelastbarkeit)和导热性是特别令人感兴趣的。载流量比铜线的载流量约高1000倍,室温下6000W/m*K的导热性几乎是金刚石(最好的天然来源热导体)的导热性的两倍。
如上所述,碳纳米管属于富勒烯类。富勒烯是由碳原子形成的具有高对称性的球形分子,其是除金刚石和石墨之外的碳的第三种同素异形体。通常通过在减压下和在保护气体气氛(例如氩气)下用电阻加热或在电弧中蒸发石墨而制备富勒烯。作为副产物,通常产生上述碳纳米管。富勒烯具有半导至超导性能。
现有技术中已知将碳纳米管与传统塑料混合。由此大大改善塑料的机械性能。此外,有可能制备导电塑料,例如已经使用纳米管来赋予抗静电膜传导性。
在当今的具有锡或银或镍涂层的实施方案(Ausführung)中,电子机械元件(例如连接器、转换器、继电器弹簧、可直插式冲压栅条(Stanzgitter)等)通常具有摩擦系数和/或接点过渡电阻差、耐磨损性低和/或成形性差的问题。在现有技术中,迄今为止还未公开使用碳纳米管和/或富勒烯来改善这些性能。
发明内容
因此,本发明的任务是提供克服了上述缺点,即具有改善的摩擦系数和/或良好的接点过渡电阻和/或良好的耐磨损性和/或良好的成形性的电子机械元件。
通过包含由碳纳米管和/或富勒烯和金属组成的涂层的金属带材解决该任务。
在本发明范畴中,金属带材被优选理解为优选由铜和/或铜合金、铝和/或铝合金或铁和/或铁合金组成的金属带材或电子机械元件。
金属带材优选包含扩散阻挡层,该扩散阻挡层优选被施加在金属带材的两侧。金属带材应该是非绝缘体。因此,扩散阻挡层优选包含过渡金属或由过渡金属组成。
优选的过渡金属为例如Mo、B、Co、Fe/Ni、Cr、Ti、W或Ce。
碳纳米管以柱状排布在金属带材上,这可通过下述根据本发明的方法来实现。碳纳米管可以是单壁或多壁的碳纳米管,这也同样可通过根据本发明的方法来控制。富勒烯优选以球体形式排布在金属带材上。
涂层也可优选包含石墨烯。
石墨烯被人们称作是sp2杂化的碳原子的单原子层。石墨烯沿其平面显示出非常良好的导电性和导热性。通过在石墨的基准面(Basalebenen)内裂解石墨而制造石墨烯。在此过程中首先插入(interkaliert)氧气。氧气部分地与碳反应并导致层的相互排斥。随后使石墨烯悬浮,并根据使用目的例如将其插入聚合物中或如本发明中所述作为金属带材的涂层组分。
制造单个石墨烯层的另一可能性是将六边形碳化硅表面加热至高于1400℃的温度。由于硅的较高蒸气压,硅原子比碳原子更快蒸发。之后在表面上形成由少量石墨烯单层组成的薄层单晶石墨。
在一个优选的实施方案中,石墨烯和/或碳纳米管和/或富勒烯形成复合材料。这意味着,石墨烯与碳纳米管、石墨烯与富勒烯、富勒烯与碳纳米管或所有组分一起可以形成复合材料。特别优选地,石墨烯正交排布在碳纳米管和/或富勒烯上,其中它们例如在轴向上构成管的末端,或者石墨烯和富勒烯正交排布在碳纳米管上。石墨烯在富勒烯上的正交排布近似意味着石墨烯在富勒烯上的正切排布。富勒烯在碳纳米管上的正交排布可被设想为如同“权杖(Zepter)”,其中富勒烯位于碳纳米管的末端。
