CN102017224A - 具有挠性凹入部分的棱柱形蓄电池组或电池 - Google Patents

具有挠性凹入部分的棱柱形蓄电池组或电池 Download PDF

Info

Publication number
CN102017224A
CN102017224A CN2009801144159A CN200980114415A CN102017224A CN 102017224 A CN102017224 A CN 102017224A CN 2009801144159 A CN2009801144159 A CN 2009801144159A CN 200980114415 A CN200980114415 A CN 200980114415A CN 102017224 A CN102017224 A CN 102017224A
Authority
CN
China
Prior art keywords
battery
equal
gauge pressure
less
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801144159A
Other languages
English (en)
Other versions
CN102017224B (zh
Inventor
雷蒙·G·凯拉维兹
里查·V·香柏兰
菲利普·E·帕汀
宋彦宁
普尔·欧娜鲁德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Power Inc
Original Assignee
Boston Power Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Power Inc filed Critical Boston Power Inc
Publication of CN102017224A publication Critical patent/CN102017224A/zh
Application granted granted Critical
Publication of CN102017224B publication Critical patent/CN102017224B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电池组包括电池外壳,在所述外壳的主要表面上具有凹入部分,所述凹入部分实质上平坦,并在所述凹入部分至少三面上的脊形部分处与所述主要表面的剩余部分接界,借此所述凹入部分、所述脊形部分与所述主要表面的剩余部分在表压增加的情况下合作以使得由所述脊形部分与所述主要表面的剩余部分之间的边界所界定的平面移动。

