1290592 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種具有一維結構(one dimensional structure)的奈米材料,特別是指一種單晶金屬石夕化物 5 (single crystal metal si 1 icide)的奈米線體及其製作 方法。 【先前技術】 由於材料在奈米尺度(nanoscale)以下的物理及化學 性質,出現許多塊材(bulk)所觀察不到的特性,例如:奈 10 米量子效應、量子限域效應(quantum confinement)、奈 米粒子表面效應等。因此,不管在基礎學科或高科技產業 中,研究開發奈米材料是相當熱門的一個課題。 就一維奈米材料領域而言,它包括了奈米管 (nanotube)、奈米線、奈米棒(nanorod)等材料。近幾年 15 來較常見的一維奈米材料則有碳奈米管(carbon nanotube ;簡稱CNT)、矽奈米線、氧化辞(ZnO)奈米線、 碳化矽(SiC)奈米棒、氧化鉬(Mo〇3)奈米線及奈米金屬線 (metal nanowire)等 。 前述之一維奈米材料的合成方法則有常見的化學氣 20 相沉積法(chemical vapor deposition ;簡稱 CVD)、雷射 剝溶(laser ablation)法及模板成形法(Template-based method) 〇 隨著網路數位時代的來臨,電腦的運算速度必須大量 的提昇,但相對地,元件的尺寸也以相同的速度縮小。以 1290592 目前半導體製程來看,元件的密度及線寬似乎很難有巨大 的突破,因此奈米材料提供一個新的構想來克服傳統製程 方法所難以達到的障礙,例如,應用於奈米元件 (nanodevice)上的内連線’奈米金屬線則是不錯的選擇之 5 一0 此外,由於一維奈米材料具有高長寬比(aspect ratio),可增加電子場效發射(field emission)效率,因 此,也是應用於場效發射元件上的最佳選擇。 近十年來研究具有一維結構的奈米材料相關領域者 10 不斷在開發的目標,包括有上面所提及的各種一維奈米材 料、一維奈米材料的製作方法及其應用,然而,尋求不同 材質的一維奈米材料及其製作方法,更是研究奈米材料相 關領域者所須開發的課題之一。 【發明内容】 15 一般地,在晶粒成長(grain growth)的模式中,奈米 線體是以非等向性成長(an isotropic growth)的模式成核 與成長(nucl eat ion and growth)。然而,此種非等向性 的成長模式則可見於具有異向性結晶晶態(anisotropic crystallographic crystal line)的結構中,意即,非對 20 稱性結晶結構(non-symmetric crystallographic structure) °此外,對於奈米線體的異向性成長速率而 s ^致奈米線體成長的主要因素之一,表面能(surface energy)則扮演著重要的角色。 藉由線體成長之動力學理論,奈米線體之表面的二維 1290592 成核率(nucleation probabi 1 ity)可經由下列公式(1)取 得:BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a nano material having a one dimensional structure, and more particularly to a single crystal metal si 1 (single crystal metal si 1) The rice body of the pesticide and its preparation method. [Prior Art] Due to the physical and chemical properties of materials below the nanoscale, many properties that are not observed by bulk, such as nanometer quantum effect and quantum confinement, appear. , surface effects of nano particles, etc. Therefore, research and development of nanomaterials is a hot topic in both basic and high-tech industries. In the field of one-dimensional nanomaterials, it includes materials such as nanotubes, nanowires, and nanorods. In recent years, the more common one-dimensional nano-materials are carbon nanotubes (CNTs), tantalum nanowires, oxidized (ZnO) nanowires, tantalum carbide (SiC) nanorods, Molybdenum oxide (Mo〇3) nanowires and metal nanowires. One of the aforementioned methods for synthesizing Venn materials is a common chemical gas deposition method (CVD), laser ablation method, and template-based method. With the advent of the Internet digital era, the computing speed of computers must be greatly improved, but the size of components is also reduced at the same speed. In the current semiconductor manufacturing process of 1290952, it seems that the density and line width of components are difficult to make a huge breakthrough. Therefore, nanomaterials provide a new concept to overcome the obstacles that are difficult to achieve by traditional process methods, for example, for nano components ( The interconnect on the nanodevice) 'nano metal wire is a good choice 5 - 0. In addition, because the one-dimensional nano material has a high aspect ratio, it can increase the field emission efficiency of the electron field. It is also the best choice for field effect emission components. In the past ten years, we have been studying the development of nanomaterials with one-dimensional structure. 10 The targets of various developments include the various one-dimensional nanomaterials, the fabrication methods of the one-dimensional nanomaterials and their applications. However, The search for one-dimensional nanomaterials of different materials and their production methods is one of the topics to be developed in the field of nanomaterials. SUMMARY OF THE INVENTION Generally, in a grain growth mode, a nanowire body is nucl eat ion and growth in an isotropic growth mode. However, such an anisotropic growth mode can be found in a structure having an anisotropic crystallographic crystal line, that is, a non-symmetric crystallographic structure. Surface energy plays an important role in the growth rate of the nanowire body and the growth of the nanowire body. By the dynamics theory of linear growth, the two-dimensional 1290592 nucleation probatiness of the surface of the nanowire can be obtained by the following formula (1):