金属带材优选具有0.06至3毫米,特别优选0.08至2.7毫米的厚度。
本发明的主题还在于一种用碳纳米管和/或富勒烯和金属涂布的金属带材的制备方法,该方法包括如下步骤:
a)用扩散阻挡层涂布金属带材,
b)在扩散阻挡层上施加成核层,
c)将根据步骤a)和b)处理的金属带材置于包含有机气态化合物的气氛中,
d)在200℃至1500℃的温度下在金属带材上形成碳纳米管和/或富勒烯,
e)用金属渗透(Durchdringen)碳纳米管和/或富勒烯。
在根据本发明的方法中,优选用扩散阻挡层来涂布金属带材的两侧。在扩散阻挡层上优选施加成核层,该成核层支持碳纳米管的柱状生长或富勒烯的沉积。在该方法中使用的成核层优选包含选自元素周期表的Fe族、第8、9和10副族的金属的金属盐。
随后将如此处理的金属带材暴露于优选为烃气氛的气氛中。烃气氛特别优选为甲烷气氛,其中另外地向所述气氛或烃气氛中加入载气。作为载气可以例如为氩气。
通常在200℃至1500℃的温度下在金属带材上形成碳纳米管和/或富勒烯。在200℃至900℃的温度下主要形成多壁碳纳米管(MWCNT)。在大于900℃至约1500℃的温度下优选形成单壁碳纳米管(SWCNT)。当在潮湿环境中进行生长时,可改善碳纳米管的质量。碳纳米管于金属带材上的形成以柱状形式进行,这通过成核层来支持促进。富勒烯优选以球状沉积在金属带材上。
然后再用金属渗透碳纳米管和/或富勒烯。作为金属的是上述金属Sn、Ni、Ag、Au、Pd、Cu或W以及它们的合金。
优选通过真空法,例如CVD(化学气相沉积)或PVD(物理气相沉积),电解,无电还原或通过熔入/渗进从而用金属渗透碳纳米管和/或富勒烯。
优选还在涂层中引入石墨烯。石墨烯和/或碳纳米管和/或富勒烯优选形成复合材料。这意味着,石墨烯与碳纳米管、石墨烯与富勒烯、富勒烯与碳纳米管或所有三种组分一起可以形成复合材料。特别优选地,石墨烯正交地排布在碳纳米管和/或富勒烯上,其中它们例如在轴向上构成管的末端,或者石墨烯和富勒烯正交排布在碳纳米管上。石墨烯在富勒烯上的正交排布近似意味着石墨烯在富勒烯上的正切排布。富勒烯在碳纳米管上的正交排布可被设想为如同“权杖(Zepter)”,其中富勒烯位于碳纳米管的末端。
如此制备的用金属和碳纳米管和/或富勒烯(和石墨烯)涂布的金属带材的特征在于改善的摩擦系数、良好的接点过渡电阻、良好的耐磨损性和良好的成形性,并因此特别适合作为电子机械元件,例如用于连接器、转换器、继电器弹簧等。特别地,当以上述复合材料形式与石墨烯结合时,可在水平和垂直方向上提供导电性和导热性,这是特别有利的。

