CN101768439B - 基于纳米助熔剂制备铝酸锶长余辉发光材料的方法 - Google Patents

基于纳米助熔剂制备铝酸锶长余辉发光材料的方法 Download PDF

Info

Publication number
CN101768439B
CN101768439B CN2010103001205A CN201010300120A CN101768439B CN 101768439 B CN101768439 B CN 101768439B CN 2010103001205 A CN2010103001205 A CN 2010103001205A CN 201010300120 A CN201010300120 A CN 201010300120A CN 101768439 B CN101768439 B CN 101768439B
Authority
CN
China
Prior art keywords
strontium aluminate
fusing assistant
nanometer
defective
fusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010103001205A
Other languages
English (en)
Other versions
CN101768439A (zh
Inventor
肖思国
舒伟
丁建文
阳效良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN2010103001205A priority Critical patent/CN101768439B/zh
Publication of CN101768439A publication Critical patent/CN101768439A/zh
Application granted granted Critical
Publication of CN101768439B publication Critical patent/CN101768439B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Luminescent Compositions (AREA)

Abstract

基于纳米助熔剂制备铝酸锶长余辉发光材料的方法,它采用先按液相法同时制备出纳米五硼酸铵粉末助熔剂A和纳米硼酸铝粉末助熔剂B,再以助熔剂A和助熔剂B的引入作为混合助熔剂和缺陷形成辅助剂的硼,最后在较低的反应温度下用固相反应制备铝酸锶长余辉材料的方案;它克服了现有固相法制备铝酸锶长余辉材料存在反应所需温度过高,反应所用设备昂贵,合成过程所需能耗较大,产品发光性能较差等缺陷;同时还解决了传统产品单纯追求余辉时间而导致加入含硼量高的助熔剂,致使铝酸锶反应产物容易过度烧结,使其破碎后应用效果较差的难题;本发明的发光材料主要应用在安全通道显示,发光油墨,夜光照明,光探测领域以及具有余辉的新型节能LED灯。

Description

基于纳米助熔剂制备铝酸锶长余辉发光材料的方法
技术领域
本发明涉及一种长余辉发光材料的制备,尤其涉及基于纳米助熔剂制备铝酸锶长余辉发光材料的方法。
背景技术