B exp πσ k2T2lna (1) 其中,B是一常數;σ是固態線體之表面能;k是波茲 5 曼常數(Boltzmann constant) ; T 是絕對溫度(absolute temperature) ; oc是一正比於絕對溫度(T)的過飽和比且被 定義為P/Pd(P為實際蒸氣壓力,Ρ。為平衡蒸氣壓力)。 10 15 表面能是與結晶面(crystalline plane)有關,換句 話說,由於具有低表面能的晶面(l〇w surface energy plane)是位於低米勒指數(Miller index)面。因此,由公 式(1)可得’具有低表面能的低米勒指數晶面可增加成核 率(P0,導致奈来線體之異向性成長具有不同晶面之晶體 成長率。由前所述,控制成長及成核過程中的溫度及過飽 和度,致使成長方向沿著具有低米勒指數面的方向成長, 是形成奈米線體製程中的兩大主要製程條件。B exp πσ k2T2lna (1) where B is a constant; σ is the surface energy of the solid line; k is the Boltzmann constant; T is the absolute temperature; oc is a positive ratio to absolute The supersaturation ratio of temperature (T) is defined as P/Pd (P is the actual vapor pressure, Ρ is the equilibrium vapor pressure). 10 15 Surface energy is related to the crystalline plane. In other words, because the surface energy plane with low surface energy is located on the Miller index surface. Therefore, from equation (1), the low Miller index crystal plane with low surface energy can increase the nucleation rate (P0, which leads to the anisotropic growth of the nematic body with crystal growth rates of different crystal faces. In the above, controlling the temperature and supersaturation during the growth and nucleation process, the growth direction grows along the direction with the low Miller index surface, which is the two main process conditions in the formation of the nanowire system.
因此,於一實質上由矽(so所構成的基材(substrate) 上形成一金屬石夕化物層(M,Sh film)或複數金屬秒化物奈 米點(M’Si2 nano-dot),並將該基材放置於一溫度至少高 於800°C的高真空環境中,藉由在該真空環境中提供一 Z 屬源(metal source ; M”),致使Μ’、M”及Si粒子由今美 材、金屬石夕化物(M’Sh)及金屬源產生汽化 (vaporization),以製作成本發明之單晶金屬矽化物的奈 米線體。 參閱圖1,在此以M’Sh奈米點說明之,M,、M,,及& 20 1290592 粒子由該基材、M,Si2奈米點及金屬源產生汽化,並於該基 材上形成複數M’M”Si2晶核(nucleation)且於該基材上留 下複數的凹穴(void)。該等M’M’’Si2晶核將藉由陽離子一陰 離子(cation-anion)重新排列,以平衡位於該基材上低溫 5 區域的局部電荷及結構。由於M,Si2奈米點的尺寸效應 (size effect),以造成共晶點(eutectic point)下降致 使Μ’粒子由M,Sh奈米點離開,並使μ,、M”及Si粒子於該 基材上形成該等M,M,,Si2晶核。 參閱圖2 ’新產生的Μ’、M”及Si粒子將繼續地累積在 10 已成形的該等M’M”Sl2晶核上,藉以形成具有低表面能的 晶面(以c/a值> 1· 633為例,即,垂直於[〇〇〇1]方向的晶 面)。 如圖3所示,由於M,M,,Sh晶核沿著[0001 ]方向具有 較尚的成長速率,因此M’M,,Si2晶核具有不同晶體成長速 15 率的晶面,並藉此構成單晶M,M,,Sh的奈米線體。值得一 提的是,當M’Sh的厚度增加時(意即,將M,Si2奈米點取 代為M’Sh層),則在此溫度之下將沒有M,粒子自M,Si2層 離開,導致僅僅成長出單晶M,,Si2的奈米線體。 因此’本發明之目的,即在提供一種單晶金屬矽化物 20 的奈米線體。 本發明單晶金屬矽化物的奈米線體,包含一具有下列 化學式(I)之化合物: MSi2................................. 其中’該Μ是至少一選自於下列所構成之群組的金屬 1290592 元素·組(Ta)、鎢(w)、鉬(M〇)、鐵(Fe)、銘(Co)、鎳(Ni) 及舶(Pt)。該化合物具有單晶結構並呈長徑比(長度大小/ 線徑大小)是至少大於丨· 25的奈米線狀。 此外,本發明之另一目的,即在提供一種製作單晶金 屬石夕化物的奈米線體的方法。 因此’本發明製作單晶金屬矽化物的奈米線體的方 法,包含下列步驟: (A) 提供一實質上由矽(Si)所構成的基材; (B) 於該基材上形成至少一由選自於下列所構成之 群組的金屬元素所製成的金屬層:鐵、結、鎳及 鉑; (C) 對该基材貫施《 次真空退火(anneal ing); (D) 將該基材放置於一減壓環境; (E) 於該減壓環境内提供一選自於下列所構成之群 組的金屬源··钽源、鎢源及鉬源;及 (F) 對δ亥基材貫施一維持一預定時間的二次真空退 火,致使該金屬源汽化,以製作出該單晶金屬矽 化物的奈米線體。 本發明之功效能提供具有熱穩定性(thermal stability)高,以及具有似金屬的電阻係數(metal〜like resistivity)等特性的單晶金屬矽化物的奈米線體及其 製作方法。 【實施方式】 本發明早晶金屬碎化物的奈米線體,包含一具有下歹,j 9 化學式(I)之化合物: MSi2.................................(I) 其中’該Μ是至少一選自於下列所構成之群組的金屬 元素:鈕、鎢、鉬、鐵、鈷、鎳及鉑。該化合物具有單晶 結構並呈長徑比是至少大於1. 25的奈米線狀。 較佳地’該化合物是呈長徑比介於1. 25〜346. 15之間 的奈米線狀;在一具體實施例中,該Μ是鐵及鈕(即;該 化學式(I)是(FexTai-x)Si2,其中,1<χ<0)。在另一具體 實施例中,該Μ是鈕(即;該化學式(I)是TaSi2)。 另外,上述所提及的單晶金屬矽化物的奈米線體可藉 由下述之方法製作而得。本發明之製作單晶金屬矽化物的 奈米線體的方法,包含下列步驟: (A) 提供一實質上由矽所構成的基材; (B) 於該基材上形成至少一由選自於下列所構成之 群組的金屬元素所製成的金屬層:鐵、鈷、錄及 鉑; (C) 對該基材實施--次真空退火; (D )將該基材放置於一減壓環境; (E) 於該減壓環境内提供一選自於下列所構成之群 組的金屬源··组源、鎢源及鉬源;及 (F) 對該基材實施一維持一預定時間的二次真空退 火,致使該金屬源汽化,以製作出該單晶金屬石夕 化物的奈米線體。 較佳地,該步驟(A)的基材是一由矽所構成的矽晶圓 1290592 (Si wafer),或一由石夕及錯(Ge)所構成的石夕錯晶圓 (Si〇·sGeo.2 waf er)。在一具體實施例中,該步驟(A)的基材 是一矽晶圓。 ίο 較佳地,該步驟(B)的金屬層的厚度是介於1 nm至5 nm 之間,且於該步驟(A)之後更進一步地包含一於該基材上 形成一非晶石夕層(amorphous Si layer)的步驟(A’)。適用 於本發明之該步驟(A,)的非晶矽層的厚度是介於2 nm至 100 nm之間。較佳地,該步驟(A,)的非晶矽層的厚度是介 於2 nm至5 0 nm之間。且,在一具體實施例中,該步驟 (B)的金屬層是由鐵所製成。 較佳地,該步驟(B)的金屬層的厚度是介於1〇 nm至 50 nm之間。在一具體實施例中,該步驟的金屬層是由 鐵所製成,且在另一具體實施例中,該步驟(B)的金屬層 是由鎳所製成。 15 較佳地,實施於該步驟(C)的一次真空退火的溫度是 高於700。(:。更佳地,實施於該步驟(c)的一次真空退火的 溫度是介於700°C至1000°c之間。在一 具體實施例中,實 施於該步驟(C)的一次真空退火的溫度是8〇(rc。 較佳地,該步驟(D)的減壓環境的壓力是低於丨χΐ〇_[ Torr。更佳地,該步驟(D)的減壓環境的壓力是介於} 5Therefore, a metal film (M, Sh film) or a plurality of metal nano-dots (M'Si2 nano-dot) is formed substantially on a substrate composed of 矽 (so) Placing the substrate in a high vacuum environment at a temperature of at least higher than 800 ° C, by providing a Z source (M" in the vacuum environment, causing the Μ', M" and Si particles to be Today, the US, the metal sulphate (M'Sh) and the metal source are vaporized to produce a nanowire body of the single crystal metal ruthenium of the invention. Referring to Figure 1, here M'Sh nm By way of illustration, M, M, and & 20 2090592 particles are vaporized by the substrate, M, Si2 nano-dots and metal sources, and a complex M'M"Si2 nucleus is formed on the substrate. And leaving a plurality of voids on the substrate. The M'M''Si2 nucleus will be rearranged by a cation-anion to balance the low temperature on the substrate. The local charge and structure of the region. Due to the size effect of