Claims (28)

1.包含由碳纳米管和/或富勒烯和金属组成的涂层的金属带材,其特征在于,所述涂层包含石墨烯,并且所述金属是Sn、Ni、Ag、Au、Pd、Cu或W以及它们的合金。
2.根据权利要求1所述的金属带材,其在金属带材的两侧还包含扩散阻挡层。
3.根据权利要求2所述的金属带材,其特征在于,扩散阻挡层是非绝缘体。
4.根据权利要求2或3所述的金属带材,其特征在于,扩散阻挡层包含过渡金属。
5.根据权利要求1至3任一项所述的金属带材,其特征在于,涂层的金属选自Sn、Ni、Ag、Au、Pd、Cu、W或它们的合金。
6.根据权利要求1至3任一项所述的金属带材,其特征在于,碳纳米管以柱状排布在金属带材上。
7.根据权利要求1至3任一项所述的金属带材,其特征在于,所述碳纳米管是单壁或多壁的碳纳米管。
8.根据权利要求1至3任一项所述的金属带材,其特征在于,所述金属带材具有0.06至3mm的厚度。
9.根据权利要求8所述的金属带材,其特征在于,所述石墨烯和/或碳纳米管和/或富勒烯形成复合材料。
10.根据权利要求1所述的金属带材,其特征在于,所述石墨烯和/或富勒烯正交排布在碳纳米管上,或者石墨烯正交排布在碳纳米管和/或富勒烯上。
11.根据权利要求1至3任一项所述的金属带材,其特征在于,所述金属带材被预冲压。
12.用碳纳米管和/或富勒烯和金属涂布的金属带材的制备方法,该方法包括如下步骤:
a)用扩散阻挡层涂布金属带材,
b)在扩散阻挡层上施加成核层,
c)将根据步骤a)和b)处理的金属带材置于包含有机气态化合物的气氛中,
d)在200℃至1500℃的温度下在金属带材上形成碳纳米管和/或富勒烯,
e)用金属渗透碳纳米管和/或富勒烯,
其中在涂层中引入石墨烯,并且所述金属是Sn、Ni、Ag、Au、Pd、Cu或W以及它们的合金。
13.根据权利要求12所述的方法,其特征在于,用扩散阻挡层双面涂布金属带材。
14.根据权利要求12或13所述的方法,其特征在于,使用选自元素周期表的Fe族、第8、9或10副族的金属的金属盐作为成核层。
15.根据权利要求14所述的方法,其特征在于,部分地施加成核层。
16.根据权利要求12至13任一项所述的方法,其特征在于,金属带材暴露于烃气氛。
17.根据权利要求16所述的方法,其特征在于,除了烃气氛之外使用载气。
18.根据权利要求12至13任一项所述的方法,其特征在于,将金属带材置于具有有机气态化合物的水分含量为50至90%的气氛中。
19.根据权利要求12至13任一项所述的方法,其特征在于,形成碳纳米管和/或富勒烯的温度为200℃至900℃。
20.根据权利要求19所述的方法,其特征在于,形成多壁碳纳米管。
21.根据权利要求12至13任一项所述的方法,其特征在于,形成碳纳米管和/或富勒烯的温度为>900℃至1500℃。
22.根据权利要求21所述的方法,其特征在于,形成单壁碳纳米管。
23.根据权利要求12至13任一项所述的方法,其特征在于,碳纳米管以柱状形成于金属带材上。
24.根据权利要求12至13任一项所述的方法,其特征在于,通过真空法,电解、无电还原或通过熔入/渗入而用金属渗透碳纳米管和/或富勒烯。
25.根据权利要求12所述的方法,其特征在于,石墨烯正交排布在碳纳米管和/或富勒烯上,或者石墨烯和/或富勒烯正交排布在碳纳米管上。
26.根据权利要求12或25所述的方法,其特征在于,石墨烯和/或碳纳米管和/或富勒烯形成复合材料。
27.根据权利要求1至11任一项所述的金属带材或者由根据权利要求12至26任一项所述的方法制备的金属带材作为电子机械元件的用途。
28.根据权利要求27所述的用途,其特征在于,所述电子机械元件是冲压栅条。
CN200980127356.9A 2008-10-24 2009-09-03 带材上的金属/cnt-和/或富勒烯-复合材料-涂层 Expired - Fee Related CN102099506B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008053030.1 2008-10-24
DE102008053030A DE102008053030A1 (de) 2008-10-24 2008-10-24 Metall/CNT-und/oder Fulleren-Komposit-Beschichtung auf Bandwerkstoffen
PCT/DE2009/001236 WO2010045904A2 (de) 2008-10-24 2009-09-03 Metall/cnt- und/oder fulleren-komposit-beschichtung auf bandwerkstoffen

Publications (2)

Publication Number Publication Date
CN102099506A CN102099506A (zh) 2011-06-15
CN102099506B true CN102099506B (zh) 2014-02-19

Family

ID=42046380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980127356.9A Expired - Fee Related CN102099506B (zh) 2008-10-24 2009-09-03 带材上的金属/cnt-和/或富勒烯-复合材料-涂层

Country Status (11)