SrAl2O4:Eu2+,Dy3+是以碱土铝酸盐为基质的稀土离子掺杂长余辉发光材料。自1996年日本的T.Matsuzawa首次报道将其制备成为长余辉材料以来,以其激发带宽,可在紫外线、日光灯等多种光源下激发;余辉时间长,可达10小时以上;可广泛用于电子、电器、交通、能源等各方面,因而长期受到人们的青睐,其制备方法也不断在改进。例如,CN1837328A公开了一种采用碳酸盐沉淀的方法制备超细高亮度的铝酸锶长余辉材料。CN1940012A公开一种采用微波燃烧-发泡法制备的不需球磨的铝酸锶长余辉材料。CN1861742A公开了一种溶胶-凝胶法制备超细铝酸锶长余辉材料。
然而,现有披露的铝酸锶长余辉材料制备方法缺陷明显,如采用沉淀法制备难于控制沉淀比例,且生产过程中废气、废水排放大,生产周期长、成本高;溶胶-凝胶法制备材料的步骤繁冗,周期长,成本高,产量低,不宜大量生产;而采用微波法制备的产品均匀性差,且目前无商业化的微波烧结设备,因此不仅设备成本高,更难以实现大规模生产;燃烧法制备的产品均匀性差,合成量少,且环境污染严重,难以实现大规模工业化生产;现阶段铝酸锶长余辉材料制备方法中仅有固相法能够满足大规模工业化生产。但是,现有固相法制备铝酸锶长余辉材料存在的缺点是:一方面,反应温度过高,反应温度高达1300℃以上,而反应温度超过1200℃时,反应只能采用价格昂贵的超高温炉如硅钼炉才能实现,且合成过程所消耗的能量大大增加,从而提高了其规模化生产的成本;另一方面,高温烧结的产品结块现象严重,需粉碎研磨,然而粉碎研磨后,破坏了晶型,会使产品余辉和荧光性能下降,致使其使用性能降低。在长余辉铝酸锶材料制备过程中,助熔剂硼的含量增加可以降低合成温度,以缩减生产成本,并能适应普通电阻炉的最高1200℃的合成条件,而且,助熔剂硼的含量提高,可有效地延长余辉时间。然而产品的结晶程度与硼的含量高低不无关系,助熔剂硼的含量越高,产品结块越严重;当助熔剂硼浓度超过10%后,产品烧结更加严重,致使其十分坚硬,难于粉碎,强行粉碎研磨后又会严重影响材料的发光性能。
发明内容
本发明采用液相辅助固相法制备铝酸锶长余辉材料的技术方案,克服了传统高温固相法反应温度高,反应时间长,能耗大的缺陷;同时还解决了传统产品追求助熔剂硼含量高,以致产品容易过度烧结,使产品破碎后应用效果差的难题。
针对上述情况,本发明的目的是提供一种助熔剂和缺陷形成辅助剂硼含量高又膨松易碎且亮度高、余辉持续时间长,产品使用性能极大提高,而制备工艺又简单、可靠,所需反应温度较低,能适应普通电阻炉的高温合成条件,产品能耗较低,不需新的生产设备投资,无毒气和污染物排放,还易于大规模工业化生产的基于纳米助熔剂制备铝酸锶长余辉发光材料的方法。
为实现上述目的,基于纳米助熔剂制备铝酸锶长余辉发光材料的方法,它先按液相法制备出纳米五硼酸铵和硼酸铝粉末,再以纳米五硼酸铵和硼酸铝粉末的引入作为助熔剂和缺陷形成辅助剂的硼,再在1000-1200℃反应温度下由固相反应制备铝酸锶长余辉材料,其操作步骤如下:
I、在硼酸粉末H3BO3中加入无水乙醇和分散剂,溶解成溶液A,备用;同时,在硼酸粉末H3BO3中加入无水乙醇,溶解成溶液B,备用;
II、于溶液A中,在搅拌下滴加氨水溶液制得五硼酸铵沉淀;同时,在搅拌下向硝酸铝晶体中加入无水乙醇和分散剂配成溶液,并滴加入溶液B制得硼酸铝沉淀;
III、将步骤II中的五硼酸铵沉淀加入去离子水制得五硼酸铵溶胶凝胶,再经干燥、研磨制得纳米五硼酸铵粉末NH4B5O8·4H2O作为助熔剂和缺陷形成辅助剂A;
IV、将步骤II中的硼酸铝沉淀经陈化、过滤、洗涤、干燥、研磨制得纳米硼酸铝粉末Al4B2O9作为助熔剂和缺陷形成辅助剂B;
V、将助熔剂和缺陷形成辅助剂A与助熔剂和缺陷形成辅助剂B混合制得硼酸盐混合助熔剂和缺陷形成辅助剂;
VI、将硼酸盐混合助熔剂和缺陷形成辅助剂与碳酸锶、氧化铝、氧化铕、氧化镝配比称量,混合研磨,在还原气氛下进行固相反应,得反应产物;