the M, Si2 nano-dots, to cause eutectic points (eutecti The decrease in c point causes the particles to exit from the M, Sh nano-dots and causes the μ, M, and Si particles to form the M, M, and Si 2 crystal nuclei on the substrate. The Μ', M" and Si particles will continue to accumulate on the 10 formed M'M"Sl2 nucleuses, thereby forming a crystal plane with low surface energy (with a c/a value > 1·633) For example, a crystal plane perpendicular to the [〇〇〇1] direction. As shown in Fig. 3, since the M, M, and Sh crystal nuclei have a relatively high growth rate along the [0001] direction, M'M , Si2 crystal nucleus has crystal planes with different crystal growth rate of 15 degrees, and thereby constitutes a nanowire of single crystal M, M, and Sh. It is worth mentioning that when the thickness of M'Sh is increased (meaning That is, if the M, Si2 nanodots are replaced by the M'Sh layer), there will be no M at this temperature, and the particles will leave the M, Si2 layer, resulting in the growth of only the single crystal M, the nanowire of Si2. Therefore, the object of the present invention is to provide a nanowire body of a single crystal metal telluride 20. The nanowire body of the single crystal metal telluride of the present invention comprises a chemical formula (I) having the following chemical formula (I). Substance: MSi2................................. Where 'the Μ is at least one selected from the following Group of metals 1290592 Elemental Group (Ta), Tungsten (W), Molybdenum (M〇), Iron (Fe), Ming (Co), Nickel (Ni), and Ship (Pt). The compound has a single crystal structure and The aspect ratio (length/line diameter) is a nanowire shape of at least 丨·25. Further, another object of the present invention is to provide a method of producing a nanowire body of a single crystal metal. Therefore, the method for producing a nanowire metal halide nanowire of the present invention comprises the following steps: (A) providing a substrate substantially composed of cerium (Si); (B) forming at least the substrate a metal layer made of a metal element selected from the group consisting of iron, agglomerate, nickel, and platinum; (C) applying a "anneal ing" to the substrate; (D) Placing the substrate in a reduced pressure environment; (E) providing a metal source selected from the group consisting of: a source of germanium, a source of tungsten, and a source of molybdenum; and (F) The δ hai substrate is subjected to a secondary vacuum annealing for a predetermined time to cause the metal source to vaporize to form a nanowire body of the single crystal metal ruthenium. The effect of the present invention can provide a nanowire body of a single crystal metal telluride having high thermal stability and a metal-like resistivity and the like. [Embodiment] The nanowire body of the early crystalline metal fragment of the present invention comprises a compound having the formula (I) of the formula: MSi2................. ...........(I) wherein 'the Μ is at least one metal element selected from the group consisting of: knob, tungsten, molybdenum, iron, cobalt, nickel And platinum. The nanowire-like structure having a single crystal structure and having an aspect ratio of at least greater than 1.25. Preferably, the compound is in the form of a nanowire having an aspect ratio of between 1.25 and 346. 15; in one embodiment, the crucible is iron and a button (ie; the formula (I) is (FexTai-x) Si2, where 1 <χ<0). In another specific embodiment, the Μ is a button (i.e., the formula (I) is TaSi2). Further, the above-mentioned single crystal metal halide nanowire body can be produced by the following method. The method for producing a nanowire metal halide nanowire of the present invention comprises the steps of: (A) providing a substrate substantially composed of ruthenium; (B) forming at least one selected from the substrate a metal layer made of a metal element of the group consisting of: iron, cobalt, and platinum; (C) subjecting the substrate to a secondary vacuum annealing; (D) placing the substrate in a minus (E) providing a metal source selected from the group consisting of: a group source, a tungsten source, and a molybdenum source in the reduced pressure environment; and (F) performing a maintenance on the substrate The secondary vacuum annealing of time causes the metal source to vaporize to produce a nanowire body of the single crystal metallite. Preferably, the substrate of the step (A) is a germanium wafer 1290952 (Si wafer) composed of tantalum, or a Shi Xi wrong wafer composed of Shi Xi and wrong (Ge) (Si〇· sGeo.2 waf