Description

具有挠性凹入部分的棱柱形蓄电池组或电池
相关申请案
本申请案主张2008年4月24日申请的美国临时申请案第61/125,281号的权益。上述申请案的完整教示按引用并入本文中。按引用并入
2007年6月22日申请的美国专利申请案第60/936,825号;2007年6月22日申请的国际申请案第PCT/US2007/014591号;2005年9月16日申请的美国临时申请案第60/717,898号;2006年6月23日申请的美国专利申请案第11/474,081号;2006年6月23日申请的美国专利申请案第11/474,056号;2006年7月12日申请的美国专利申请案第11/485,068号;2006年7月14日申请的美国专利申请案第11/486,970号;2007年6月21日申请的美国专利申请案第11/821,102号;2008年4月24日申请的美国临时申请案第61/125,285号,代理人案号:3853.1023-000,题为“锂离子二次电池组(Lithium-IonSecondary Battery)”;和2008年4月24日申请的美国临时申请案第61/125,327号,代理人案号:3853.1018-000,题为“用CID改进锂离子电池的过充电性能的方法(Method To Improve OverchargePerformance Of Lithium-Ion Cells with CID)”(二者与本发明同一日申请)都按全文引用并入本文中。
技术领域
背景技术
携带型电子装置的锂离子电池组通常会根据其用途而经历不同的充电、放电和存储例行程序。当采用锂离子电池化学的电池组被不当充电、短路或暴露于高温时,其将产生气体。此气体易燃,并且会损害所述电池组的可靠性和安全性。通常使用电流中断装置(CID),来通过在电池组内部的压力大于预定值时中断来自电池组的电流路径,针对电池组中任一过度的内压增加提供防护。
然而,甚至在不存在会减弱性能或引起安全性问题的过度内压的情况下,在再充电期间,锂离子电池组也会经历内压增加。在棱柱形电池中,内压增加引起电池外壳弯曲。取决于电池外壳(如183665型棱柱形电池外壳)内电极和电解质材料的成分和量,在再充电期间,约18.02mm的外径可增加超过1mm,达到约19.5mm。包括棱柱形电池在内的许多电池组类型的使用要求往往限制充电循环期间膨胀可用的空间,由此限定了所用电池组的类型、其容量或其使用型式(例如在充电期间从装置取出)。
因此,需要显著减少或消除上述问题的电池外壳。
发明内容
本发明大体上涉及一种电池组电池外壳,其在主要表向包括凹入部分,所述凹入部分在循环再充电期间弯曲。本发明还涉及使用所述电池组电池外壳的电池组。
在一个实施例中,本发明针对一种电池组电池外壳,在所述外壳的主要表面上具有凹入部分,所述凹入部分实质上平坦,并在所述凹入部分至少三面上的脊形部分处与所述主要表面的剩余部分接界,借此凹入部分、脊形部分与所述主要表面的剩余部分在表压增加的情况下合作使得由脊形部分与所述主要表面的剩余部分之间的边界所界定的平面移动。
在另一实施例中,本发明针对一种电池组,其包括与电池组第一电极电连通的第一接线端以及与电池组第二电极电连通的第二接线端。电池组还包括电池组壳体,其具有电池外壳和盖子,二者彼此电连通,所述电池组与第一接线端电绝缘。电池外壳在所述外壳的主要表面上具有凹入部分,所述凹入部分实质上平坦,并在所述凹入部分至少三面上的脊形部分处与主要表面的剩余部分接界,借此凹入部分、脊形部分与主要表面的剩余部分在表压增加的情况下合作使得由脊形部分与所述主要表面的剩余部分之间的边界所界定的平面移动。
在另一具体实施例中,电池组第一电极是阴极,其包括活性阴极材料,其中所述活性阴极材料包括钴酸锂。
在另一具体实施例中,电池组第一电极是阴极,其包括活性阴极材料,其中所述活性阴极材料包括以下各物的混合物:
a)钴酸锂;和
b)由以下经验式表示的尖晶石型锰酸盐:
Li(1+x1)(Mn1-y1A’y2)2-x2Oz1
其中:
x1和x2各独立地等于或大于0.01且等于或小于0.3;
y1和y2各独立地等于或大于0.0且等于或小于0.3;
z 1等于或大于3.9且等于或小于4.2;
且A’是由以下组成的群组的至少一个成员:镁、铝、钴、镍和铬,
其中钴酸锂与尖晶石型锰酸盐的重量比为钴酸锂∶尖晶石型锰酸盐介于约0.95∶0.05与约0.6∶0.4之间。
在又一具体实施例中,其中电池组的活性阴极材料包括一种混合物,其包括:
a)Li1+x8CoOz8;和
b)Li(1+x1)Mn2Oz1,其中:
x1等于或大于0.01且等于或小于0.3;和
z1等于或大于3.9且等于或小于4.2,
其中LiCoO2与Li(1+x1)Mn2Oz1的重量比为钴酸锂∶尖晶石型锰酸盐介于约0.95∶0.05与约0.6∶0.4之间。
在又一具体实施例中,电池组壳体的至少一部分是第二接线端的至少一个元件,或电连接至第二接线端,且另外包括焊接于电池外壳上的盖子,以及至少一个与第一或第二电极任一者电连通的电流中断装置。电流中断装置包括第一导电板,其具有圆锥台(frustum),所述圆锥台包括第一端和直径小于第一端的第二端,以及基本上平坦的顶盖,其密封圆锥台的第二端,其中底部靠近电池组壳体,而基本上平坦的顶盖远离电池组壳体。第二导电板与第一导电板电连通,并与第一和第二电极中任一者电连通,且当第一与第二板之间的表压在介于约4kg/cm2与9kg/cm2之间的范围内时,连接所述板结构的焊接。电池外壳还包括至少一个排气构件,当表压在介于约10kg/cm2与约20kg/cm2之间的范围内时,电池组内部的气态物质经由所述排气构件离开。
本发明具有许多优势。举例而言,由于例如使用本发明电池外壳的电池组(如锂离子型电池组)正常再充电引起的表压增加,与电池组电池外壳主要表面的剩余部分结合的凹入部分可弯曲。根据本发明,凹入部分结合脊形部分和主要表面的剩余部分,对电池组电池外壳提供了某些额外的结构刚性,并因此显著减小了在无凹入部分存在的情况下会发生的电池外壳宽度的任何增加。然而,已经发现,相对于在再充电循环期间不允许内部体积改变的电池组来说,在再充电循环期间挠性的保持以及随之发生的体积增加尽管是少量,但基本上保存了电池组(如锂离子电池组)的寿命。因此,在显著降低体积度量要求的同时,可以基本上保存电池组循环寿命,由此增加使用可再充电电池组的应用类型的灵活性和类型。
附图说明
图1是本发明一个实施例的棱柱形电池组的示意性透视图。
图2A是本发明电池外壳的俯视图。
图2B是图2A中沿线BB取得的电池外壳的侧视图。
图2C是图2A中沿线CC取得的电池外壳的截面图。
图2D是图2C的一部分的细部图。
图3A是在一个实施例中用于形成图2A到2D所示的电池外壳的柄轴。
图3B是在一个实施例中用于形成图2A到2D所示的电池外壳的凸模。
图4A是处于非弯曲位置的电池外壳壁的截面图。
图4B是处于弯曲位置的电池外壳壁的截面图。
图4C是处于另一弯曲位置的电池外壳壁的截面图。
图5A是本发明另一实施例的电池外壳的侧视图。
图5B是图5A的电池外壳的截面图。
图6A是处于非弯曲位置的电池外壳壁的截面图。
图6B是处于弯曲位置的图6A的电池外壳壁的截面图。
图6C是处于另一弯曲位置的图6A的电池外壳壁的截面图。
图7是处于非弯曲位置的本发明另一实施例的电池外壳壁的截面图。
图8A是本发明电池组的第一导电板的图。
图8B是本发明电池组的第一导电板的俯视图。
图8C是图8B沿线AA取得的第一导电板的截面图。
具体实施方式
从下文如在附图中所说明的本发明例示性实施例的更为详细的描述,将对前述内容显而易见。各图式不必按比例绘制,而是将重点放在说明本发明的实施例。
如本文所使用,本发明电池组的“接线端(terminals)”是指电池组中连接外电路的部件或表面。
本发明的电池组通常包括与第一电极电连通的第一接线端,和与第二电极电连通的第二接线端。所述第一与第二电极被容纳在本发明电池组的电池外壳内,如呈“果冻卷(jelly roll)”的形式。第一接线端可以是与电池组的正电极电连通的正接线端,或是与电池组的负电极电连通的负接线端,而对于第二接线端,反之如此。优选第一接线端是与电池组的负电极电连通的负接线端,而第二接线端是与电池组的正电极电连通的正接线端。
如本文所使用,“电连接(electrically connected)”或“电连通(in electrical communication)”等词是指某些部件通过电子流过导体而彼此连通,与涉及借助于电解质的离子(如Li+)流动的电化学连通相对。
图1显示本发明一个实施例的电池组10的立体透视图。电池组10包括第一电极12和第二电极14。第一电极12与馈通(feed-through)装置16电连接,所述馈通装置16包括第一元件18,其靠近第一电极12;和第二元件20,其远离第一电极12。电极12与14放置在包括电池外壳24和盖子26的电池组壳体22内部,即,由电池外壳24与盖子26所界定的内部空间28中。电池组10的电池外壳24与盖子26彼此电连通。
如本文所使用,“馈通(feed-through)”一词包括将在电池外壳24和盖子26所界定的内部空间28内的电池组10的电极12与在所述经界定的内部空间外部的电池组的元件相连接的任一材料或装置。优选馈通装置16延伸穿过由盖子26所界定的贯通孔(pass-through hole)。馈通装置16也可以穿过盖子26而不变形,如弯曲、扭转和/或折迭,并且可以增加电池容量。使用此馈通装置的一个益处包括,体积利用率增加引起电池容量相比常规锂电池组(其中载流电极片折迭或弯曲进电池外壳中并与内部电极焊接在一起)可能增加(例如5-15%)。本发明中可以使用所属领域中已知的任一其它适合的构件,用于将电极12与在电池组壳体22外部的电池组的元件(例如电池组的接线端)相连接。
电池外壳24和盖子26可以由任一适合的导电材料制成,所述导电材料在给定电池组(例如本发明的锂离子电池组)电压下基本上电稳定和化学稳定。电池外壳24的适合材料的实例包括铝、镍、铜、钢、镀镍的铁、不锈钢和其组合。优选电池外壳24是铝制的或包括铝。在一个特别优选的实施例中,电池外壳24是由阳极化的铝形成。
电池外壳24的铝可以在铝坯件成形形成电池外壳24之前、期间或之后阳极化。可以利用所属领域中已知的任一适合的方法,例如美国6,066,412和WO 00/11731(其教示按引用并入本文中)中所述的方法,在电池外壳24上加标记。在一个优选实施例中,当电池外壳24阳极化时,可以通过使用所属领域中已知的激光技术,在电池外壳24上形成标记。
盖子26的适合材料的实例与关于电池外壳24所列的相同。优选盖子26由与电池外壳24相同的材料制成。在一个更为优选的实施例中,电池外壳24与盖子26都是铝制的或包括铝。盖子26的铝可经阳极化。盖子26可以利用所属领域中已知的任一适合的方法气密密封电池外壳24。优选盖子26与电池外壳24彼此焊接在一起。另外,本发明中可以使用所属领域中已知的其它电连接形式将盖子26连接至电池外壳24,如压接。
电池组壳体22(例如盖子26)例如通过绝缘垫片(未图标)与馈通装置16电绝缘。绝缘垫片由适合的绝缘材料形成,如聚丙烯、聚氟乙烯(polyvinylfluoride,PVF)等。
电池外壳24包括主要表面30,其相对于所述外壳的其余侧表面大体上是平坦的,所述其余侧表面通常成形为使所述外壳的截面呈椭圆(oblong)形状。电池外壳24还包括主要表面区30的实质上平坦的凹入部分32,以及在凹入部分32至少三面上的脊形扇面(ridge section)36。主要表面30的剩余部分38包围凹入部分32和脊形部分36,并定义为主要表面30中除凹入部分32和脊形部分36外的区域。