VII、上述反应产物随炉冷却、取样、粉碎,得到近黄绿色的长余辉铝酸锶产品。
为实现上述目的进一步的措施是:
制备步骤III的助熔剂和缺陷形成辅助剂A所用原料为H3BO3,NH3·H2O的混合物,该混合物的组成按摩尔比:H3BO3∶NH3·H2O=5∶1。
制备步骤IV的助熔剂和缺陷形成辅助剂B所用原料为H3BO3,Al(NO3)3·9H2O的混合物,该混合物的组成按摩尔比:H3BO3∶Al(NO3)3·9H2O=1∶2。
制备步骤VII的铝酸锶产品所用的原料为SrCO3,Al2O3,Eu2O3,Dy2O3,Al4B2O9,NH4B5O8·4H2O的混合物,该混合物组成按摩尔比:SrCO3∶Al2O3∶Al4B2O9∶NH4B5O8·4H2O∶Eu2O3∶Dy2O3=(1-2a-2b)∶(1-3x-2.5z)∶(x)∶(z)∶(a)∶(b),其中0.005≤a≤0.01,0.01≤b≤0.02,0.10≤x+2.5z≤0.15。
制备步骤III的助熔剂和缺陷形成辅助剂A所用原料为不低于分析纯级别的硼酸,氨水,无水乙醇。
制备步骤IV的助熔剂和缺陷形成辅助剂B所用原料为不低于分析纯级别的硼酸,硝酸铝,无水乙醇。
制备步骤VII的铝酸锶产品所用原料的纯度为不低于工业纯级别。
本发明采用先按液相法同时制备出纳米五硼酸铵粉末助熔剂A和纳米硼酸铝粉末助熔剂B,再以助熔剂A和助熔剂B的引入作为混合助熔剂和缺陷形成辅助剂的硼,最后在较低的反应温度下用固相反应制备铝酸锶长余辉材料的方案,它克服了现有固相法制备铝酸锶长余辉材料存在反应所需温度过高,反应所用设备昂贵,合成过程所需能耗较大,产品发光性能较差等缺陷;同时还解决了传统产品单纯追求余辉时间而导致加入含硼量高的助熔剂,致使铝酸锶反应产物容易过度烧结,使其粉碎后应用效果较差的难题。
本发明相比现有技术是它选用纳米级别的混合硼酸盐作为混合助熔剂和缺陷形成辅助剂,以实现小粒径、高荧光、长余辉性能的铝酸锶反应产物为目标,其有益效果如下:
(1)基于纳米助熔剂制备铝酸锶长余辉发光材料的方法是选用纳米级别的混合硼酸盐作为混合助熔剂和缺陷形成辅助剂,致使铝酸锶反应产物的粒径、荧光、余辉等性能都有很大幅度提高;
(2)混合纳米硼酸盐助熔剂和缺陷形成辅助剂,因其粒度小,接触面积大,易于与其它原料混合接触,从而增大反应面积,减少反应扩散;
(2)混合纳米硼酸盐助熔剂和缺陷形成辅助剂与硼酸H3BO3等助熔剂相比,其在分解后能产生活性较强的B2O3,有助于反应进行;
(3)H3BO3作为润滑剂的原料有润滑特性,但作为助熔剂反而会增加研磨困难程度,而混合纳米硼酸盐助熔剂和缺陷形成辅助剂则非常容易研磨,易于原料混合均匀;
(4)混合纳米硼酸盐助熔剂和缺陷形成辅助剂所需分解温度较H3BO3分解温度要求高,其分解速度更加缓慢,可促使晶体均匀生长,提高了发光中心密度;
(5)五硼酸铵和硼酸铝的混合助溶剂中含有铵根离子,能在高温封闭环境中分解为具有还原性的氮气和氢气,有利于产品的充分还原,还能使固相反应生成物铝酸锶内部形成小孔,达到既膨松又易于粉碎的目的;
(6)工艺中采用五硼酸铵和硼酸铝两种助溶剂,便于相互作用形成竞争机制,有利于阻止固相反应中高硼化合物的生成,因此可提高反应原料中硼的比例,从而有效降低反应温度,防止产品的过度烧结;
(7)混合纳米硼酸盐助熔剂和缺陷形成辅助剂分解后可以有效提供的硼离子B3+取代反应物的铝离子Al3+,有助于铝酸锶长余辉材料中缺陷的生成,从而增加铝酸锶产品的余辉性能;
(8)本发明较传统高温固相法相比,反应所需温度低,产品余辉时间明显增长,而且固相反应生成物膨松易碎,研磨后晶型不受破坏,产品发光亮度提高10%以上;