Country Link
US (1) US20110203831A1 (zh)
EP (1) EP2342366B1 (zh)
JP (1) JP5551173B2 (zh)
KR (1) KR101318536B1 (zh)
CN (1) CN102099506B (zh)
BR (1) BRPI0919567A2 (zh)
CA (1) CA2731922A1 (zh)
DE (1) DE102008053030A1 (zh)
MX (1) MX344640B (zh)
RU (1) RU2485214C2 (zh)
WO (1) WO2010045904A2 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853540B2 (en) * 2011-04-19 2014-10-07 Commscope, Inc. Of North Carolina Carbon nanotube enhanced conductors for communications cables and related communications cables and methods
US9487880B2 (en) * 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
KR101878740B1 (ko) * 2012-04-05 2018-07-17 삼성전자주식회사 금속 부식 방지 시스템
US9155198B2 (en) * 2012-05-17 2015-10-06 Eagantu Ltd. Electronic module allowing fine tuning after assembly
CN102719693B (zh) * 2012-06-11 2014-04-16 上海交通大学 石墨烯与碳纳米管混杂增强金属基复合材料及其制备方法
US9106985B2 (en) 2013-01-20 2015-08-11 International Business Machines Corporation Networking device port multiplexing
CN103286318B (zh) * 2013-04-03 2014-11-12 华中科技大学 一种纳米贵金属-碳纳米管-石墨烯复合材料的制备方法及其产品
CN103225076B (zh) * 2013-05-10 2014-12-24 南京信息工程大学 一种耐磨石墨烯表面改性方法
KR102216543B1 (ko) 2014-06-16 2021-02-17 삼성전자주식회사 그래핀-금속 접합 구조체 및 그 제조방법, 그래핀-금속 접합 구조체를 구비하는 반도체 소자
CN104357788B (zh) * 2014-10-30 2017-01-25 安徽鼎恒再制造产业技术研究院有限公司 一种Ni‑Gr‑B纳米涂层及其制备方法
CN104726924A (zh) * 2015-03-25 2015-06-24 西南石油大学 一种镍钨多壁碳纳米管复合镀液、镀膜及其制备方法
CN105506717A (zh) * 2015-12-25 2016-04-20 西南石油大学 一种高含MWCNTs-镍-钨的复合镀层及其制备方法
EP3485062A4 (en) 2016-10-07 2020-03-11 Hewlett-Packard Development Company, L.P. COATING FOR A STEAM CHAMBER
CN106591822B (zh) * 2016-11-28 2018-10-19 广东工业大学 一种石墨烯强化铜基复合涂层的制备方法和应用
CN107058784B (zh) * 2017-01-12 2018-09-11 哈尔滨工业大学 用于涂锡焊带的CNTs-Sn复合材料焊料的制备方法
CN107119262A (zh) * 2017-05-27 2017-09-01 华南理工大学 一种镍金属基体表面催化生长碳纳米管薄膜的方法
CN108922652A (zh) * 2018-05-23 2018-11-30 江苏时瑞电子科技有限公司 一种氧化锌压敏电阻用耐腐蚀电极浆料及其制备方法
RU2724227C1 (ru) * 2019-11-19 2020-06-22 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ изготовления термоакустического излучателя на основе графена
KR102366576B1 (ko) * 2020-05-29 2022-02-23 한국화학연구원 나노복합체 및 이를 함유하는 경화성 조성물
EP4248466A1 (en) * 2020-11-19 2023-09-27 Yazaki Corporation Aluminum-carbon metal matrix composites for busbars

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU450618A1 (ru) * 1972-06-15 1974-11-25 Экспериментальный научно-исследовательский институт кузнечно-прессового машиностроения Устройство дл размотки ленточного материала и намотки выштампованной ленты
GB9418937D0 (en) * 1994-09-20 1994-11-09 Isis Innovation Opening and filling carbon nanotubes
JP2000281995A (ja) * 1999-03-30 2000-10-10 Polymatech Co Ltd 熱伝導性接着フィルムおよび半導体装置
EP1392500A1 (en) * 2001-03-26 2004-03-03 Eikos, Inc. Coatings containing carbon nanotubes
RU2002116979A (ru) * 2002-06-25 2004-01-27 Александр Илларионович Плугин Способ получения фуллеренсодержащих материалов
FR2844510B1 (fr) * 2002-09-12 2006-06-16 Snecma Propulsion Solide Structure fibreuse tridimensionnelle en fibres refractaires, procede pour sa realisation et application aux materiaux composites thermostructuraux
JP3991156B2 (ja) * 2003-08-20 2007-10-17 日立造船株式会社 カーボンナノチューブの製造装置
FR2860780B1 (fr) * 2003-10-13 2006-05-19 Centre Nat Rech Scient Procede de synthese de structures filamentaires nanometriques et composants pour l'electronique comprenant de telles structures
US20070116957A1 (en) * 2005-05-11 2007-05-24 Molecular Nanosystems, Inc. Carbon nanotube thermal pads
US7449133B2 (en) * 2006-06-13 2008-11-11 Unidym, Inc. Graphene film as transparent and electrically conducting material
JP2010512298A (ja) * 2006-12-14 2010-04-22 ユニバーシティー オブ ウロンゴング ナノチューブとカーボン層とのナノ構造複合体
CN101275209A (zh) * 2007-03-30 2008-10-01 清华大学 热界面材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Hongjie Dai.Carbon nanotubes:opportunities and challenges.《Surface Science》.2002,第500卷218-241. *
陈慧等..填充氩后单壁碳纳米管的导热系数.《东南大学学报(自然科学版)》.2006,第36卷(第3期),416-419. *
陈慧等。.填充氩后单壁碳纳米管的导热系数.《东南大学学报(自然科学版)》.2006,第36卷(第3期),416-419.

