CN101887910A - 一种适合于半导体闪存器件的栅叠层结构及制备方法 - Google Patents

一种适合于半导体闪存器件的栅叠层结构及制备方法 Download PDF

Info

Publication number
CN101887910A
CN101887910A CN2010101916591A CN201010191659A CN101887910A CN 101887910 A CN101887910 A CN 101887910A CN 2010101916591 A CN2010101916591 A CN 2010101916591A CN 201010191659 A CN201010191659 A CN 201010191659A CN 101887910 A CN101887910 A CN 101887910A
Authority
CN
China
Prior art keywords
electric charge
film
layer
ruthenium
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010101916591A
Other languages
English (en)
Inventor
丁士进
苟鸿雁
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN2010101916591A priority Critical patent/CN101887910A/zh
Publication of CN101887910A publication Critical patent/CN101887910A/zh
Priority to CN2011101304848A priority patent/CN102208442B/zh
Priority to US13/518,306 priority patent/US20130062684A1/en
Priority to EP11789049.1A priority patent/EP2442364A4/en
Priority to PCT/CN2011/000891 priority patent/WO2011150670A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42332Gate electrodes for transistors with a floating gate with the floating gate formed by two or more non connected parts, e.g. multi-particles flating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

本发明属于半导体集成电路制造技术领域,具体为一种适合于闪存器件的栅叠层结构及其制备方法。该栅叠层结构以P型(100)晶向的硅片为衬底,自下而上依次为:Al2O3薄膜,作为电荷隧穿层;钌基纳米晶,作为第一种电荷俘获层;HfxAlyOz薄膜,作为第二种电荷俘获层;Al2O3薄膜,充当电荷阻挡层;上电极层。本发明中,钌基纳米晶具有很好的热稳定性,在高温下不容易扩散;HfxAlyOz薄膜具有较高的电荷陷阱密度;上电极采用金属钯,拥有较大的功函数。因此该栅叠层结构在纳米晶存储电容器中有广阔的应用前景。