(9)本发明克服了传统助熔剂硼含量高的铝酸锶长余辉材料容易过度烧结,难于粉碎,粉碎后导致发光亮度和余辉时间都明显下降的缺陷,本发明中的助熔剂硼的含量可高达30%,降低了反应温度,在普通电阻丝炉即可进行生产,生产成本低,能耗小,却能得到膨松易碎的反应生成物,且研磨后产品的发光性质不变;
(10)本发明充分发挥了纳米硼酸盐助熔剂和缺陷形成辅助剂对长余辉时间的延长作用,将纳米硼酸盐助熔剂和缺陷形成辅助剂均匀地掺杂到铝酸锶中,有效地构建了电子陷阱,使其制得的长余辉发光材料不仅亮度高,还有效地延长了余辉时间,应用于新型的节能LED灯,能起到二次照明作用。
本发明的发光材料主要应用在安全通道显示,工艺品夜间发光,发光油墨,夜光照明,光探测领域以及具有余辉的新型节能LED灯。
下面结合具体实施方式对本发明作进一步详细的说明。
附图说明
图1为本发明基于纳米助熔剂制备铝酸锶长余辉发光材料的方法的流程图。
图2为实施例1长余辉发光材料即改进样品的配比表。
图3为实施例2长余辉发光材料即改进样品的配比表。
图4为实施例3长余辉发光材料即改进样品的配比表。
图5为实施例4长余辉发光材料即改进样品的配比表。
图6为实施例5长余辉发光材料即改进样品的配比表。
图7为实施例6长余辉发光材料即改进样品的配比表。
图8为实施例1改进样品与常规方法制备的常规样品的激发和发射光谱对比图。
图9为实施例2改进样品与常规方法制备的常规样品的激发和发射光谱对比图。
图10为实施例3改进样品与常规方法制备的常规样品的激发和发射光谱对比图。
图11为实施例4改进样品与常规方法制备的常规样品的激发和发射光谱对比图。
图12为实施例5改进样品与常规方法制备的常规样品的激发和发射光谱对比图。
图13为实施例6改进样品与常规方法制备的常规样品的激发和发射光谱对比图。
图14为实施例1改进样品与常规方法制备的常规样品的归一化余辉特性曲线对比图。
图15为实施例2改进样品与常规方法制备的常规样品的归一化余辉特性曲线对比图。
图16为实施例3改进样品与常规方法制备的常规样品的归一化余辉特性曲线对比图。
图17为实施例4改进样品与常规方法制备的常规样品的归一化余辉特性曲线对比图。
图18为实施例5改进样品与常规方法制备的常规样品的归一化余辉特性曲线对比图。
图19为实施例6改进样品与常规方法制备的常规样品的归一化余辉特性曲线对比图。
具体实施方式
总实施方式
结合图1,基于纳米助熔剂制备铝酸锶长余辉发光材料的工艺流程和操作步骤如下:
(1)先量取分析纯的无水乙醇溶液200ml置入烧杯A中,按照组成混合物的摩尔比H3BO3∶NH3·H2O=5∶1称取相应分析纯的原料硼酸H3BO33.0917g,将其加入到装有无水乙醇溶液的烧杯A中,并向烧杯A中加入10滴聚乙二醇溶液作为分散剂,用玻璃棒搅拌使硼酸充分溶解,制成溶液A;同时,先量取分析纯的无水乙醇溶液各200ml分别置入烧杯B1、烧杯B2中,按照H3BO3∶Al(NO3)3·9H2O=1∶2称取相应分析纯的原料硼酸H3BO31.2367g,将其加入到装有无水乙醇溶液的烧杯B1中,用玻璃棒搅拌使硼酸充分溶解,制成溶液B;
(2)在磁力搅拌器的搅拌下,向溶液A中缓慢地滴加分析纯的氨水溶液,使其沉淀,继续滴加氨水直到不再产生沉淀为止,制得五硼酸铵沉淀;同时,称取分析纯的硝酸铝Al(NO3)3·9H2O15.0054g,将其加入到装有无水乙醇溶液的烧杯B2中,用玻璃棒搅拌烧杯B2使硝酸铝充分溶解,在磁力搅拌器的搅拌下,将该硝酸铝溶液缓慢地滴加到烧杯B1的溶液B中,使其进行沉淀,沉淀开始时加10滴聚乙二醇作为分散剂,继续滴加硝酸铝溶液,直至滴加完毕,制得硼酸铝沉淀;