er). In a specific embodiment, the substrate of step (A) is a wafer. Preferably, the thickness of the metal layer of the step (B) is between 1 nm and 5 nm, and after the step (A), further comprising forming an amorphous rock on the substrate. Step (A') of an amorphous Si layer. The thickness of the amorphous germanium layer suitable for this step (A,) of the present invention is between 2 nm and 100 nm. Preferably, the thickness of the amorphous germanium layer of the step (A,) is between 2 nm and 50 nm. And, in a specific embodiment, the metal layer of the step (B) is made of iron. Preferably, the thickness of the metal layer of the step (B) is between 1 〇 nm and 50 nm. In a specific embodiment, the metal layer of this step is made of iron, and in another embodiment, the metal layer of step (B) is made of nickel. Preferably, the temperature of one vacuum annealing performed in the step (C) is higher than 700. (: More preferably, the temperature of one vacuum annealing performed in the step (c) is between 700 ° C and 1000 ° C. In a specific embodiment, a vacuum applied to the step (C) The annealing temperature is 8 Torr (rc. Preferably, the pressure of the reduced pressure environment of the step (D) is lower than 丨χΐ〇_[Torr. More preferably, the pressure of the reduced pressure environment of the step (D) is Between} 5
Torr至1 xl(T6Torr之間。在一呈鲈每 J隹具月豆貝軛例中,該步驟(D) 的減壓環境的壓力是1. 2 χΐ (Γ6 Tarr。 地,該步驟(E)的金屬源是一鈕源。在一具_4 施财,馳源是-具有—由朗製成的㈣之電阻= 20 1290592 器(filament heater)。 車父佳地’貫施於該步驟(F)的預定時間是至少高於8 小時。更佳地,實施於該步驟(F)的預定時間是介於8小 時至32小時之間。在一具體實施例中,實施於該步驟(F) 的預定時間是16小時。 較佳地,實施於該步驟(F)的二次真空退火的溫度是 介於8 0 0 C至12 0 0 C之間。在一具體實施例中,實施於該 步驟(F)的二次真空退火的溫度是95〇°c。 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之三個具體實施例的詳細說明中,將可 清楚的明白。 〈具體實施例一〉 本發明之製作單晶金屬矽化物的奈米線體的方法之 一具體實施例一說明如下。 在一石夕晶圓基材上形成一厚度為4 nm的非晶石夕(a—si) 層,並於該非晶矽層上形成一厚度為1. 5 nm的鐵金屬層。 將該具有非晶矽層及鐵金屬層的矽晶圓基材放置於一真 空(vacuum)度為1.0 xl〇8Torr的退火爐中,實施·維持 2小時且溫度為8 0 0 °C的一次退火,以在該石夕晶圓基材上 形成複數尺寸介於2 0 nm至3 0 nm之間的鐵;ε夕化物奈米點 (β-FeSi2 nano-dots)。 進一步地,將該具有β-FeS i2奈米點的矽晶圓基材放置 於前述之退火爐中,對該退火爐實施一減壓以使該退火濟 達一 1·2 xl(T6 Torr的真空度。以設置在該退火爐内的处 12 1290592 絲電阻加熱器作為加熱源,將該退火爐内的溫度昇溫至 950°C並持溫16小時,以對該具有β—以仏奈米點實施一二 -人退火。藉由自該鈕絲表面汽化之鈕粒子、自該等卜以以2 奈米點表面汽化的鐵、石夕粒子,及自該石夕晶圓基材表面汽 化的矽粒子,以製作出單晶矽化鐵鈕的奈米線體。 簽閱圖4,由該具體實施例一之低倍率掃描式電子顯 微鏡(scanning electron micr〇sc〇pe;以下簡稱 sem)形 貌圖得,圖4中SEM俯視形貌圖的陰暗區域為圖4之右上 角插入圖示(SEM之截面形貌圖)中的凹陷區。此處的凹陷 區疋由农石夕粒子自該石夕晶圓基材上產生汽化,以補充單晶 矽化鐵紐的奈米線體在成長過程中的矽源所致。 筝閱圖5,由該具體實施例一之高倍率SEM截面形貌 圖可得,該具體實施例一之單晶矽化鐵钽的奈米線體具有 數百奈米至數個微米之間的長度,並具有平均介於2〇 至30 nm的直徑。此外,由於奈米線體於成長末期時,鐵、 鈕及矽粒子在堆積排列過程中會產生梯階(step)及糾結 (kink)等現象,因此,由圖5右側插入之圖示顯示,該具 體實施例一之單晶矽化鐵鈕的奈来線體於末端的表面形 貌是呈現一圓頂狀。 參閱圖6 ’由該具體實施例一不同成長階段的SEM形 貌圖顯不’本發明單晶金屬矽化物的奈米線體之長度,隨 著成長時間增加而變長。 參閱圖7,由該具體實施例一之穿透式電子顯微鏡 (transmission electron microscope;以下簡稱 TEM)形 13 1290592 貌可得,該具體實施例一之單晶矽化鐵钽的奈米線體具有 約23 nm的直徑,且由圖7之TEM形貌圖可觀察到,於直 徑為23 nm的單晶矽化鐵钽的奈米線體表面,形成有一厚 度約介於2 nm至3 nm之間的非晶金屬氧化物層 5 (Ta-Si-0)。此外,圖7之右側插入的圖示(電子繞射圖形; electron diffraction pattern)顯示,由[120]晶帶軸 (zone axis)得該具體實施例一之單晶矽化鐵钽的奈米線 體為具有TaSi2晶相(crystal phase)的六方晶結構 (hexagonal structure),而由 JCPDS 卡第 38-0483 號比 10 對取得,該具體實施例一之單晶矽化鐵鈕的奈米線體具有 P6222(180)之點陣(point group),以及 a = 0.478 nm 及 c = 0.656 nm 的晶格參數(lattice parameter)。 參閱圖8,由高解析度穿透式電子顯微鏡(high resolution transmission electron microscope;以下 15 簡稱HRTEM)影像圖顯示,該具體實施例一之單晶矽化鐵钽 的奈米線體的(0003)及(2 110)面之晶格間距(d spacing) 分別為 0· 22 nm 及 0. 25 nm。 參閱圖9,由TEM之高角度環形暗視野(high annular angle dark field ;簡稱HAADF)影像及其能量散佈能譜儀 20 (energy dispersive spectrometer ;簡稱 EDS)之定性成 分分析分布圖顯示,該具體實施例一之單晶矽化鐵钽的奈 米線體’沿轴向地呈現出含有均勻分布的鐵、|旦及石夕。 參閱圖10,由TEM的EDS成分分析分布圖顯示,於該 具體實施例一之單晶矽化鐵钽的奈米線體中的鐵、鈕及矽 14 1290592 含量,也於該奈米線體中沿徑向地呈現均勻分布。其中, Fe°/〇 : Ta°/〇 : Si% : := 12. 28% ·· 25· 09% : 62· 23%。在該具體 實施例一中的奈米線體之鐵來源,是由於p-FeSi2*米點的 尺寸效應’以造成共晶點下降致使鐵粒子由β-FeSi 2奈米點 離開並構成該具體實施例一的單晶矽化鐵鈕的奈米線體。 參閱圖11,該具體實施例一之奈米線體是被放置於1 xlO 7 Torr的真空環境並以1〇〇 pm的兩極間距為場效發射 率特性的分析條件。由圖11之電流密度(J)對電場強度(Ε) 圖顯示,當電場強度為7·5 ν/μιη時,電流密度值為3〇 mA/cm2 ’其中,起始(turn_on)電場強度為5. 5 ν/μιη。 值得一提得是,此處場效發射特性的分析,是在該具 體實施例一之單晶矽化鐵钽的奈米線體尚未去除表面的 非晶氧化層的情況下實施。本發明更可以進一步地利用高 溫氫氣,移除形成於本發明之單晶金屬矽化物的奈米線體 表面的非晶金屬氧化物層,以降低電子場效發射所需克服 的功函數(work function)。 〈具體實施例二〉 本發明之製作單晶金屬矽化物的奈米線體的方法之 一具體貫施例二,大致上是與該具體實施例一相同。其不 同處在於,該石夕晶圓基材上沒有形成該非晶石夕&,且形成 於該石夕晶圓基材上的鐵金屬層之厚度為3〇⑽,以致於經 過該-次退火後,於該石夕晶圓基材上形成有一厚度為· nm左右的β—FeSi2膜。 茶閱圖12,由高倍_ _截面形貌圖顯示,在該具體 15 1290592 實施例二中’該β-FeSh膜上形成有複數平均長度介於5〇 ηπι至100 nm之間,且直徑介於30 nm至40 nm之間的單 晶矽化鈕的奈米線體。 參閱圖13,由高倍率SEM俯視形貌圖顯示,於前述圖 12中所觀察到的单晶石夕化|旦的奈米線體是均勻地分布於 該β-FeSi2膜上。 參閱圖14 ’由該具體實施例二之TEM形貌圖顯示,該 具體實施例二之單晶矽化鈕的奈米線體具有約3〇 ηιη的直 徑。此外,圖14之右側插入的電子繞射圖形顯示,由[124] 晶帶軸得該具體實施例二之單晶矽化鈕的奈米線體為具 有TaSh晶相的六方晶結構,而由jcpds卡第38-0483號 比對仍取得,該具體實施例二之單晶矽化鈕的奈米線體具 有 P6222( 180)之點陣,以及 a 二 0.478 nm 及 c = 0.656 mn 的晶格參數。 