Description

一种适合于半导体闪存器件的栅叠层结构及制备方法
技术领域
本发明属于半导体集成电路制造技术领域,具体涉及一种快闪存储器的电容结构和制备方法,尤其涉及基于金属纳米晶和高介电常数介质的新型异质电荷俘获层及制备方法。
背景技术
随着半导体工艺技术的不断发展,非挥发性快闪存储器集成密度越来越高、操作电压越来越低,这就驱使器件特征尺寸持续减小,在65nm技术节点之后传统的多晶硅浮栅结构出现了一系列的问题,极大地影响了器件存储的性能,诸如擦写速度慢,工作电压高等[1]。基于非连续电荷俘获机理(如纳米晶、SONOS存储器等)的新一代非挥发性存储器最近引起了广泛关注,它们采用分离的电荷陷阱代替连续的多晶硅浮栅存储电荷,使得隧穿层中存在的局部缺陷不会引起电荷俘获层中大量的电荷流失,从而有效地提高了存储器的数据保存能力,并且可以获得更低的操作电压,实现更快的擦写速度等[2,3]。与半导体纳米晶相比,金属纳米晶在费米能级附近有更高的态密度,功函数的选择范围更广,与衬底沟道有较强的耦合等[2],故其能够实现较低的操作电压、较高密度的电荷存储和较长时间的电荷保留。研究表明,通过选择具有较大功函数的金属纳米晶,可以形成较深的势阱,从而有效地俘获电荷并能提供更好的数据保存特性。另一方面,随着SONOS存储器的发展,采用高介电常数材料(High-k)代替SONOS中的氮化硅电荷俘获层[4],能够相应地增加降落在隧穿层上的电场强度,从而提高编程和擦除速度。但是这种结构存储器的缺点是其操作电压较高,并且操作速度较慢[5]。因此,为了充分结合上述两种结构的优点,本发明提出了以金属纳米晶和高介电常数介质结合在一起的异质电荷俘获层的存储器电容结构。
这种新型异质电荷俘获层中由于引入了高介电常数介质,所以可以增加降落在隧穿层上的电场强度,达到降低电荷注入的势垒,从而提高存储器的编程和擦除速度,同时实现器件在较低的电压下操作。同时,拥有较大功函数的金属纳米晶可以形成较深的势阱,从而在俘获电荷后有较好的数据保存特性。因此,这种新型异质电荷俘获层结构存储器能更好地满足下一代非挥发性快闪存储器的要求,有更大的应用前景。
本发明中的纳米晶为钌和氧化钌的复合物(记为RuOx),它具有很好的热稳定性,既使被氧化,也是一种良好的导体。此外,它在高温下不容易扩散,易于干法刻蚀。本发明中高介电常数介质为HfxAlyOz(y=0或>0),它的介电常数在10~25之间,具有较高的电荷陷阱密度,这就使得HfxAlyOz材料可以作为理想的电荷俘获层代替氮化硅。本发明中的电极采用金属钯(Pd)材料,它拥有较大的功函数(5.22eV),能与电荷阻挡层介质形成有利于电荷擦写的垫垒高度,且钯具有良好的化学稳定性和热稳定性,因此其在纳米晶存储电容器中有很大的应用前景。
参考文献
[1]J.D.Blauwe,IEEE Trans.Nanotechnology 1,1(2002).
[2]J.J.Lee,and D.L.Kwong,IEEE Trans.Electron Devices 52,507(2005).
[3]H.L.Hanafi,S.Tiwari,and I.Khan,IEEE Trans.Electron Devices 43,1553(1996).
[4]P.-H.Tsai,K.-S.Chang-Liao,C.-Y.Liu,T.-K.Wang,P.J.Tzeng,C.H.Lin,L.S.Lee,and M.-J.Tsai.IEEE Electron Device Letters,29,265(2008).
[5]B.Govoreanu,D.P.Brunco,and J.Van Houdt,Solid-State Electronics,49,1841-1848(2005).
发明内容
本发明的目的是提供一种存储电荷密度高、操作电压低、擦写速度快且电荷保持特性好的适合于半导体闪存器件的栅叠层结构。
本发明的再一目的是提供上述栅叠层结构的制备方法。