在图2A-2D所示的实施例中,电池外壳24是183665型铝制棱柱形电池外壳。电池外壳24壁厚约0.9mm,且宽约18.20mm,由在相对主要表面处的平面界定。如图2B所示,凹入部分32长约37mm,宽约16mm。在0表压下,凹入部分32从主要表面30的剩余部分38起的最大深度为约0.4mm。一般说来,凹入部分32通常占据介于约10%与约90%之间的大体上平坦的主要表面区30。在图2B所示的本发明实施例中,脊形扇面36在凹入部分32三面上与凹入部分32接界。
图2A和图2B分别显示电池外壳24的俯视图和侧视图。在一个实施例中,凹入部分32的长度1为约37mm,宽度w为约16mm。图2C显示电池外壳24的截面图,其显示当电池外壳24的内部28处于每平方厘米约0公斤(kg/cm2)时凹入部分32的一个实施例的轮廓。如本文所使用,“表压(gauge pressure)”一词是指电池组外壳内部的绝对压力与大气压之间的差值。图2D是图2C的细部图,其显示凹入部分32的脊形扇面36。凹入部分32可以利用所属领域中已知的任一适合的方法(例如滚轧法、冲压法等)形成。
在一个优选实施例中,凹入部分32利用柄轴(arbor)33和凸模(punch)35(分别显示于图3A和图3B中)形成。柄轴33包括凹槽37。当制造电池外壳(未显示)时,将柄轴33从电池外壳的开口端插入电池外壳内,使得柄轴33的端部33a靠近电池外壳24的封闭端部33b,如图2B和图2C所示。随后将图3B所示的凸模35压入凹槽37中最靠近电池外壳24开口端33c的凹槽37的一端,由此形成电池外壳24的凹入部分32。接着,从电池外壳24中移出图3B所示的凸模35,而且电池外壳24可以从柄轴33移开。应了解,由于使用了柄轴33和凸模35进行制造,凹入部分32将实质上平坦,并在凹入部分32的一端并入剩余部分38中,由此有效地产生实质上如图2所示的电池外壳24。由于凹槽37与凸模35因凹槽37的一侧打开以使电池外壳24能从柄轴33移开而不相配,故电池外壳24的形状是利用柄轴33和凸模35形成。
图4A-图4C是主要表面区30的示意性截面图。图4A显示处于非弯曲位置的主要表面区,其代表当电池组未在充电时外壳的形状,或具有当使用所述外壳的电池组未在充电时的内部表压。
通常,当未在充电时(即,当未在引入到表压的增加时),本发明电池组的表压小于约5kg/cm2。如图4A所示,脊形扇面部分36与主要表面30的剩余部分38之间的边界72所界定的平面31a与主要表面30的剩余部分38的表面实质上对齐。此实质上对齐大体上确定在经历表压增加之前的时间时所述平面的初始位置,如平面31a所示。
当本发明电池组在充电时,表压会升高。如图4B所示,当本发明电池组的表压增加时,表压的增加引起脊形部分36与主要表面30的剩余部分38之间的边界72所界定的平面移动离开初始位置。
在一个实施例中,平面的移动是凹入部分32与剩余部分38之间通过脊形部分36的合作的结果。如从图4B可见,凹入部分32的弯曲迫使脊形扇面36以及随之其与剩余部分38的边界72向外,由此将平面移到第二位置。平面31b表示处于第二位置的平面。在图4B所示的实施例中,凹入部分32在再充电期间弯曲到平面31a以外的点,但仍在平面31b内。
在另一实施例中,如图4C所示,凹入部分32在再充电期间弯曲到平面31b以外的点。
在另一实施例中,如图5A-图5B和图6A-图6C所示,脊形部分36包围凹入部分32的四面而非三面,与图2B、图2C以及图4A-图4C所示的实施例形成对照。
在又一实施例中,如图7所示,大体上平坦的主要表面30的脊形部分36具有例如由圆形的半径所界定的弧形形状。在此类情况下,脊形部分36与凹入部分32之间的边界74界定在凹入部分74从弧形的相切的点处。
在所有实施例中,在高达至少40kg/cm2的表压下,脊形部分36与凹入部分32之间的边界74相对于脊形部分36与剩余部分38之间的边界72所界定的平面保持凹入。同样,在所有实施例中,凹入部分32优选在再充电完成后基本上回复到其初始位置。此外,表压增加前平面的位置(即,平面31a)与表压从增加的值恢复时平面的位置实质上相同。
在一个实施例中,在约12kg/cm2表压下,图2A所示的电池外壳24的宽度W由约18.02mm延伸到不超过约19.5mm。在一个具体实施例中,阳极化铝制的电池外壳24在弯曲前宽度W为约18.02mm,且在加压到约11.14kg/cm2后宽度W介于约18.4mm与约19.0mm之间,而未经阳极化的同一铝制电池外壳24的宽度W将从18.02mm扩大到介于约20.18mm到约20.40mm之间的宽度W。相信,降低电池组外壳的弯曲(如在本发明中)引起表压增加超过典型电池外壳在相同再充电循环期间会出现的结果,借此使电池组所需的空间减小,同时仍允许电池组的果冻卷在充电循环期间扩大,由此保存电池组的寿命。
再参看图1,电池组壳体22的电池外壳24与盖子26中至少一者通过CID 40与电池组10的第二电极14电连通。电池组壳体22,即电池外壳24和盖子26,与电池组10的第一接线端电绝缘,并且电池组壳体22的至少一部分是电池组10第二接线端的至少一个元件,或与第二接线端电连接。在一个优选实施例中,盖子26或电池外壳24底部的至少一部分充当电池组10的第二接线端,并且馈通装置16包括顶部导电层26,其可充当电池组10的第一接线端,与第一电极12电连通。第一元件18、第二元件20和顶部导电层26各自独立地可以由所属领域中已知的任一适合的材料(例如镍)制成。
本发明的电池组10包括CID 40。尽管在电池组10中使用一个CID40,但本发明中可以使用一个以上CID 40。CID 40包括第一导电板42和第二导电板44,二者彼此电连通(例如借助于焊接、压接、铆接等)。第二导电板44与第二电极14电连通,而第一导电板42与电池组壳体22(例如盖子26)电接触。
优选第一导电板包括圆锥台,其具有基本上平坦的顶盖。如图8A-图8C所示,第一导电板42包括圆锥台60,其包括第一端62和第二端64。第一端62的直径(在图4C中以参考符号“j”表示)比第二端64的直径(在图4C中以参考符号“k”表示)宽。第一导电板42还包括底座68,其从圆锥台60第一端62的周边径向延伸。基本上平坦的顶盖70密封圆锥台60的第二端64。如本文所使用,“圆锥台(frustum)”一词是指通过截断实体直立圆锥(即,由绕着直角三角形的一条边旋转该直角三角形所产生的实体)两个平行平面之间的相交顶面得到的基壁部分(不包括底端和顶端)。
在CID 40中,当电池组内部的表压大于预定值,例如介于约4kg/cm2与约15kg/cm2之间,或介于约5kg/cm2与约10kg/cm2之间时,第二导电板44与第一导电板42分离(例如变形分开或脱离),借此第二电极14与电池组壳体22(其至少一部分是第二接线端的至少一个元件,或电连接至第二接线端)之间的电流被中断。
优选地,当第二导电板44与第一导电板42分离时,第二导电板44中不发生破裂,使得电池组10内部的气体不会穿过第二导电板44而逸出。当内压一直增加并达到启动排气划线46的预定值时,气体可经由一个或多个排气划线46(例如在电池壁处或电池外壳24的底部,或在第二导电板44处)离开电池组10,下文将对此详细讨论。在一些实施例中,启动排气划线46的预定表压值(例如介于约10kg/cm2与约20kg/cm2之间)高于启动CID 40的预定表压值(例如介于约5kg/cm2与约10kg/cm2之间)。此特征有助于防止过早气体渗漏,而气体过早渗漏会损坏邻近正在正常操作的电池组(或电池)。因此,当本发明电池组包中多个电池中的一个损坏时,其它正常的电池不会损坏。应注意,适于启动CID 40的以及适于启动排气构件58的表压值或子范围都是从预定表压范围中选出,以致所选压力值或子范围之间没有重叠。优选启动CID 40的与启动排气构件58的表压值或范围相差至少约2kg/cm2压差,更优选相差至少约4kg/cm2,甚至更优选相差至少约6kg/cm2,例如相差约7kg/cm2
在一个优选实施例中,CID 40还在一部分的第一导电板42与第二导电板44之间包括绝缘体48(例如绝缘层或绝缘垫片)。CID 40与电池组的电池外壳24电连通。在CID 40中,当电池组内部的压力大于预定值,例如内部表压在介于约5kg/cm2与约10kg/cm2之间的范围内时,第二导电板44与第一导电板分离(例如变形分开或脱离),借此第二电极与第二接线端之间的电流被中断。
在另一优选实施例中,CID 40的第一导电板42和绝缘体48中至少一者包括至少一个孔(例如图1中的孔50或52),通过该孔,电池组10内的气体与第二导电板44流体连通。
在一个具体实施例中,CID 40另外包括端板54,其安置于第一导电板42的上方,并界定使第一导电板42与电池组外部的大气流体连通的至少一个孔56。在一个更为具体的实施例中,端板54是电池组壳体22的一部分,如图1中所示,其中端板54是电池组壳体22的盖子26的一部分。在另一更为具体的实施例中,端板54在电池组10的电池组壳体22处,例如在电池组壳体22的盖子26的上方、下方或盖子26处,并与电池组壳体22电连通。
CID 40在本发明中被放置在电池组壳体22内,或者,CID 40的一部分在电池组壳体22内,而CID 40的另一部分是在电池组壳体22处或其上方。或者,CID 40可通过任一适合的方式(例如焊接、压接等)电连接至盖子24。在一个具体实施例中,CID 40的至少一个元件,即第一导电板42和第二导电板44、绝缘体48和端板54,定位于电池组壳体22内。在另一具体实施例中,CID 40的至少一个元件,例如第一导电板42和第二导电板44、绝缘体48和端板54,位于电池组壳体22(例如盖子24)处的凹槽内。在又一具体实施例中,第一导电板42和第二导电板44以及端板54中至少一者是电池组壳体22(例如盖子24,或者电池外壳22的侧面或底部)的一个元件。在一个更为具体的实施例中,第一导电板42和第二导电板44以及端板54中至少一者是电池组壳体22(例如盖子24,或者电池外壳24的侧面或底部)的一部分。甚至再具体地说,第一导电板42和第二导电板44以及端板54中至少一者是模压或冲压在盖子26处,或者电池外壳24的侧面或底部,优选在盖子54处。在另一更为具体的实施例中,端板54是盖子24的一部分(例如模压或冲压而成),并且第一导电板42和第二导电板44放置在电池外壳24内,如图1所示。
第一导电板42和第二导电板44可以由所属领域中已知用于电池组的任一适合的导电材料制成。适合的材料的实例包括铝、镍和铜,优选铝。优选电池组壳体22(例如电池外壳24和盖子26)、第一导电板42和第二导电板44由实质上相同的金属制成。如本文所使用,“实质上相同的金属(substantially same metal)”一词是指在给定电压(例如电池组的操作电压)下具有实质上相同的化学和电化学稳定性的金属。更优选电池组壳体22、第一导电板42和第二导电板44由相同金属制成,如铝。
电池外壳24(例如电池壁或底部部件)包括至少一个排气构件58作为必要时(例如当锂离子电池组10内的表压大于在约10kg/cm2与约20kg/cm2之间的值时)使内部空间28排气的构件。在一些实施例中,第二导电板44包括至少一个排气构件,例如排气划线46,但应了解,任一类适合的排气构件都可以使用,只要所述构件在正常电池组操作条件下提供气密密封即可。