參閱圖15 ’由HRTEM影像圖顯示,該具體實施例二之 單晶石夕化组的奈米線體的(5110)及(0 i21)面之晶格間距 为別為 0 · 2 4 run 及 0 · 19 run。 參閱圖16 ’由TEM的EDS定性成分分析顯示,該具體 貝&例一之單晶石夕化组的奈米線體是含有组及石夕。其中,Torr to 1 xl (between T6Torr. In a 鲈 鲈 鲈 鲈 鲈 鲈 鲈 鲈 鲈 鲈 鲈 鲈 鲈 鲈 Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar Tar The metal source is a button source. In a _4 fortune, the source is - with - (D) made of lang = 4 1290592 filament heater. The predetermined time of F) is at least more than 8 hours. More preferably, the predetermined time for performing the step (F) is between 8 hours and 32 hours. In a specific embodiment, the step is performed (F) The predetermined time is 16 hours. Preferably, the temperature of the secondary vacuum annealing performed in the step (F) is between 80 ° C and 1 200 ° C. In a specific embodiment, The temperature of the second vacuum annealing of the step (F) is 95 ° C. The foregoing and other technical contents, features and effects of the present invention will be described in the following detailed description of three specific embodiments with reference to the drawings. It can be clearly understood. <Specific Example 1> One of the methods for producing a nanowire of a single crystal metal telluride 5纳米的铁金属。 The first embodiment of the present invention is as follows: a thickness of 4 nm of a layer of austenite (a-si) layer, and a thickness of 1. 5 nm of iron metal The germanium wafer substrate having the amorphous germanium layer and the iron metal layer was placed in an annealing furnace having a vacuum of 1.0 x 10 Torr, and was maintained and maintained for 2 hours at a temperature of 800 ° C. One-time annealing to form a plurality of irons having a size between 20 nm and 30 nm on the stone substrate; β-FeSi2 nano-dots. Further, The ruthenium wafer substrate having the β-FeS i2 nanodots is placed in the annealing furnace described above, and the annealing furnace is subjected to a pressure reduction so that the annealing reaches a vacuum of T1 Torr (T6 Torr). The 12 1290592 wire resistance heater disposed in the annealing furnace is used as a heating source, and the temperature in the annealing furnace is raised to 950 ° C and held for 16 hours to perform the first and second - human annealing, by the button particles vaporized from the surface of the button, the iron, the Shixia particles vaporized from the surface at 2 nm, and from the stone The cerium particles vaporized on the surface of the wafer substrate were used to fabricate a nanowire of a single crystal bismuth iron button. Referring to Fig. 4, a scanning electron microscope (scanning electron micr〇sc〇) of the specific example 1 was used. Pe; hereinafter referred to as sem) topography, the dark area of the SEM top view in Figure 4 is the recessed area in the upper right corner of Figure 4 (the cross-sectional topography of SEM). Vaporization is generated from the Nishixia wafer substrate by the Nongshixi particles to supplement the source of the nanowires of the single crystal deuterated iron in the growth process. FIG. 5 is obtained by the high-magnification SEM cross-sectional topography of the first embodiment. The nanowire of the single crystal antimony telluride of the specific embodiment has a range of several hundred nanometers to several micrometers. Length, and has an average diameter of between 2 〇 and 30 nm. In addition, since the nanowire body is at the end of growth, the iron, the button and the ruthenium particles may have steps and kinks during the stacking process, and therefore, the icon inserted on the right side of FIG. 5 shows The surface topography of the nematic wire of the single crystal antimony iron button of the specific embodiment 1 exhibits a dome shape. Referring to Fig. 6', the SEM topography of the different growth stages of the specific embodiment shows that the length of the nanowire body of the single crystal metal telluride of the present invention becomes longer as the growth time increases. Referring to FIG. 7, a transmissive electron microscope (TEM) shape 13 1290592 of the specific embodiment 1 is obtained. The nanowire body of the single crystal deuterated iron crucible of the specific embodiment 1 has about The diameter of 23 nm, and can be observed from the TEM topography of Fig. 7, on the surface of the nanowire of the single crystal of the 23 nm diameter, a thickness of about 2 nm to 3 nm is formed. Amorphous metal oxide layer 5 (Ta-Si-0). In addition, the diagram (electron diffraction pattern) inserted on the right side of FIG. 7 shows that the nanowire of the single crystal deuterated iron crucible of the first embodiment is obtained from