本发明提出的栅叠层结构存储电容器,采用钌基纳米晶和高介电常数HfxAlyOz薄膜组成异质电荷俘获层,该栅叠层结构以P型(100)晶向的硅片为衬底,自下而上依次为:
1)原子层淀积的Al2O3薄膜,作为电荷隧穿层,厚度为5~15纳米;
2)钌基纳米晶RuOx,作为第一种电荷俘获层;
3)原子层淀积的高介电常数HfxAlyOz薄膜,作为第二种电荷俘获层,厚度为5~10纳米;
4)原子层淀积的15~40纳米厚的Al2O3薄膜,充当电荷阻挡层;
5)上电极层。
本发明提出的栅叠层结构存储电容器制备方法的步骤为:
以P型单晶硅片为衬底层,用原子层淀积的方法生长的Al2O3薄膜作为电荷隧穿层,厚度为5~15纳米。
在形成隧穿层之后,接着磁控溅射一层2~4纳米厚的钌膜,然后在N2气氛中,于700~900℃下快速热退火10~30秒,形成钌基纳米晶,其中含有金属钌和氧化钌(记为RuOx),作为第一种电荷俘获层。
接着,原子层淀积5~10纳米厚的高介电常数HfxAlyOz薄膜,作为第二种电荷俘获层,HfxAlyOz薄膜中x>0,z>0,同时y=0或y>0。其中Hf与Al的组成通过原子层淀积HfO2和Al2O3的循环数来确定。
随后,原子层淀积15~40纳米厚的Al2O3薄膜作为电荷阻挡层,同时进行淀积后快速热退火处理,条件为温度500~800℃,时间10~30秒。
最后,经过标准的光刻工艺,利用lift-off方法形成栅电极,栅电极厚度为50~200纳米。本发明中适用于快闪存储器的栅叠层结构的剖面示意图如图1所示。
本发明中,原子层淀积Al2O3的条件为:衬底温度控制在250-350℃范围内,反应前驱体为三甲基铝Al(CH3)3(TMA)和水蒸汽。原子层淀积HfO2的条件为:衬底温度控制在250-350℃范围内,反应前驱体为四(乙基甲胺基)铪(TEMAH)和水蒸汽。
所述栅电极材料为金属钯(Pd)。
本发明具有以下优点:
1、采用磁控溅射淀积形成超薄金属钌膜,通过调节淀积功率、时间、衬底温度等,能够在高真空度下比较精确地控制薄膜的厚度和淀积速率,以形成超薄且均匀的金属膜,这使得退火后更易形成直径小、分布均匀且密度高的纳米晶颗粒。
2、电荷俘获层之一采用RuOx纳米晶作为电荷存储中心,由于它们的功函数较高(4.7~5.2eV),所以能提供较大的势阱深度,有利于提高电荷的存储能力。本发明中金属纳米晶的形成温度与存储器的制作工艺温度相兼容,没有超过器件制作中源、漏离子注入后的激活退火温度。
3、另一电荷俘获层采用高介电常数介质HfxAlyOz作为存储中心,由于HfxAlyOz的介电常数高(10~25),能够有效地增加了降落在隧穿层上的电场强度,从而提高了存储器的编程和擦除速度,并且降低了操作电压。同时,HfxAlyOz材料能提供足够多的电荷陷阱,用来存储电荷。
4、由高介电常数HfxAlyOz与高密度的RuOx纳米晶组成的异质电荷俘获层,可以共同俘获来自衬底的电荷注入,大大提高了电荷的存储密度。此外,高密度RuOx纳米晶嵌入到HfxAlyOz薄膜中,有效地抑制了HfxAlyOz介质在高温退火后发生结晶,因此减小了沿着晶粒间界的电荷泄漏,提高了存储器的电荷保持特性。
5、采用原子层淀积的方法制备HfxAlyOz薄膜,不仅可以精确地控制薄膜的组成和厚度,还能有效填充间距在纳米量级的缝隙,从而使得RuOx纳米晶能被HfxAlyOz完全隔离开。
6、采用金属钯作为电极,不仅可以和阻挡层的氧化铝介质形成利于擦写的垫垒,且钯不易被氧化,具有很好的化学稳定性和热稳定性。利用电子束蒸发设备在高真空下生长钯薄膜,此方面生长的钯膜与氧化铝介质能形成很好的接触界面,从而提高了电容存储器的性能。
附图说明
图l基于RuOx纳米晶和高介电常数HfxAlyOz薄膜的异质电荷俘获层结构存储电容器剖面结构图。
图2基于RuOx纳米晶和高介电常数薄膜(分别为HfO2和HfAlO)的异质电荷俘获层存储电容器在不同电压下编程/擦除0.1毫秒后的平带电压变化图。