如本文所使用,“划线(score)”一词是指电池外壳(例如电池外壳24)截面上的局部切痕,其设计成允许在指定内部表压(例如介于约10与约20kg/cm2之间)下释放电池压力和任一内部电池元件。优选排气划线定向定位且远离用户/或邻近电池。如所示的,可以使用一个以上排气划线。在一些实施例中,可以使用图案化的排气划线。排气划线可以与在电池外壳24的形状建立期间电池外壳材料的主要伸展(或拉伸)方向平行、垂直、倾斜。还应考虑排气划线的性质,例如深度、形状和长度(尺寸)。
本发明的电池组可另外包括正温度系数(positive thermalcoefficient,PTC)层,其与第一接线端或第二接线端电连通,优选与第一接线端电连通。适合的PTC材料是所属领域中已知的PTC材料。一般说来,适合的PTC材料是当暴露于超过设计阈值的电流时导电性随温度的增加而降低多个数量级(例如104至106或更高)的PTC材料。一旦电流降低到适合的阈值以下时,PTC材料一般立即实质上恢复初始的电阻率。在一个适合的实施例中,PTC材料包括含少量半导体材料的多晶陶瓷,或一片其中嵌入碳晶粒的塑料或聚合物。当PTC材料的温度达到临界点时,所述半导体材料或所述嵌有碳晶粒的塑料或聚合物形成电流动的阻障层,并引起电阻急剧增加。如所属领域中已知的,通过调整PTC材料的组成,可以改变使电阻率急剧增加的温度。PTC材料的“操作温度(operating temperature)”是使PTC所展现的电阻率大致为其最大与最小电阻之间的半数值的温度。优选本发明中使用的PTC层的操作温度介于约70摄氏度与约150摄氏度之间。
PTC材料的具体实例包括含少量钛酸钡(BaTiO3)的多晶陶瓷,以及包括碳晶粒嵌入其中的聚烯烃。市售PTC层压板包括PTC层夹于两个导电金属层之间,其实例包括Raychem公司制造的LTP和LR4系列。一般来说,PTC层的厚度在约50微米与约300微米的范围内。
PTC层优选包括导电表面,其总面积是盖子26或者电池组10底部总表面积的至少约25%或至少约50%(例如为约48%或约56%)。PTC层的导电表面的总表面积可以是盖子26或者电池组10底部总表面积的至少约56%。盖子26或者电池组10的多达100%的总表面积可以由PTC层的导电表面所占据。或者,电池组10底部全部或一部分可以由PTC层的导电表面所占据。
PTC层可以定位于电池壳体(例如盖子22或者电池外壳24的底部部件)的内部或外部,优选在电池壳体外部,例如在电池壳体的盖子26上方。
在一个优选实施例中,PTC层是在第一导电层与第二导电层之间,且第二导电层的至少一部分是第一接线端的至少一个元件,或电连接至所述第一接线端。在另一更为优选的实施例中,第一导电层连接至馈通装置。此类夹于第一与第二导电层之间的PTC层的适合的实例描述于2006年6月23日申请的美国专利申请案第11/474,081号中,其完整教示按引用并入本文中。
在一些其它实施例中,本发明的电池或电池组是棱柱形,如图1所示(堆积或卷绕,例如183665或103450型配置)。优选本发明的电池或电池组是呈椭圆形的棱柱形状。尽管本发明可以使用所有类型的棱柱形电池外壳,但部分因为下文所述的两个特征,优选椭圆形电池外壳。
当与外部体积相同的电池堆相比较时,椭圆形的可用内部体积(例如183665形状因子(form factor))大于两个18650型电池的体积。当组装成电池组包时,椭圆形的电池充分利用更多由电池组包所占据的空间。相对于当今工业中所发现的情形,这能够为内部电池元件带来新颖的设计改变,由此可增加关键的性能特征,而不牺牲电池的容量。由于可用体积变大,人们可以选择使用较薄的电极,其循环寿命和倍率性能(rate capability)相对较高。此外,椭圆形壳体具有较大的挠性。举个例子,椭圆形壳体在拐点(waist point)具有较大挠性,而相比之下,圆柱形壳体因堆积压力在充电时增加而具有较小挠性。此较大的挠性降低了电极的机械疲劳,而机械疲劳的降低又使循环寿命增长。另外,通过使用相对较低的堆积压力,电池组中隔离层的小孔堵塞的情况可以得到改良。
与棱柱形电池组相比较,椭圆形电池组可以获得一个特别理想的特征,即允许相对较高的安全性。椭圆形状为果冻卷提供滑合座(snugfit),其使电池组所需电解质的量减到最少。相对较少量的电解质使误用情形(misuse scenario)期间可用的反应性材料减少,因此具有较高安全性。此外,因电解质的量减少,成本也变低。在具有堆积电极结构的棱柱形壳体(其截面呈矩形)情况下,可能利用全部体积而不用不必要的电解质,但此类壳体设计比较困难,因此从制造的观点看,成本较高。
优选至少一个电池具有棱柱形电池外壳,更优选椭圆形电池外壳,如图1中所示。更优选至少一个电池具有183665型配置。优选电池组包中电池的容量通常等于或大于3.0Ah,更优选等于或大于约4.0Ah。电池的内阻抗优选小于约50毫欧(milli-ohm),更优选小于30毫欧。
本发明的锂离子电池组和电池组包可用于携带型供电装置,如携带型计算机、电动工具、玩具、携带型电话、携带型摄像机、PDA等。在使用锂离子电池组的携带型电子装置中,其充电一般设计成4.20V的充电电压。因此,本发明的锂离子电池组和电池组包特别适用于这些携带型电子装置。
本发明还包括制造上述电池组(例如锂离子电池组)的方法。所述方法包括形成上述电池外壳,以及将第一电极和第二电极安置于电池外壳内。形成上述电流中断装置(例如电流中断装置28),并与电池外壳电连接。
本发明锂离子电池组的正负电极以及电解质可以通过所属领域中已知的适当方法形成。
适用于负电极的负极活性材料的实例包括允许锂掺杂或未掺杂于其中或从其中去掺杂的任一材料。此类材料的实例包括含碳材料,例如非石墨质碳(non-graphitic carbon)、人造碳、人造石墨、天然石墨、热解碳、焦炭(如沥青焦炭、针形焦炭、石油焦炭)、石墨、玻璃碳,或通过碳化酚系树脂、呋喃树脂或类似物等获得的经过热处理的有机聚合化合物、碳纤维以及活性碳。此外,金属锂、锂合金以及其合金或化合物都可用作负极活性材料。特别地,能够与锂形成合金或化合物的金属元素或半导体元素可以是第IV族金属元素或半导体元素,例如(但不限于)硅或锡。特别地,掺杂有过渡金属(例如钴或铁/镍)的非晶形锡是适用作这些类型电池组中的阳极材料的金属。允许锂掺杂于其中或从其中去掺杂的电势相对较低的氧化物,例如氧化铁、氧化钌、氧化钼、氧化钨、氧化钛和氧化锡,以及类似地氮化物,都可用作负极活性材料。
适用于正电极的正极活性材料包括所属领域中已知的任一材料,例如镍酸锂(例如Li1+xNiM’O2)、钴酸锂(例如Li1+xCoO2)、橄榄石型化合物(例如Li1+xFePO4)和尖晶石型锰酸盐(manganate spinel)(例如Li1+x9Mn2-y9O4(x9和y9各独立地等于或大于0且等于或小于0.3)或Li1+x1(Mn1-y1A’y2)2-x2Oz1(x1和x2各独立地等于或大于0.01且等于或小于0.3;y1和y2各独立地等于或大于0.0且等于或小于0.3;z1等于或大于3.9且等于或小于4.1)),以及其混合物。适合的正极活性材料的各种实例可见于2005年12月23日申请的国际申请案第PCT/US2005/047383号;2006年7月12日申请的美国专利申请案第11/485,068号;和2007年6月22日申请的代理人案号为3853.1001-015的国际申请案,题为“锂离子二次电池组(Lithium-Ion SecondaryBatt ery)”,所有所述申请案的完整教示都按引用并入本文中。
在一个具体实施例中,用于本发明的正电极的正极活性材料包括钴酸锂,如Li(1+x8)CoOz8。更具体地说,约60-90重量%(例如约80重量%)钴酸锂(如Li(1+x8)CoOz8)与约40-10重量%(例如约20重量%)尖晶石型锰酸盐(例如具有约100-115mAh/g;如Li(1+x1)Mn2Oz1,优选Li(1+x1)Mn2O4)的混合物用于本发明中。值x1等于或大于0且等于或小于0.3(例如0.05≤x 1≤0.15)。值z 1等于或大于3.9且等于或大于4.2。值x8等于或大于0且等于或小于0.2。值z8等于或大于1.9且等于或大于2.1。
在另一具体实施例中,用于本发明的正极活性材料包括含有钴酸锂(如Li(1+x8)CoOz8)与由经验式Li(1+x1)(Mn1-y1A’y2)2-x2Oz1表示的尖晶石型锰酸盐的混合物。值x1和x2各独立地等于或大于0.01且等于或小于0.3。值y1和y2各独立地等于或大于0.0且等于或小于0.3。值z1等于或大于3.9且等于或小于4.2。A’是由以下组成的群组的至少一个成员:镁、铝、钴、镍和铬。更具体地说,钴酸锂与尖晶石型锰酸盐的重量比为钴酸锂∶尖晶石型锰酸盐介于约0.95∶0.05与约0.9∶0.1到约0.6∶0.4之间。
在又一具体实施例中,用于本发明的正极活性材料包括含有100%钴酸锂(如Li(1+x8)CoOz8)的混合物。
在又一具体实施例中,用于本发明的正极活性材料包括至少一种选自由以下组成的群组的氧化锂:a)钴酸锂;b)镍酸锂;c)由经验式Li(1+x1)(Mn1-y1A’y2)2-x2Oz1表示的尖晶石型锰酸盐;d)由经验式Li(1+x1)Mn2Oz1或Li1+x9Mn2-y9O4表示的尖晶石型锰酸盐;和e)由经验式Li(1-x10)A″x10MPO4表示的橄榄石型化合物。值x1、z1、x9和y9如上文所述。值x2等于或大于0.01且等于或小于0.3。值y1和y2各独立地等于或大于0.0且等于或小于0.3。A’是由以下组成的群组的至少一个成员:镁、铝、钴、镍和铬。值x10等于或大于0.05且等于或小于0.2,或值x 10等于或大于0.0且等于或小于0.1。M是由以下组成的群组的至少一个成员:铁、锰、钴和镁。A″是由以下组成的群组的至少一个成员:钠、镁、钙、钾、镍和铌。
可用于本发明中的镍酸锂包括Li原子或Ni原子任一者或二者的至少一种修饰剂。如本文所使用,“修饰剂(modifier)”是指在LiNiO2的晶体结构中占据Li原子或Ni原子或二者的位点的取代基原子。在一个实施例中,镍酸锂只包括Li原子的修饰剂或取代基(“Li修饰剂”)。在另一实施例中,镍酸锂只包括Ni原子的修饰剂或取代基(“Ni修饰剂”)。在又一实施例中,镍酸锂包括Li和Ni修饰剂。Li修饰剂的实例包括钡(Ba)、镁(Mg)、钙(Ca)和锶(Sr)。Ni修饰剂的实例除包括Li的修饰剂外,还包括铝(Al)、锰(Mn)和硼(B)。Ni修饰剂的其它实例包括钴(Co)和钛(Ti)。镍酸锂优选涂布有LiCoO3。涂布可以是例如梯度涂布或逐点涂布。
可用于本发明中的一种特定类型的镍酸锂以经验式Lix3Ni1-z3M’z3O2表示,其中0.05<x3<1.2且0<z3<0.5,且M’是一种或多种选自由以下组成的群组的元素:钴、锰、铝、硼、钛、镁、钙和锶。M’优选是一种或多种选自由以下组成的群组的元素:锰、铝、硼、钛、镁、钙和锶。
可用于本发明中的另一特定类型的镍酸锂以经验式Lix4A*x5Ni(1-y4-z4)Coy4Qz4Oa表示,其中x4等于或大于约0.1且等于或小于约1.3;x5等于或大于0.0且等于或小于约0.2;y4等于或大于0.0且等于或小于约0.2;z4等于或大于0.0且等于或小于约0.2;a大于约1.5且小于约2.1;A*是由以下组成的群组的至少一个成员:钡(Ba)、镁(Mg)和钙(Ca);且Q是由以下组成的群组的至少一个成员:铝(Al)、锰(Mn)和硼(B)。y4优选大于0。在一个优选实施例中,x5等于0,且z4大于0.0且等于或小于约0.2。在另一实施例中,z4等于0,且x5大于0.0且等于或小于约0.2。在又一实施例中,x5和z4各独立地大于0.0且等于或小于约0.2。在又一实施例中,x5、y4和z4各独立地大于0.0且等于或小于约0.2。x5、y4和z4各独立地大于0.0且等于或小于约0.2的镍酸锂的各种实例可见于美国专利第6,855,461号和第6,921,609号(其完整教示按引用并入本文中)中。