the [120] zone axis. It is a hexagonal structure having a crystal phase of TaSi2, and is obtained by JCPDS card No. 38-0483 to 10 pairs. The nanowire body of the single crystal antimony iron button of the first embodiment has P6222. (180) The point group, and the lattice parameter of a = 0.478 nm and c = 0.656 nm. Referring to FIG. 8, a high resolution transmission electron microscope (hereinafter referred to as HRTEM) image shows the (0003) of the nanowire of the single crystal smelting iron shovel of the first embodiment. The lattice spacing (d spacing) of the (2 110) plane is 0·22 nm and 0.25 nm, respectively. Referring to FIG. 9, the qualitative analysis of the high-order angular dark field (HAADF) image and the energy dispersive spectrometer 20 (EDS) of the TEM shows that the specific implementation is performed. The nanowire body of the single crystal deuterated iron crucible of Example 1 exhibits a uniform distribution of iron, dan and shixi in the axial direction. Referring to FIG. 10, the EDS component analysis profile of the TEM shows that the content of iron, button and 矽14 1290592 in the nanowire of the single crystal bismuth iron bismuth of the specific embodiment 1 is also in the nanowire body. A uniform distribution appears in the radial direction. Wherein, Fe°/〇 : Ta°/〇 : Si% : := 12. 28% ·· 25· 09% : 62· 23%. The iron source of the nanowire in the first embodiment is due to the size effect of the p-FeSi2* rice point to cause the eutectic point to drop, causing the iron particles to leave the β-FeSi 2 nanometer and constitute the concrete The nanowire of the single crystal bismuth iron button of the first embodiment. Referring to Fig. 11, the nanowire body of this specific embodiment is an analysis condition in which a field effect emissivity characteristic is set in a vacuum environment of 1 x 10 7 Torr and a pitch of 1 pm. The current density (J) versus electric field strength (Ε) plot of Figure 11 shows that when the electric field strength is 7·5 ν/μιη, the current density value is 3〇mA/cm2 'where the initial (turn_on) electric field strength is 5. 5 ν/μιη. It is worth mentioning that the analysis of the field emission characteristics here is carried out in the case where the nanowire body of the single crystal bismuth iron bismuth of the specific embodiment 1 has not been removed from the surface of the amorphous oxide layer. The present invention can further utilize high temperature hydrogen gas to remove the amorphous metal oxide layer formed on the surface of the nanowire body of the single crystal metal halide of the present invention to reduce the work function required to overcome the electron field emission (work Function). <Embodiment 2> A specific embodiment 2 of the method for producing a nanowire metal halide of the present invention is substantially the same as that of the specific embodiment 1. The difference is that the amorphous metal layer is not formed on the stone substrate, and the thickness of the iron metal layer formed on the stone substrate is 3〇(10), so that the time passes After annealing, a β-FeSi2 film having a thickness of about nm is formed on the Shihua wafer substrate. The tea is shown in Fig. 12, which is shown by the high-magnification _ cross-sectional top view. In the specific example 15 1290592, the second embodiment has a complex average length of between 5 〇ηπι and 100 nm, and the diameter is A nanowire of a single crystal germanium button between 30 nm and 40 nm. Referring to Fig. 13, a high-magnification SEM top view shows that the single crystal nanowires observed in the above-mentioned Fig. 12 are uniformly distributed on the β-FeSi2 film. Referring to Fig. 14', the TEM topography of the second embodiment shows that the nanowire of the single crystal wafer of the second embodiment has a diameter of about 3 〇 ηη. In addition, the electron diffraction pattern inserted on the right side of FIG. 14 shows that the nanowire body of the single crystal smear button of the second embodiment is a hexagonal crystal structure having a TaSh crystal phase, and jcpds is obtained from the [124] ribbon axis. The card No. 38-0483 is still obtained. The nanowire of the single crystal deuteration button of the second embodiment has a lattice of P6222 (180), and a lattice parameter of a two 0.478 nm and c = 0.656 mn. Referring to FIG. 15 'shown by the HRTEM image, the lattice spacing of the (5110) and (0 i21) faces of the nanowire body of the single crystal stone of the specific embodiment 2 is 0 · 2 4 run and 0 · 19 run. Referring to Figure 16 'DED qualitative component analysis by TEM, it is shown that the nanowire body of the single crystal rock of the specific shell & among them,