图3基于RuOx纳米晶和高介电常数薄膜(分别为HfO2和HfAlO)的异质电荷俘获层存储电容器在+/-9V编程/擦除不同时间后的平带电压变化图。
图4基于RuOx纳米晶和高介电常数薄膜(分别为HfO2和HfAlO)的异质电荷俘获层存储电容器在+9V编程、-9V擦除1毫秒后的电荷保持特性。
具体实施方式
本发明所提出的新型栅叠层结构快闪存储电容的制备方法如下:
(1)采用(100)晶向的P型单晶硅片作为衬底,硅片的电阻率为8-12欧姆·厘米。首先对硅片进行标准清洗,并利用稀氢氟酸去除残留的自然氧化层。
(2)隧穿层Al2O3的形成:以三甲基铝和水蒸汽为反应源,采用原子层淀积的方法生长Al2O3薄膜,衬底温度控制在250~350℃范围内。Al2O3隧穿层厚度控制在为5~10纳米范围内。
(3)异质电荷俘获层中纳米晶RuOx的形成:采用磁控溅射淀积的方法,在Al2O3隧穿层上淀积超薄金属钌层,钌层的厚度为2~4纳米,然后在氮气气氛中进行快速热退火,即可形成RuOx纳米晶。退火温度为700~900℃,退火时间为10~30秒。该纳米晶作为异质电荷俘获层中的一种。
(4)异质电荷俘获层中高介电常数介质HfxAlyOz薄膜的形成:采用原子层淀积的方法生长HfxAlyOz薄膜,其中一种薄膜的组成为HfO2和Al2O3的淀积循环数之比为1∶1,记为HfAlO。另一种薄膜不含Al2O3,即为纯HfO2。衬底温度控制在250~350℃范围内,HfO2的反应源为四(乙基甲胺基)铪(TEMAH)和水蒸汽。Al2O3的制备条件如(2)所述。HfAlO和HfO2薄膜的厚度均为5~10纳米,分别用于异质电荷俘获层中的另外一种。
(5)电荷阻挡层Al2O3薄膜的形成:采用(2)中所述的方法淀积15~40纳米厚的Al2O3薄膜。然后,将所得样品在氮气中进行快速热处理,温度为500~800℃,时间为10~30秒。目的是获得高质量的Al2O3阻挡层,抑制电荷的泄漏。
(6)栅电极的形成:采用lift-off方法形成栅电极,即首先通过光刻形成图形,接着利用电子束蒸发设备生长钯金属薄膜,膜厚为50~200纳米。最后,利用丙酮清洗剩余的光刻胶。
(7)为了方便器件性能的测量,先用氢氟酸去除衬底背面的自然氧化层,然后淀积一层金属铝层作为下电极,以形成良好的欧姆接触,从而完成栅叠层结构存储电容器的制作工艺。
图2为本实例中的异质电荷俘获层存储电容在不同电压下编程和擦除0.1毫秒后的平带电压变化图。由图可知,随着正向偏压的增大,所得平带电压均向正方向漂移,这是由于电子注入导致负电荷的俘获造成的。随着负向偏压的增大,所得的平带电压均向负方向漂移,这是由于电荷俘获层中被俘获的电荷发生释放或来自衬底的空穴注入所造成的。此外,可以观察到在相同操作电压下,RuOx/HfO2异质电荷俘获层比RuOx/HfAlO异质电荷俘获层能提供更大的存储窗口,例如,在6V的操作电压下,前者的存储窗口为2.6V,后者则为1.4V。
图3为本实例中所制作的异质电荷俘获层存储电容在+/-9V编程/擦除不同时间后的平带电压变化图。由图可知,两个电容在编程/擦除状态下的平带电压均随着脉冲时间的增加而增大,并最终趋向饱和。对于0.1毫秒的编程/擦除,基于RuOx/HfAlO电荷俘获层的器件所得到的存储窗口接近2V,基于RuOx/HfO2电荷俘获层的器件所得到的存储窗口达到3.5V。二者均表现出了低压下快速编程和擦除的功能。
图4为本实例中所制作存储电容在+9V、1毫秒编程和-9V、1毫秒擦除后的保持特性。当异质电荷俘获层中的介质为HfO2时,外推至十年后该存储电容器的存储窗口约为3.4V,显示出了优良的保持特性;当异质电荷俘获层中的介质为HfAlO时,其相应的存储窗口约为1.6V。
上述结果表明,基于RuOx和HfxAlyOz的异质电荷俘获层的存储电容均表现出了低压下快速擦写的功能,以及良好的电荷保存特性,因此,本发明中所提出的栅叠层结构将在下一代快闪存储器上具有很好的应用前景。