镍酸锂的具体实例是LiNi0.8Co0.15Al0.05O2。优选的具体实例是涂布有LiCoO2的LiNi0.8Co0.15Al0.05O2。在逐点涂布的阴极中,LiCoO2不完全涂布镍酸盐核心粒子。涂布有LiCoO2的LiNi0.8Co0.15Al0.05O2的组成自然会略偏离Ni∶Co∶Al的重量比为0.8∶0.15∶0.05的组成。对于Ni,所述偏离范围可为约10-15%,对于Co为5-10%,且对于Al为2-4%。镍酸锂的另一具体实例是Li0.97Mg0.03Ni0.9Co0.1O2。优选的具体实例是涂布有LiCoO2的Li0.97Mg0.03Ni0.9Co0.1O2。涂布有LiCoO2的Li0.97Mg0.03Ni0.9Co0.1O2的组成可略微偏离Mg∶Ni∶Co的重量比为0.03∶0.9∶0.1的组成。对于Mg,所述偏离范围可为约2-4%,对于Ni为10-15%,且对于Co为5-10%。可用于本发明中的另一优选的镍酸盐是Li(Ni1/3Co1/3Mn1/3)O2,也称为“333型镍酸盐”。此333型镍酸盐可任选涂布有LiCoO2,如上文所述。
可用于本发明中的钴酸锂的适当实例包括Li或Co原子中至少一者经修饰的Li1+x8CoO2。Li修饰剂的实例如上文关于镍酸锂的Li所述。Co修饰剂的实例包括Li的修饰剂以及铝(Al)、锰(Mn)和硼(B)。其它实例包括镍(Ni)和钛(Ti),且特别地,本发明中可以使用以经验式Lix6M’y6Co(1-z6)M″z6O2表示的钴酸锂,其中x6大于0.05且小于1.2;y6大于0且小于0.1,z6等于或大于0且小于0.5;M’是镁(Mg)和钠(Na)中至少一个成员,且M″是由以下组成的群组的至少一个成员:锰(Mn)、铝(Al)、硼(B)、钛(Ti)、镁(Mg)、钙(Ca)和锶(Sr)。可用于本发明中的钴酸锂的另一实例是未经修饰的Li1+x8CoO2,例如LiCoO2。在一个具体实施例中,钴酸锂(例如LiCoO2)掺杂有Mg和/或涂布有折射性氧化物或磷酸盐(例如ZrO2或Al(PO4))。
特别优选所用氧化锂化合物具有类球形形态,因为相信这能改良包装以及其它与制造相关的特性。
优选钴酸锂和镍酸锂的晶体结构各独立地为R-3m型空间群(spacegroup)(菱面体,包括扭曲的菱面体)。或者,镍酸锂的晶体结构可以呈单斜空间群(例如P2/m或C2/m)。在R-3m型空间群中,锂离子占据“3a”位点(x=0,y=0且z=0),而过渡金属离子(即镍酸锂中的Ni和钴酸锂中的Co)占据“3b”位点(x=0,y=0,z=0.5)。氧位于“6a”位点(x=0,y=0,z=z0,其中z0视金属离子(包括其修饰剂)的性质而变化)。
适用于本发明中的橄榄石型化合物的实例一般以通式Li1-x2A″x2MPO4表示,其中x2等于或大于0.05,或x2等于或大于0.0且等于或大于0.1;M是一种或多种选自由以下组成的群组的元素:铁、锰、钴或镁;且A″选自由以下组成的群组:钠、镁、钙、钾、镍、铌。优选M是铁或锰。更优选在本发明中使用LiFePO4或LiMnPO4,或二者。在一个优选实施例中,橄榄石型化合物涂布有导电性相对较高的材料,例如碳。在一个更为优选的实施例中,将涂布碳的LiFePO4或涂布碳的LiMnPO4用于本发明中。M是铁或锰的橄榄石型化合物的各种实例可见于美国专利第5,910,382号(其完整教示按引用并入本文中)中。
在充电/放电时,橄榄石型化合物的晶体结构通常具有较小改变,这一般使橄榄石型化合物的循环特性优良。另外,安全性一般较高,甚至是在电池组暴露于高温环境时。橄榄石型化合物(例如LiFePO4和LiMnPO4)的另一优势是其成本相对较低。
尖晶石型锰酸盐化合物具有锰基,例如LiMn2O4。尽管尖晶石型锰酸盐化合物通常具有相对较低的比容量(例如在约110到115mAh/g的范围内),但当其调配成电极时具有相对较高的电力输送,而且在较高温度下,其化学反应性通常较安全。尖晶石型锰酸盐化合物的另一优势是其成本相对较低。
可用于本发明中的一类尖晶石型锰酸盐化合物以经验式Li(1+x1)(Mn1-y1A’y2)2-x2Oz1表示,其中A’是镁、铝、钴、镍和铬中一者或多者;x1和x2各独立地等于或大于0.01且等于或小于0.3;y1和y2各独立地等于或大于0.0且等于或小于0.3;z1等于或大于3.9且等于或小于4.1。优选A’包括M3+离子,例如铝3+、钴3+、镍3+和铬3+,更优选铝3+。与LiMn2O4相比较,Li(1+x1)(Mn1-y1A’y2)2-x2Oz1所示的尖晶石型锰酸盐化合物可具有增进的循环性能和电力。可用于本发明中的另一类尖晶石型锰酸盐化合物以经验式Li(1+x1)Mn2Oz1表示,其中x1和z1各独立地与上文所述相同。或者,本发明的尖晶石型锰酸盐包括以经验式Li1+x9Mn2-y9Oz9表示的化合物,其中x9和y9各独立地等于或大于0.0且等于或小于0.3(例如0.05≤x9,y9≤0.15);且z9等于或大于3.9且等于或小于4.2。可用于本发明中的尖晶石型锰酸盐的具体实例包括LiMn1.9Al0.1O4、Li1+x1Mn2O4、Li1+x7Mn2-y7O4,以及其具有Al和Mg修饰剂的变体。Li(1+x1)(Mn1-y1A’y2)2-x2Oz1型尖晶石型锰酸盐化合物的各种其它实例可见于美国专利第4,366,215号、第5,196,270号和第5,316,877号(其完整教示按引用并入本文中)中。
应注意,本文所述的适合的阴极材料是以在制造将其并入其中的锂离子电池组时存在的经验式来表征。应了解,此后其具体组成依照其在使用(例如充电和放电)期间发生的电化学反应而发生变化。
适合的非水性电解质的实例包括通过将电解质盐溶解于非水性溶剂中所制备的非水性电解质溶液、固体电解质(无机电解质或含有电解质盐的聚合物电解质),以及通过将电解质混入或溶解于聚合物化合物中所制备的固体或凝胶状电解质或诸如此类。
非水性电解质溶液通常是通过将盐溶解于有机溶剂中而制成。有机溶剂可以包括一般用于此类电池组中的任一适合类型。所述有机溶剂的实例包括碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、γ-丁内酯、四氢呋喃、2-甲基四氢呋喃、1,3-二氧杂环戊烷、4-甲基-1,3-二氧杂环戊烷、乙醚、环丁砜、甲基环丁砜、乙腈、丙腈、苯甲醚、乙酸酯、丁酸酯、丙酸酯等。优选使用环状碳酸酯,例如碳酸亚丙酯;或链状碳酸酯,例如碳酸二甲酯和碳酸二乙酯。这些有机溶剂可单独使用或者两类或两类以上组合使用。
添加剂或稳定剂也可存在于电解质中,例如VC(碳酸乙烯酯)、VEC(碳酸乙烯亚乙酯)、EA(乙酸亚乙酯)、TPP(磷酸三苯酯)、膦腈、联苯(BP)、环己基苯(CHB)、2,2-二苯基丙烷(DP)、双(草酸根)硼酸锂(LiBoB)、硫酸亚乙酯(ES)和硫酸亚丙酯。这些添加剂用作阳极和阴极稳定剂、阻燃剂或气体释放剂,其可使电池组在形成、循环效率、安全性和寿命方面具有较高性能。
固体电解质可包括无机电解质、聚合物电解质等,只要所述材料具有锂离子传导性即可。无机电解质可包括例如氮化锂、碘化锂等。聚合物电解质由电解质盐以及溶解有电解质盐的聚合物化合物构成。用于聚合物电解质的聚合物化合物的实例包括基于醚的聚合物,例如聚氧化乙烯和交联聚氧化乙烯;基于聚甲基丙烯酸酯的聚合物;基于丙烯酸酯的聚合物等。这些聚合物可单独使用,或以两类或两类以上的混合物或共聚物形式使用。
凝胶电解质的基质可以是任一聚合物,只要所述聚合物通过吸收上述非水性电解质溶液而胶凝即可。用于凝胶电解质的聚合物的实例包括氟碳聚合物,例如聚偏二氟乙烯(PVDF)、聚偏二氟乙烯-共-六氟丙烯(PVDF-HFP)等。
用于凝胶电解质的聚合物的实例还包括聚丙烯腈和聚丙烯腈共聚物。用于共聚合的单体(基于乙烯基的单体)的实例包括乙酸乙烯酯、甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸甲酯、丙烯酸丁酯、衣康酸(itaconic acid)、氢化丙烯酸甲酯、氢化丙烯酸乙酯、丙烯酰胺、氯乙烯、偏二氟乙烯和偏二氯乙烯。用于凝胶电解质的聚合物的实例还包括丙烯腈-丁二烯共聚物橡胶、丙烯腈-丁二烯-苯乙烯共聚物树脂、丙烯腈-氯化聚乙烯-丙烯二烯-苯乙烯共聚物树脂、丙烯腈-氯乙烯共聚物树脂、丙烯腈-甲基丙烯酸酯树脂及丙烯腈-丙烯酸酯共聚物树脂。
用于凝胶电解质的聚合物的实例包括基于醚的聚合物,例如聚氧化乙烯、聚氧化乙烯的共聚物和交联聚氧化乙烯。用于共聚合的单体的实例包括聚氧化丙稀、甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸甲酯、丙烯酸丁酯。
特别地,从氧化-还原稳定性的角度看,优选将氟碳聚合物用于凝胶电解质的基质。
用于电解质中的电解质盐可以是适于此类电池组的任一电解质盐。电解质盐的实例包括LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C6H5)4、LiB(C2O4)2、CH3SO3Li、CF3SO3Li、LiCl、LiBr等。一般说来,隔离层将电池组的正电极与负电极分开。隔离层可包括一般用于形成此类非水性电解质二次电池组的隔离层的任一膜状材料,例如由聚丙烯、聚乙烯或二者的层状组合制成的微孔聚合物膜。此外,如果将固体电解质或凝胶电解质用作电池组的电解质,那么未必需要提供隔离层。在某些情况下,也可使用由玻璃纤维或纤维素材料制成的微孔隔离层。隔离层的厚度通常介于9与25μm之间。
在一些具体实施例中,可以通过以特定比例混合阴极粉末制成正电极。随后将约90重量%此掺合物与5重量%作为导电剂的乙炔黑和5重量%作为粘合剂的PVDF混合在一起。将混合物分散于N-甲基-2-吡咯烷酮(NMP)溶剂中,以制备浆液。接着,将此浆液涂覆于铝箔集流器的两个表面上,典型厚度为约20μm,并在约100-150℃下干燥。随后,利用滚压机将干燥的电极压光,获得经过压缩的正电极。当只使用LiCoO2作为正电极时,通常使用一种混合物,该混合物使用94重量%LiCoO2、3%乙炔黑和3%PVDF。负电极可以通过将93重量%作为负极活性材料的石墨、3重量%乙炔黑与4重量%作为粘合剂的PVDF混合制成。同样将负极混合物分散于N-甲基-2-吡咯烷酮溶剂中,以制备浆液。将负极混合物浆液均匀涂覆于带状铜箔负极集流器的两个表面上,典型厚度为约10μm。随后,利用滚压机将干燥的电极压光,获得致密的负电极。
通常将负电极与正电极以及由具有微孔的聚乙烯膜形成的25μm厚的隔离层层迭,并螺旋缠绕,产生螺旋形电极元件。
在一些实施例中,将一个或多个由例如铝制成的正极导线附接至正电流电极,随后电连接至本发明电池组的正极接线端。由例如镍金属制成的负极导线连接负电极,随后附接至馈通装置,例如馈通装置16。在本发明锂离子电池组的电池外壳中真空填入具有含1M LiPF6的例如EC:DMC:DEC的电解质,其中所述电池外壳具有螺旋缠绕的“果冻卷”。
等效内容
尽管已经参照本发明的优选实施例特别显示和描述了本发明,但所属领域技术人员应了解,在不背离随附权利要求书所涵盖的本发明的范围的情况下,可以对形式和细节进行各种修改。