Ta% : Si% = 33. 6% : 66.4%。 參閱圖17,由J-E圖顯示,該具體實施例二之單晶矽 化鈕的奈米線體於電場強度7.5 V/μιη時,電流密度值為 3· 25 mA/cm2,其中,起始電場強度為6· 3 V/μπι。 <具體實施例三〉 16 1290592 本發明之製作單晶金屬矽化物的奈米線體的方法之 一具體實施例三,大致上是與該具體實施例二相同。其不 同處在於,形成於該矽晶圓基材上的鐵金屬層是以一具有 一厚度為30 nm的鎳金屬層所取代,以致於經過該一次退 火後,於該矽晶圓基材上形成有一厚度為10〇 nm左右的 NiSi2膜。 參閱圖18,由低倍率SEM截面形貌圖顯示,在該具體 貫施例三中,該矽晶圓基材上形成有複數長度介於數個微 米至數百個奈米之間的單晶矽化鈕的奈米線體。 參閱圖19,由低倍率SEM俯視形貌圖顯示,可明顯地 觀察到數個微米長之單晶矽化钽的奈米線體。 參閱圖20,由該具體實施例三之tem形貌圖顯示,該 具體實施例三之單晶矽化鈕的奈米線體具有約26 nm的直 徑。此外,圖2G之右側插入的電子繞射圖形顯示,由[〗23 ] 曰曰π軸得該具體實施例三之單晶矽化鈕的奈米線體為具 有TaSh晶相的六方晶結構,而由JcpDS卡第38—〇483號 比對仍取得,該具體實施例三之單晶矽化鈕的奈米線體具 有 P6222C180)之點陣,以及 a = 〇 478 ⑽及 c = 〇·656 nm 的晶格參數。 參閱圖21,由HRTEM影像圖顯示,該具體實施例三的 單晶矽化鈕的奈米線體之(1211)及(2 ί Ϊ0)面的晶格間距 分別為0·219 nm及0.247 nm參閱圖22,由ΤΕΜ的EDS定 性成分分析顯示,該具體實施例三之單晶矽化鈕的奈米線 體疋合有!旦及矽。其中,Ta% : Si% = 34. 7% : 65. 3%。 17 1290592 參閱圖23 ’由J-E圖顯示,該具體實施例三之單晶石夕 化纽的奈米線體於電場強度9 V/μιη時,電流密度值為13 mA/cm ’其中’起始電場強度為6.〇 v/pm。 5 由於’金屬矽化物具有熱穩定性高及似金屬的電阻係 數等特性。因此,本發明之單晶金屬矽化物的奈米線體則 適合用來做為尺寸曰趨輕薄短小,且運算速度需求高的奈 米半導體元件中的内連線。此外,本發明之單晶金屬矽化 物的奈米線體具有高長寬比,因此也適合於場效發射等相 關元件上的應用。 10 由上面所述’本發明之單晶金屬矽化物的奈米線體及 其製作方法是新開發的一維奈米材料,並且具有熱穩定性 高、似金屬的電阻係數及場效發射等特點,確實達到本發 明之目的。 15 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即Α凡依本發”請專利 範圍及發明說明書内容所作之簡單的等效變化與修飾,皆 應仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 20 圖1 一側視示意圖,說明複數Μ,粒子由M,Sh奈米點 離開’並使Μ,、M”及Si粒子於—基材上形成複數二: 晶核; 圖2 -側視示意圖,說明新產生的m,、m,,及以粒子 繼續地累積在圖1中的晶核上,藉以形成低表面能的晶面; 圖3 -側視示意圖,說明M,M”Sh沿著低米勒指曰數晶 18 1290592 面的方向具有較高的成長速率,因而藉此構成單晶M,M”si2 的奈米線體; 圖4是本發明一具體貫施例一之單晶石夕化鐵趣的奈米 線體的低倍率SEM形貌圖; 5 圖5疋该具體貫施例一之高倍率SEM截面形貌圖; 圖6是該具體實施例一之高倍率SEM斜視形貌圖,說 明在不同時間的二次退火下,該具體實施例一之單晶石夕化 鐵组的奈米線體之成長情形; 圖7是該具體實施例一之TEM形貌及電子繞射圖形; 10 圖8是該具體實施例一之HRTEM影像圖; 圖9是該具體實施例一之TEM的EDS成分分析分布 圖,說明該具體實施例一之單晶矽化鐵鈕的奈米線體,沿 軸向地呈現出含有均勻分布的鐵、鈕及石夕; 圖10是該具體實施例一之TEM的EDS成分分析分布 15 圖,說明單晶矽化鐵钽奈米線體中的鐵、鈕及矽含量,也 於遠奈米線體中沿徑向地呈現均勻分布; 圖11是一 J-E圖,說明該具體實施例一之單晶矽化 鐵钽的奈米線體之場效發射特性; 圖12是本發明一具體實施例二之單晶石夕化组的奈米 2〇 線體之高倍率SEM截面形貌圖; 圖13是該具體實施例二之高倍率SEM俯視形貌圖; 圖14是該具體實施例二之TEM形貌及電子繞射圖形; 圖15是該具體實施例二之HRTEM影像圖; 圖16是該具體實施例二之TEM的EDS成分分析圖; 19 1290592 圖17是一 J-Ε圖,說明該具體實施例二之單晶矽化 鈕的奈米線體之場效發射特性; 圖18是本發明一具體實施例三之單晶矽化钽的奈米 線體之低倍率SEM截面形貌圖; - 5 圖19是該具體實施例三之低倍率SEM俯視形貌圖; . 圖20是該具體實施例三之TEM形貌及電子繞射圖形; 。 圖21是該具體實施例三之HRTEM影像圖; ’ 圖22是該具體實施例三之TEM的EDS成分分析圖; 及 · 10 圖23是一 J-E圖,說明該具體實施例三之單晶矽化 鈕的奈米線體之場效發射特性。Ta% : Si% = 33. 6% : 66.4%. Referring to FIG. 17, it is shown by the JE diagram that the nanowire of the single crystal wafer of the second embodiment has a current density of 0.25 V/μm at an electric field strength of 7.5 V/μm, wherein the initial electric field strength is obtained. It is 6·3 V/μπι. <Specific Example 3> 16 1290592 A third embodiment of the method for producing a nanowire of a single crystal metal telluride of the present invention is substantially the same as that of the second embodiment. The difference is that the iron metal layer formed on the germanium wafer substrate is replaced by a nickel metal layer having a thickness of 30 nm, so that after the primary annealing, on the germanium wafer substrate A NiSi2 film having a thickness of about 10 Å is formed. Referring to FIG. 18, a low-magnification SEM cross-sectional topography shows that a single crystal having a plurality of lengths ranging from several micrometers to several hundreds of nanometers is formed on the germanium wafer substrate. The nanowire body of the button. Referring to Fig. 19, a low-magnification SEM top view shows that a nanometer-long single crystal germanium telluride nanowire body can be clearly observed. Referring to Fig. 20, the morphological view of the third embodiment of the present invention shows that the nanowire of the single crystal wafer of the third embodiment has a diameter of about 26 nm. In addition, the electron diffraction pattern inserted on the right side of FIG. 2G shows that the nanowire body of the single crystal smear button of the third embodiment is a hexagonal crystal structure having a TaSh crystal phase from the [23] 曰曰 π axis. It is still obtained by the JcpDS card No. 38-483. The nanowire of the single crystal deuteration button of the third embodiment has a lattice of P6222C180), and a = 〇478 (10) and c = 〇·656 nm. Lattice parameters. Referring to FIG. 21, the HRTEM image shows that the lattice spacings of the (1211) and (2 ί Ϊ0) faces of the nanowire deuteration button of the third embodiment are 0. 219 nm and 0.247 nm, respectively. Fig. 22 shows that the qualitative analysis of the EDS qualitative component of the ruthenium shows that the nanowire of the single crystal sigma button of the third embodiment is combined! Dan and hehe. Where, Ta%: Si% = 34. 