Claims (4)

1.一种适合于闪存器件的栅叠层结构,其特征在于采用钌基纳米晶和高介电常数HfxAlyOz薄膜组成的异质电荷俘获层,该栅叠层结构以P型(100)晶向的硅片为衬底,自下而上依次为:
1)原子层淀积的Al2O3薄膜,作为电荷隧穿层,厚度为5~15纳米;
2)钌基纳米晶,作为第一种电荷俘获层;
3)原子层淀积的高介电常数HfxAlyOz薄膜,作为第二种电荷俘获层,厚度为5~10纳米;
4)原子层淀积的15~40纳米厚的Al2O3薄膜,充当电荷阻挡层;
5)上电极层。
2.一种如权利要求1所述的适合于闪存器件的栅叠层结构的制备方法,其特征在于具体步骤如下:
以P型单晶硅片为衬底层,用原子层淀积的方法生长Al2O3薄膜,作为电荷隧穿层,薄膜厚度为5~15纳米;
在形成隧穿层之后,磁控溅射一层钌膜,厚度为2~4纳米,然后在N2气氛中,于700~900℃下快速热退火10~30秒,形成钌基纳米晶,作为第一种电荷俘获层。该钌基纳米晶中含有金属钌和氧化钌,记为RuOx纳米晶;
用原子层淀积方法淀积5~10纳米厚的高介电常数HfxAlyOz薄膜,作为第二种电荷俘获层,HfxAlyOz薄膜中x>0,z>0,同时y=0或y>0;其中Hf与Al的组成通过原子层淀积HfO2和Al2O3的循环数来确定;
用原子层淀积方法淀积15~40纳米厚的Al2O3薄膜作为电荷阻挡层,淀积后进行热退火处理,热退火为温度500~800℃,时间10~30秒;
最后,用光刻工艺,利用lift-off方法形成栅电极,栅电极厚度为50~200纳米。
3.根据权利要求1所述的适合于闪存器件的栅叠层结构的制备方法,其特征在于,所述原子层淀积方法淀积Al2O3的条件为:衬底温度控制在250-350℃范围内,反应前驱体为三甲基铝Al(CH3)3和水蒸汽;原子层淀积方法淀积HfO2的条件为:衬底温度控制在250-350℃范围内,反应前驱体为四(乙基甲胺基)铪和水蒸汽。
4.根据权利要求2所述适合于闪存器件的栅叠层结构的制备方法,其特征在于所述电极材料为金属钯。
CN2010101916591A 2010-06-03 2010-06-03 一种适合于半导体闪存器件的栅叠层结构及制备方法 Pending CN101887910A (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010101916591A CN101887910A (zh) 2010-06-03 2010-06-03 一种适合于半导体闪存器件的栅叠层结构及制备方法
CN2011101304848A CN102208442B (zh) 2010-06-03 2011-05-19 一种适合于半导体闪存器件的栅叠层结构及制备方法
US13/518,306 US20130062684A1 (en) 2010-06-03 2011-05-24 Gate stack structure and fabricating method used for semiconductor flash memory device
EP11789049.1A EP2442364A4 (en) 2010-06-03 2011-05-24 DOOR STACK STRUCTURE FOR SEMICONDUCTOR FLASH MEMORY DEVICE AND METHOD FOR PREPARING THE SAME
PCT/CN2011/000891 WO2011150670A1 (zh) 2010-06-03 2011-05-24 一种适合于半导体闪存器件的栅叠层结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101916591A CN101887910A (zh) 2010-06-03 2010-06-03 一种适合于半导体闪存器件的栅叠层结构及制备方法

Publications (1)

Publication Number Publication Date
CN101887910A true CN101887910A (zh) 2010-11-17

Family

ID=43073727

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010101916591A Pending CN101887910A (zh) 2010-06-03 2010-06-03 一种适合于半导体闪存器件的栅叠层结构及制备方法
CN2011101304848A Expired - Fee Related CN102208442B (zh) 2010-06-03 2011-05-19 一种适合于半导体闪存器件的栅叠层结构及制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2011101304848A Expired - Fee Related CN102208442B (zh) 2010-06-03 2011-05-19 一种适合于半导体闪存器件的栅叠层结构及制备方法