Claims (22)

1.一种电池组外壳,其特征在于,在所述外壳的主要表面上具有凹入部分,所述凹入部分实质上平坦,并在所述凹入部分至少三面上的脊形部分处与所述主要表面的剩余部分接界,借此所述凹入部分、所述脊形部分与所述主要表面的剩余部分在表压增加的情况下合作使得由所述脊形部分与所述主要表面的剩余部分之间的边界所界定的平面移动。
2.根据权利要求1所述的电池组外壳,其特征在于,所述凹入部分的至少一部分在所述表压增加下弯曲达到在所述表压增加之前所述平面的位置以外的点,且其中在达到至少2kg/cm2的表压下,所述脊形部分与所述凹入部分之间的边界相对于由所述脊形部分与所述主要表面的剩余部分之间的边界所界定的所述平面保持凹入。
3.根据权利要求1所述的电池组外壳,其特征在于,所述凹入部分的至少一部分在所述表压增加下弯曲达到在所述表压增加期间所述平面的位置以外的点,且其中在达到至少4kg/cm2的表压下,所述脊形部分与所述凹入部分之间的边界相对于由所述脊形部分与所述主要表面的剩余部分之间的边界所界定的所述平面保持凹入。
4.根据权利要求3所述的电池组外壳,其特征在于,所述外壳是由将使所述凹入部分相对于在所述表压由增加的值恢复时的平面实质上回复其初始形状和位置的材料构造。
5.根据权利要求1所述的电池组外壳,其特征在于,所述外壳是由将使在所述表压增加前所述平面的位置与在所述表压由增加的值恢复时所述平面的位置实质上相同的材料构造。
6.根据权利要求5所述的电池组外壳,其特征在于,所述外壳是由至少一种选自由以下组成的群组的材料构造:铝、镍、铜、钢、镀镍的铁和不锈钢。
7.根据权利要求6所述的电池组外壳,其特征在于,所述电池组外壳是棱柱形电池组外壳。
8.根据权利要求7所述的电池组外壳,其特征在于,所述棱柱形电池组外壳是椭圆棱柱形电池组电池外壳。
9.根据权利要求8所述的电池组外壳,其特征在于,所述棱柱形电池组外壳具有183665型配置。
10.根据权利要求8所述的电池组外壳,其特征在于,所述外壳是由铝构造,且其中所述铝经阳极化。
11.根据权利要求10所述的电池组外壳,其特征在于,所述凹入部分占据介于约10%与约90%之间的所述主要表面,所述主要表面是所述电池外壳的大体上平坦的部分。
12.根据权利要求11所述的电池组外壳,其特征在于,所述凹入部分的最凹点是在约0kg/cm2表压下从由所述脊形部分与所述主要表面的剩余部分之间的边界所界定的所述平面凹入介于约0.2mm与约0.6mm之间的范围内。
13.根据权利要求12所述的电池组外壳,其特征在于,所述凹入部分的表面积在介于约500mm2与约700mm2之间的范围内。
14.一种电池组,其特征在于包含:
a)第一接线端,其与所述电池组的第一电极电连通;
b)第二接线端,其与所述电池组的第二电极电连通;和
c)电池组壳体,其具有电池外壳和盖子,二者彼此电连通,所述电池组壳体与所述第一接线端电绝缘,其中所述电池外壳在所述外壳的主要表面上具有凹入部分,所述凹入部分实质上平坦,并在所述凹入部分至少三面上的脊形部分处与所述主要表面的剩余部分接界,借此所述凹入部分、所述脊形部分与所述主要表面的剩余部分在表压的增加下合作使得由所述脊形部分与所述主要表面的剩余部分之间的边界所界定的平面移动。
15.根据权利要求14所述的电池组,其特征在于,所述第一电极是阴极,其包括活性阴极材料,所述活性阴极材料包括一种混合物,其包括:
a)钴酸锂;和
b)由以下经验式表示的尖晶石型锰酸盐
Li(1+x1)(Mn1-y1A’y2)2-x2Oz1
其中:
x1和x2各独立地等于或大于0.01且等于或小于0.3;
y1和y2各独立地等于或大于0.0且等于或小于0.3;
z1等于或大于3.9且等于或小于4.2;
且A’是由以下组成的群组的至少一个成员:镁、铝、钴、镍和铬,
其中所述钴酸锂与所述尖晶石型锰酸盐的重量比为钴酸锂∶尖晶石型锰酸盐介于约0.95∶0.05与约0.6∶0.4之间。
16.根据权利要求14所述的电池组,其特征在于,包含阴极,所述阴极包括活性阴极材料,所述活性阴极材料包括钴酸锂。
17.根据权利要求16所述的电池组,其特征在于,所述钴酸锂由经验式Li1+x8CoOz8表示,其中x8等于或大于0且等于或小于0.2,且z8等于或大于1.9且等于或大于2.1。
18.根据权利要求17所述的电池组,其特征在于,所述活性阴极材料包括一种混合物,其包括:
a)Li1+x8CoOz8;和
b)Li(1+x1)Mn2O21,其中:
x1等于或大于0.01且等于或小于0.3;和
z1等于或大于3.9且等于或小于4.2,
其中LiCoO2与Li(1+x1)Mn2Oz1的重量比为钴酸锂∶尖晶石型锰酸盐介于约0.95∶0.05与约0.6∶0.4之间。
19.根据权利要求14所述的电池组,其特征在于,所述第一电极是阴极,其包括活性阴极材料,所述活性阴极材料包括至少一种选自由以下组成的群组的氧化锂:
a)钴酸锂;
b)镍酸锂;
c)由以下经验式表示的尖晶石型锰酸盐
Li(1+x1)(Mn1-y1A’y2)2-x2Oz1
其中:
x1和x2各独立地等于或大于0.01且等于或小于0.3;
y1和y2各独立地等于或大于0.0且等于或小于0.3;
z1等于或大于3.9且等于或小于4.2;
且A’是由以下组成的群组的至少一个成员:镁、铝、钴、镍和铬;
d)由以下经验式表示的尖晶石型锰酸盐
Li(1+x1)Mn2Oz1
其中:
x1等于或大于0.01且等于或小于0.3;和
z1等于或大于3.9且等于或小于4.2;和
e)由以下经验式表示的橄榄石型化合物
Li(1-x10)A″x10MPO4
其中:
x10等于或大于0.05且等于或小于0.2,或x 10等于或大于0.0且等于或小于0.1;和
M是由以下组成的群组的至少一个成员:铁、锰、钴和镁;和
A″是由以下组成的群组的至少一个成员:钠、镁、钙、钾、镍和铌。
20.根据权利要求14所述的电池组,其特征在于,另外包括:
a)盖子,其焊接于所述电池外壳上,其中所述电池组壳体的至少一部分是所述第二接线端的至少一个元件,或电连接至所述第二接线端,当内部表压等于或大于约20kg/cm2时,所述焊接的盖子脱离;和
b)至少一个电流中断装置,其与所述第一和第二电极中任一者电连通,所述电流中断装置包括:
i)第一导电板,其包括圆锥台,所述圆锥台包括第一端和直径小于所述第一端的第二端,以及密封所述圆锥台的所述第二端的基本上平坦的顶盖,其中底部靠近所述电池组壳体,而所述基本上平坦的顶盖远离所述电池组壳体;和
ii)第二导电板,其与所述第一导电板并与所述第一和第二电极中任一者电连通,
其中当所述第一与第二板之间的表压在介于约4kg/cm2与9kg/cm2之间的范围内时,连接所述板的焊接破裂;和
c)至少一个排气构件,其处在所述电池外壳上,当内部表压在介于约10kg/cm2与约20kg/cm2之间的范围内时,所述电池组内部的气态物质经由所述排气构件离开。
21.根据权利要求20所述的电池组,其特征在于,所述电池外壳是棱柱形电池外壳。
22.根据权利要求21所述的电池组,其特征在于,所述电池外壳具有183665型配置。
CN200980114415.9A 2008-04-24 2009-04-16 具有挠性凹入部分的棱柱形蓄电池组或电池 Expired - Fee Related CN102017224B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12528108P 2008-04-24 2008-04-24
US61/125,281 2008-04-24
PCT/US2009/040845 WO2009131896A2 (en) 2008-04-24 2009-04-16 Prismatic storage battery or cell with flexible recessed portion