7%: 65. 3%. 17 1290592 Referring to FIG. 23', as shown by the JE diagram, the nanowire body of the single crystal stone of the third embodiment has a current density of 13 mA/cm when the electric field strength is 9 V/μη. The electric field strength is 6. 〇 v / pm. 5 Due to the high thermal stability and metal-like resistance coefficient of metal halides. Therefore, the nanowire body of the single crystal metal telluride of the present invention is suitably used as an interconnect in a semiconductor semiconductor element which is thin and thin in size and requires high calculation speed. Further, the nanowire body of the single crystal metal telluride of the present invention has a high aspect ratio and is therefore also suitable for application to related elements such as field effect emission. 10 The nanowire body of the single crystal metal telluride of the present invention and the manufacturing method thereof are newly developed one-dimensional nano materials, and have high thermal stability, metal-like resistivity, field effect emission, and the like. Features that do achieve the objectives of the present invention. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent change of the patent scope and the description of the invention. And the modification should still be within the scope of the patent of the present invention. [Simple description of the figure] 20 Figure 1 is a side view showing the complex Μ, the particles are separated from the M, Sh nano-points and 'Μ,, M' And Si particles form a complex number two on the substrate: crystal nuclei; Fig. 2 - a side view showing the newly generated m, m, and the particles continue to accumulate on the crystal nucleus in Fig. 1, thereby forming Low surface energy crystal face; Figure 3 - side view, showing that M, M"Sh has a higher growth rate along the low Miller finger 18 number 18 1290592 face, thus forming a single crystal M, M "The nanowire body of si2; Fig. 4 is a low-magnification SEM topography of a single crystal stone of a single crystal of the present invention; FIG. 5 is a concrete example 1 High-magnification SEM cross-sectional topography; FIG. 6 is a high-magnification SEM squint topographical view of the first embodiment, The growth of the nanowire body of the single crystal stone of the specific embodiment 1 under the secondary annealing at different times; FIG. 7 is a TEM morphology and an electron diffraction pattern of the specific embodiment 1; 8 is a HRTEM image of the specific embodiment 1; FIG. 9 is an EDS component analysis distribution diagram of the TEM of the specific embodiment 1, illustrating the nanowire body of the single crystal bismuth iron button of the specific embodiment 1, along the axis FIG. 10 is a diagram showing the EDS composition analysis distribution of the TEM of the first embodiment, illustrating the iron, the button and the ruthenium in the single crystal strontium iron nanowire body. The content also exhibits a uniform distribution in the radial direction of the nanowire body; FIG. 11 is a JE diagram illustrating the field effect emission characteristics of the nanowire of the single crystal deuterated iron crucible of the specific embodiment 1; It is a high-magnification SEM cross-sectional topography of the nano 2-wire body of the single crystal Shihua group of the second embodiment of the present invention; FIG. 13 is a high-magnification SEM top view of the second embodiment; It is the TEM topography and the electronic diffraction pattern of the second embodiment; FIG. 15 is the concrete embodiment. HRTEM image of the second example; FIG. 16 is an EDS component analysis diagram of the TEM of the second embodiment; 19 1290592 FIG. 17 is a J- diagram illustrating the nanowire of the single crystal squash button of the second embodiment. FIG. 18 is a low-magnification SEM cross-sectional top view of a nanowire of a single crystal germanium telluride according to a third embodiment of the present invention; FIG. 19 is a low-magnification SEM of the third embodiment. FIG. 20 is a TEM topography and an electronic diffraction pattern of the third embodiment; 21 is a HRTEM image of the third embodiment; FIG. 22 is an EDS component analysis diagram of the TEM of the third embodiment; and FIG. 23 is a JE diagram illustrating the single crystal deuteration of the third embodiment. The field effect emission characteristics of the button's nanowire body.
20 1290592 【圖式之主要元件代表符號簡單說明】 無20 1290592 [Simplified description of the main components of the diagram]
21twenty one