Country Status (4)

Country Link
US (1) US20130062684A1 (zh)
EP (1) EP2442364A4 (zh)
CN (2) CN101887910A (zh)
WO (1) WO2011150670A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208442A (zh) * 2010-06-03 2011-10-05 复旦大学 一种适合于半导体闪存器件的栅叠层结构及制备方法
CN102623459A (zh) * 2012-04-10 2012-08-01 复旦大学 一种薄膜晶体管存储器及其制备方法
CN102646579A (zh) * 2011-02-17 2012-08-22 中芯国际集成电路制造(上海)有限公司 一种sonos结构及制造方法
CN102938404A (zh) * 2011-08-16 2013-02-20 北京天中磊智能科技有限公司 一种智能电能表专用eeprom存储芯片
CN112080732A (zh) * 2020-07-29 2020-12-15 西安交通大学 一种硅集成的bt-bmz薄膜、电容器及其制造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9336919B2 (en) 2012-08-17 2016-05-10 The Trustees Of The University Of Pennsylvania Methods for preparing colloidal nanocrystal-based thin films
WO2014113655A2 (en) * 2013-01-18 2014-07-24 The Trustees Of The University Of Pennsylvania Nanocrystal thin film device fabrication methods and apparatus
US10720504B2 (en) 2015-09-11 2020-07-21 Intel Corporation Transistor with dynamic threshold voltage for low-leakage standby and high speed active mode
KR102331474B1 (ko) 2017-06-19 2021-11-29 삼성전자주식회사 반도체 장치
JP2019062170A (ja) 2017-09-28 2019-04-18 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN108649031A (zh) * 2018-04-09 2018-10-12 复旦大学 基于自整流特性材料的二维超快准非易失存储器及其制备方法
CN108588677B (zh) * 2018-04-18 2020-09-08 北京航空航天大学 一种高介电常数的纳米叠层介电薄膜及其制备方法
CN109116691B (zh) * 2018-09-25 2022-08-16 湖南哲龙科技有限公司 一种弱化基材表面对有机感光鼓特性影响的配方
CN112908999A (zh) * 2021-03-25 2021-06-04 复旦大学 半浮栅存储器的制造工艺及半浮栅存储器
US20230069105A1 (en) * 2021-08-30 2023-03-02 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7012297B2 (en) * 2001-08-30 2006-03-14 Micron Technology, Inc. Scalable flash/NV structures and devices with extended endurance
KR100672998B1 (ko) * 2005-02-14 2007-01-24 삼성전자주식회사 불휘발성 메모리 소자, 그 구동 방법 및 형성 방법
US7629641B2 (en) * 2005-08-31 2009-12-08 Micron Technology, Inc. Band engineered nano-crystal non-volatile memory device utilizing enhanced gate injection
US7847341B2 (en) * 2006-12-20 2010-12-07 Nanosys, Inc. Electron blocking layers for electronic devices
KR100900569B1 (ko) * 2007-03-29 2009-06-02 국민대학교산학협력단 플로팅 게이트 형성 방법 및 이를 이용한 비휘발성 메모리 장치의 제조 방법
CN101692463B (zh) * 2009-09-24 2011-12-14 复旦大学 一种混合纳米晶存储器的电容结构及其制备方法
CN101887910A (zh) * 2010-06-03 2010-11-17 复旦大学 一种适合于半导体闪存器件的栅叠层结构及制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208442A (zh) * 2010-06-03 2011-10-05 复旦大学 一种适合于半导体闪存器件的栅叠层结构及制备方法
WO2011150670A1 (zh) * 2010-06-03 2011-12-08 复旦大学 一种适合于半导体闪存器件的栅叠层结构及制备方法
CN102646579A (zh) * 2011-02-17 2012-08-22 中芯国际集成电路制造(上海)有限公司 一种sonos结构及制造方法
CN102646579B (zh) * 2011-02-17 2015-01-07 中芯国际集成电路制造(上海)有限公司 一种sonos结构及制造方法
CN102938404A (zh) * 2011-08-16 2013-02-20 北京天中磊智能科技有限公司 一种智能电能表专用eeprom存储芯片
CN102623459A (zh) * 2012-04-10 2012-08-01 复旦大学 一种薄膜晶体管存储器及其制备方法
WO2013152458A1 (zh) * 2012-04-10 2013-10-17 复旦大学 一种薄膜晶体管存储器及其制备方法
CN102623459B (zh) * 2012-04-10 2015-01-07 复旦大学 一种薄膜晶体管存储器及其制备方法
CN112080732A (zh) * 2020-07-29 2020-12-15 西安交通大学 一种硅集成的bt-bmz薄膜、电容器及其制造方法