Publications (2)

Publication Number Publication Date
CN102017224A true CN102017224A (zh) 2011-04-13
CN102017224B CN102017224B (zh) 2015-10-07

Family

ID=41066616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980114415.9A Expired - Fee Related CN102017224B (zh) 2008-04-24 2009-04-16 具有挠性凹入部分的棱柱形蓄电池组或电池

Country Status (6)

Country Link
US (1) US9166206B2 (zh)
EP (1) EP2269245A2 (zh)
JP (1) JP2011520222A (zh)
KR (1) KR101606520B1 (zh)
CN (1) CN102017224B (zh)
WO (1) WO2009131896A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988332A (zh) * 2012-02-07 2014-08-13 株式会社Lg化学 具有新颖结构的棱柱状电池组
CN103999254A (zh) * 2012-02-07 2014-08-20 株式会社Lg化学 具有新颖结构的嵌入式电池单体
CN108352529A (zh) * 2016-06-17 2018-07-31 株式会社Lg化学 具有掺杂剂浓度梯度的锂二次电池用正极活性物质

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2162935A1 (en) 2007-06-22 2010-03-17 Boston-Power, Inc. Cid retention device for li-ion cell
US20090291330A1 (en) * 2008-04-24 2009-11-26 Boston-Power, Inc. Battery with enhanced safety
US8642195B2 (en) * 2008-12-19 2014-02-04 Boston-Power, Inc. Modular CID assembly for a lithium ion battery
EP2443684A4 (en) * 2009-06-16 2016-01-27 Boston Power Inc PRISMABLE STORAGE BATTERY OR CELL WITH FLEXIBLE DEFLECTION
KR101106328B1 (ko) * 2010-01-26 2012-01-18 에스비리모티브 주식회사 이차 전지용 케이스 및 그 제조 방법
US20110302761A1 (en) * 2010-06-14 2011-12-15 International Metal Products, Inc. Process for manufacturing an anodized aluminum disc seal shell
KR101084862B1 (ko) * 2010-07-21 2011-11-21 에스비리모티브 주식회사 절연 튜브를 구비하는 각형 이차 전지
JP2012049074A (ja) * 2010-08-30 2012-03-08 Makita Corp 電動工具のバッテリパック
US9362590B2 (en) * 2010-12-28 2016-06-07 Sekisui Chemical Co., Ltd. Lithium ion secondary battery
JP5712804B2 (ja) * 2011-06-09 2015-05-07 トヨタ自動車株式会社 密閉型電池及びその製造方法
KR101432224B1 (ko) * 2012-02-07 2014-08-26 주식회사 엘지화학 신규한 구조의 내장형 이차전지 팩
EP2862214A1 (en) * 2012-06-15 2015-04-22 Boston-Power, Inc. Secondary lithium ion battery with mixed nickelate cathodes
JP6103222B2 (ja) * 2013-06-25 2017-03-29 株式会社豊田自動織機 蓄電装置
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
US10541391B2 (en) 2015-09-30 2020-01-21 Apple Inc. Electrical feedthroughs for battery housings
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP7116242B2 (ja) * 2018-07-16 2022-08-09 ユミコア 寿命特性が改善された再充電可能なリチウムイオンバッテリ
KR20210041991A (ko) * 2019-10-08 2021-04-16 주식회사 엘지화학 이차전지용 케이스, 그 이차전지용 케이스를 포함하는 이차전지 및 그 이차전지용 케이스의 제조방법
EP4191755A1 (de) * 2021-12-01 2023-06-07 Hilti Aktiengesellschaft Energieversorgungsvorrichtung mit einer flexiblen aussenhülle und werkzeugmaschine mit einer solchen energieversorgungsvorrichtung
EP4191756A1 (de) * 2021-12-01 2023-06-07 Hilti Aktiengesellschaft Energieversorgungsvorrichtung mit einer zelle ohne überdruckventil und werkzeugmaschine mit einer solchen energieversorgungsvorrichtung