Also Published As

Publication number Publication date
US20110203831A1 (en) 2011-08-25
WO2010045904A2 (de) 2010-04-29
EP2342366B1 (de) 2018-02-28
CA2731922A1 (en) 2010-04-29
MX344640B (es) 2017-01-04
RU2485214C2 (ru) 2013-06-20
RU2011108261A (ru) 2012-11-27
WO2010045904A3 (de) 2010-07-01
JP5551173B2 (ja) 2014-07-16
KR101318536B1 (ko) 2013-10-16
KR20110069820A (ko) 2011-06-23
DE102008053030A1 (de) 2010-04-29
EP2342366A2 (de) 2011-07-13
MX2011003316A (es) 2011-04-27
CN102099506A (zh) 2011-06-15
JP2012506356A (ja) 2012-03-15
BRPI0919567A2 (pt) 2015-12-08

Similar Documents

Publication Publication Date Title
CN102099506B (zh) 带材上的金属/cnt-和/或富勒烯-复合材料-涂层
CN102105396A (zh) 包含碳纳米管、富勒烯和/或石墨烯的涂层的制备方法
JP4589439B2 (ja) カーボンナノチューブ複合物の製造方法
Milowska et al. Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu–CNT composites
JP4589440B2 (ja) 線状カーボンナノチューブ構造体
JP4504453B2 (ja) 線状カーボンナノチューブ構造体の製造方法
JP4589438B2 (ja) カーボンナノチューブ複合物
EP2402285B1 (en) Method for fabricating composite material comprising nano carbon and metal or ceramic
Robertson et al. Applications of carbon nanotubes grown by chemical vapor deposition
CN101189372B (zh) 纳米结构在基底上的可控生长以及基于此的电子发射器件
McIntyre et al. Enhanced copper–carbon nanotube hybrid conductors with titanium adhesion layer
Kurt et al. Structure and field emission properties of decorated C/N nanotubes tuned by diameter variations
Kichambare et al. Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene
Rosolen et al. Electron field emission of carbon nanotubes on carbon felt
Wang et al. Different growth mechanisms of vertical carbon nanotubes by rf-or dc-plasma enhanced chemical vapor deposition at low temperature
Atthipalli et al. Ferrocene and Inconel assisted growth of dense carbon nanotube forests on copper foils
Maity et al. Systematic growth of carbon nanotubes on aluminum substrate for enhanced field emission performance
Lee et al. Vertically aligned growth of carbon nanotubes with long length and high density
Devaux et al. On the low-temperature synthesis of SWCNTs by thermal CVD
Sankaran et al. Diamond-gold nanohybrids–an enhanced cathode material for field electron emitter applications
Handuja et al. Growth of long aligned carbon nanotubes on amorphous hydrogenated silicon nitride by thermal chemical vapor deposition
Lee et al. Growth and electrical properties of multidimensional tungsten nano-buliding blocks
Hong et al. Improved field emission properties of reduced graphene oxide decorated with indium nanoparticles
TWI290592B (en) Single crystal metallic silicide-nanowire and method producing the same
Young et al. Self-assembly of multiwalled carbon nanotubes from quench-condensed CNi3 films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Address after: German Aus Knapp Luc

Applicant after: KME Germany GmbH & CO. KG

Applicant after: Tyco Electronics Amp Gmbh

Applicant after: Wieland Werke AG

Address before: German Aus Knapp Luc

Applicant before: KME Germany AG & Co. KG

Applicant before: Tyco Electronics Amp Gmbh

Applicant before: Wieland Werke AG

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: KME GERMANY AG + CO. KG TO: KME GERMANY GMBH + CO. KG

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140219

Termination date: 20190903