Also Published As

Publication number Publication date
EP2442364A1 (en) 2012-04-18
EP2442364A4 (en) 2014-08-27
US20130062684A1 (en) 2013-03-14
CN102208442A (zh) 2011-10-05
WO2011150670A1 (zh) 2011-12-08
CN102208442B (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
CN102208442B (zh) 一种适合于半导体闪存器件的栅叠层结构及制备方法
CN107134487B (zh) 一种基于氧化铪的铁电栅结构及其制备工艺
US7579646B2 (en) Flash memory with deep quantum well and high-K dielectric
CN101692463B (zh) 一种混合纳米晶存储器的电容结构及其制备方法
CN105206615A (zh) 一种高介电系数复合氧化物电荷存储介质薄膜及应用
CN102231365B (zh) 不挥发电荷存储器件的制备方法、所得不挥发电荷存储器件及其应用
Huang et al. Improved Charge-Trapping Characteristics of $\hbox {BaTiO} _ {3} $ by Zr Doping for Nonvolatile Memory Applications
CN104882490B (zh) 一种基于金属异质量子点的浮栅存储器的制备方法
CN101388397A (zh) 一种低压可擦写的纳米晶存储电容结构及其制备方法
CN101312212A (zh) 利用高k介质和纳米晶浮栅的非易失存储器及其制作方法
CN101494225B (zh) 存储器及其制作方法
CN101673772A (zh) 一种可擦写的金属-绝缘体-硅电容器结构
CN101399289A (zh) 双层隧穿介质结构的纳米晶浮栅非易失存储器及制作方法
CN106129172A (zh) 一种可调节电荷密度的晶硅太阳能电池表面钝化方法
TWI426610B (zh) 電荷儲存元件及其製造方法
Tang et al. Enhanced charge storage characteristics by ZrO2 nanocrystallites precipitated from amorphous (ZrO2) 0.8 (SiO2) 0.2 charge trapping layer
KR20140138083A (ko) 비휘발성 메모리 반도체 소자 및 그 제조방법
Park et al. A hybrid ferroelectric-flash memory cells
CN100538895C (zh) 存储装置及其制备方法
CN113363384A (zh) 一种HfO2基铁电隧道结器件及其制备方法
KR100641074B1 (ko) 전하 트랩 타입의 비휘발성 메모리 장치 및 그 제조 방법
Hou et al. Charge Trapping Memory with Al 2 O 3/HfO 2/Al 2 O 3 Multilayer High-κ Dielectric Stacks and High Work Function Metal Gate Featuring Improved Operation Efficiency
KR20040079884A (ko) 갈륨나이트라이드를 기판으로한 페로브스카이트 구조의강유전체 박막트랜지스터 및 그 제조방법
Tang et al. Electrical Characteristics of Charge Trap Flash Memory with a Composition Modulated (ZrO 2) x (Al 2 O 3) 1-x Film
Park et al. Cubic-structured HfLaO for the blocking layer of a charge-trap type flash memory device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20101117