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US35151A (en) * 1862-05-06 Improved coal-oil-lamp cone
US192552A (en) * 1877-06-26 Improvement in animal-catchers
US4028478A (en) 1976-05-24 1977-06-07 Union Carbide Corporation Safety switch for sealed galvanic cells
GB2160352B (en) * 1984-06-08 1987-08-26 Venture Tech Ltd Insulating seal for electrochemical cells
US5504415A (en) * 1993-12-03 1996-04-02 Electronic Power Technology, Inc. Method and apparatus for automatic equalization of series-connected batteries
US5694021A (en) * 1994-02-28 1997-12-02 Kabushiki Kaisha Toshiba System for executing charge control of a secondary battery and detecting the capacitance thereof
US5565756A (en) * 1994-07-11 1996-10-15 Motorola, Inc. Microprocessor controlled portable battery charger and method of charging using same
US6159636A (en) * 1996-04-08 2000-12-12 The Gillette Company Mixtures of lithium manganese oxide spinel as cathode active material
US6030726A (en) 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
DE69710702T2 (de) * 1996-09-10 2004-05-06 Koninklijke Philips Electronics N.V. Batteriegespeistes elektrisches gerät
US5783333A (en) 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
CN1179438C (zh) 1996-12-16 2004-12-08 大金工业株式会社 非水电解液二次电池用粘合剂和使用该粘合剂的电池电极合剂
JPH113698A (ja) 1997-06-11 1999-01-06 Japan Storage Battery Co Ltd リチウムイオン二次電池
US6087036A (en) 1997-07-25 2000-07-11 3M Innovative Properties Company Thermal management system and method for a solid-state energy storing device
US5958088A (en) 1998-03-04 1999-09-28 Duracell, Inc. Prismatic cell construction
DE69816266T2 (de) * 1998-03-30 2004-05-13 Renata Ag Prismatische aufladbare oder primäre Zelle mit steifem und zusammendrückendem Halter
US6204635B1 (en) 1998-05-22 2001-03-20 Texas Instruments Incorporated Current interrupt apparatus particularly adapted for use with prismatic electrochemical cells
JP2000037821A (ja) 1998-07-24 2000-02-08 Dainippon Printing Co Ltd 内装用化粧材
KR20000009698A (ko) 1998-07-28 2000-02-15 손욱 이차전지의 전류 차단기
US6586942B2 (en) * 2001-06-29 2003-07-01 Peter Ar-Fu Lam Hand mounted control apparatus
JP3754218B2 (ja) 1999-01-25 2006-03-08 三洋電機株式会社 非水電解質電池用正極及びその製造方法、ならびこの正極を用いた非水電解質電池及びその製造方法
JP3869605B2 (ja) 1999-03-01 2007-01-17 三洋電機株式会社 非水電解質二次電池
DE10011233B4 (de) * 1999-03-12 2007-07-12 Sanyo Electric Co., Ltd., Moriguchi Batterieeinheit
JP2001022993A (ja) 1999-07-05 2001-01-26 Ryuzo Kato 識別方法及び識別カード
US6114835A (en) * 1999-07-26 2000-09-05 Unitrode Corporation Multi-cell battery pack charge balancing circuit
US6430517B1 (en) * 1999-10-05 2002-08-06 Ericsson Inc. Circuits, user terminals, and methods for determining information associated with pin limited devices using excitations of different frequencies
JP3492262B2 (ja) 1999-11-25 2004-02-03 Necトーキン栃木株式会社 密閉型電池
JP3959929B2 (ja) * 2000-04-25 2007-08-15 ソニー株式会社 正極及び非水電解質電池
JP2002042816A (ja) 2000-07-25 2002-02-08 Kee:Kk 高容量非水系二次電池
JP2002075369A (ja) 2000-09-04 2002-03-15 Kee:Kk 高容量リチウムイオン二次電池
JP3640164B2 (ja) 2000-10-13 2005-04-20 株式会社デンソー 非水電解質二次電池
JP4878687B2 (ja) 2001-02-23 2012-02-15 三洋電機株式会社 リチウム二次電池
JP4055368B2 (ja) 2001-02-27 2008-03-05 日本電気株式会社 二次電池
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
JP3631197B2 (ja) 2001-11-30 2005-03-23 三洋電機株式会社 非水電解質二次電池
JP4404179B2 (ja) 2001-12-06 2010-01-27 ソニー株式会社 正極活物質およびこれを用いた二次電池
JP3706576B2 (ja) * 2001-12-27 2005-10-12 三洋電機株式会社 電源装置
US7763386B2 (en) * 2002-01-08 2010-07-27 Sony Corporation Cathode active material and non-aqueous electrolyte secondary cell using same
US7049031B2 (en) 2002-01-29 2006-05-23 The University Of Chicago Protective coating on positive lithium-metal-oxide electrodes for lithium batteries
JP2003229125A (ja) 2002-01-31 2003-08-15 Sanyo Electric Co Ltd 非水電解質電池
CA2475710C (en) 2002-02-11 2011-03-29 Modular Energy Devices, Inc. Systems and methods for constructing a battery
JP2004006094A (ja) 2002-05-31 2004-01-08 Nec Corp 非水電解液二次電池
CN100466341C (zh) * 2002-08-08 2009-03-04 松下电器产业株式会社 非水电解质二次电池用正极活性物质及其制造方法
JP3632686B2 (ja) 2002-08-27 2005-03-23 ソニー株式会社 正極活物質及び非水電解質二次電池
JP4245562B2 (ja) 2002-11-01 2009-03-25 三洋電機株式会社 非水電解質二次電池
US20040121234A1 (en) * 2002-12-23 2004-06-24 3M Innovative Properties Company Cathode composition for rechargeable lithium battery
JP4368119B2 (ja) 2003-02-27 2009-11-18 三洋電機株式会社 非水電解質二次電池の製造方法
WO2004105162A1 (ja) 2003-05-26 2004-12-02 Nec Corporation 二次電池用正極活物質、二次電池用正極、二次電池、および二次電池用正極活物質の製造方法
EP1508934B1 (en) * 2003-08-20 2007-02-28 Samsung SDI Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising the same
CN1493522A (zh) 2003-09-26 2004-05-05 清华大学 一种锂过渡金属氧化物的制备方法
WO2005038952A2 (en) * 2003-10-14 2005-04-28 Black & Decker Inc. Protection methods, protection circuits and protective devices for secondary batteries, a power tool, charger and battery pack adapted to provide protection against fault conditions in the battery pack
KR100508941B1 (ko) * 2003-11-29 2005-08-17 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법 및 그방법으로 제조된 리튬 이차 전지용 양극 활물질
JP4278622B2 (ja) * 2004-03-18 2009-06-17 三洋電機株式会社 電源装置
KR100578804B1 (ko) 2004-03-29 2006-05-11 삼성에스디아이 주식회사 캡 조립체 및 이를 구비한 이차 전지
JP2006035942A (ja) * 2004-07-23 2006-02-09 Sanyo Electric Co Ltd 車両用の電源装置
KR100614381B1 (ko) 2004-07-29 2006-08-21 삼성에스디아이 주식회사 리튬 이온 이차 전지
CN102074701A (zh) 2004-12-28 2011-05-25 波士顿电力公司 锂离子二次电池
US20080008933A1 (en) 2005-12-23 2008-01-10 Boston-Power, Inc. Lithium-ion secondary battery
US7811707B2 (en) 2004-12-28 2010-10-12 Boston-Power, Inc. Lithium-ion secondary battery
KR20060091486A (ko) 2005-02-15 2006-08-21 삼성에스디아이 주식회사 양극 활물질, 그 제조 방법 및 이를 채용한 양극과 리튬 전지
KR100709870B1 (ko) 2005-04-27 2007-04-20 삼성에스디아이 주식회사 이차 전지 및 그 형성 방법
KR100731462B1 (ko) * 2005-05-04 2007-06-21 삼성에스디아이 주식회사 이차전지
JP4931378B2 (ja) * 2005-07-06 2012-05-16 三洋電機株式会社 車両用の電源装置
JP5118637B2 (ja) 2005-07-14 2013-01-16 ボストン−パワー,インコーポレイテッド Liイオン電池用制御電子回路
JP5008863B2 (ja) * 2005-11-30 2012-08-22 プライムアースEvエナジー株式会社 二次電池用の制御装置、二次電池の温度推定方法を用いた二次電池の劣化判定方法
JP5143568B2 (ja) 2005-12-20 2013-02-13 パナソニック株式会社 非水電解質二次電池
CN101669230B (zh) * 2007-04-27 2013-01-02 三洋电机株式会社 电源装置及电动车辆
EP2162935A1 (en) 2007-06-22 2010-03-17 Boston-Power, Inc. Cid retention device for li-ion cell
DE102007031558A1 (de) * 2007-07-06 2009-01-08 Robert Bosch Gmbh Akkumulator und Akkupack
KR100934259B1 (ko) * 2007-11-01 2009-12-28 삼성에스디아이 주식회사 캡 조립체 및 이를 구비하는 이차 전지
US7986129B2 (en) * 2008-01-02 2011-07-26 Cooper Technologies Company Method and system for float charging a battery
US8148946B2 (en) * 2008-10-10 2012-04-03 Mitsumi Electric Co., Ltd. Battery pack having protection circuit for secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988332A (zh) * 2012-02-07 2014-08-13 株式会社Lg化学 具有新颖结构的棱柱状电池组
CN103999254A (zh) * 2012-02-07 2014-08-20 株式会社Lg化学 具有新颖结构的嵌入式电池单体
US9484561B2 (en) 2012-02-07 2016-11-01 Lg Chem, Ltd. Prismatic battery pack with novel structure
CN103999254B (zh) * 2012-02-07 2017-08-15 株式会社Lg 化学 新颖的嵌入式结构的电池单体
CN108352529A (zh) * 2016-06-17 2018-07-31 株式会社Lg化学 具有掺杂剂浓度梯度的锂二次电池用正极活性物质

Also Published As

Publication number Publication date
EP2269245A2 (en) 2011-01-05
KR20110009170A (ko) 2011-01-27
WO2009131896A3 (en) 2010-03-18
KR101606520B1 (ko) 2016-03-25
WO2009131896A2 (en) 2009-10-29
US9166206B2 (en) 2015-10-20
CN102017224B (zh) 2015-10-07
JP2011520222A (ja) 2011-07-14
US20090269654A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
CN102017224B (zh) 具有挠性凹入部分的棱柱形蓄电池组或电池
KR101295037B1 (ko) 리튬-이온 전지를 위한 통합 전류-차단 장치
CN101803070B (zh) 用于锂离子电池的电流中断装置维持装置
CN102017231A (zh) 具有增进安全性的电池组
KR100742109B1 (ko) 비수성-전해질 2차 전지 및 그 제조방법
TWI445236B (zh) 鋰離子二次電池
CN102460770B (zh) 具有挠性凹入部分的棱柱形蓄电池组或电池
US8003241B2 (en) Lithium battery with external positive thermal coefficient layer
EP2133941A1 (en) Electrode Assembly and Secondary Battery Having the Same
JP2008041504A (ja) 非水電解質電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151007

Termination date: 20180416