(3)然后向五硼酸铵沉淀加入200ml去离子水,形成五硼酸铵溶胶凝胶;同时,用磁力搅拌器搅拌硼酸铝沉淀2小时以上,将其静置陈化12-18小时,再将陈化后的沉淀物用去离子水溶液进行洗涤、过滤3遍,再用无水乙醇洗涤、过滤1遍,过滤后得到白色沉淀物;
(4)五硼酸铵溶胶凝胶在50-60℃的恒温水浴中烘干,得到白色块状固体物,将白色块状固体物研磨10分钟,得到尺寸在50-300nm范围的白色粉末五硼酸铵(NH4B5O8·4H2O)--助熔剂和缺陷形成辅助剂A,备用;
(5)将步骤(3)的白色沉淀物在150℃烘箱中烘干,得到白色块状固体物,将白色块状固体物研磨10分钟,得到尺寸在50-200nm范围的白色粉末硼酸铝(Al4B2O9)--助熔剂和缺陷形成辅助剂B备用;
(6)将步骤(4)的助熔剂和缺陷形成辅助剂A和步骤(5)的助熔剂和缺陷形成辅助剂B按一定的比例混合形成纳米级的硼酸盐混合助熔剂和缺陷形成辅助剂;
(7)将硼酸盐混合助熔剂和缺陷形成辅助剂与碳酸锶、氧化铝、氧化铕、氧化镝配比称量,将称量的原料混合研磨2小时,得混合物料;
(8)将步骤(7)的混合物料装入刚玉坩埚,再用碳粉作为还原剂做成密闭的碳罐,然后将装满混合物料的刚玉坩埚置入密封碳罐里密封,将碳罐放入1000-1200℃高温炉中灼烧2-4小时,随炉温冷却,得反应产物;
(9)对上述反应产物取样,粉碎,得到近黄绿色的长余辉铝酸锶产品;
(10)上述步骤(4)的助熔剂和缺陷形成辅助剂A所用原料为H3BO3,NH3·H2O的混合物,该混合物的组成按摩尔比:H3BO3∶NH3·H2O=5∶1;
(11)上述步骤(5)的助熔剂和缺陷形成辅助剂B所用原料为H3BO3,Al(NO3)3·9H2O的混合物,该混合物的组成按摩尔比:H3BO3∶Al(NO3)3·9H2O=1∶2;
(12)制备步骤(7)混合物料所用原料为SrCO3,Al2O3,Eu2O3,Dy2O3,Al4B2O9,NH4B5O8·4H2O的混合物,该混合物组成按摩尔比:SrCO3∶Al2O3∶Al4B2O9∶NH4B5O8·4H2O∶Eu2O3∶Dy2O3=(1-2a-2b)∶(1-3x-2.5z)∶(x)∶(z)∶(a)∶(b),其中0.005≤a≤0.01,0.01 ≤b≤0.02,0.10≤x+2.5z≤0.15;
(13)制备上述步骤(4)助熔剂和缺陷形成辅助剂A与步骤(5)助熔剂和缺陷形成辅助剂B所用原料为不低于分析纯级别的硼酸,氨水,无水乙醇与不低于分析纯级别的硼酸,硝酸铝,无水乙醇;
(14)制备步骤(9)的铝酸锶产品所用原料的纯度为不低于工业纯级别。
实施例1
①总实施方式中步骤(1)-(7)所得混合物料按图2的实施例1表中的原料配比选取;
②将上述配比好的混合物料在玛瑙乳钵中充分研磨2小时,使其混合均匀,再将混合均匀后的物料置入刚玉坩埚内;
③用碳粉作为还原剂,并做成密闭的碳罐,将上述装满物料的刚玉坩埚再装入密闭碳罐内并密封,密闭碳罐放入高温炉内,加热到1100℃,恒温4小时,随炉温冷却,取出膨松的固体状反应产物,对反应产物进行粉碎,得到近黄绿色的长余辉铝酸锶产品;
④上述铝酸锶产品经365nm紫外线照射10分钟后,在暗处呈现出绿色余辉发光;当光源移走后,该铝酸锶产品在肉眼能够分辨出的发光亮度为不低于0.32mcd/m2,且发光时间超过22小时;铝酸锶产品的激发光谱和发射光谱见图8,归一化余辉特性曲线见图14。
实施例2
①总实施方式中步骤(1)-(7)所得混合物料按图3的实施例2表中的原料配比选取;
②将上述配比好的混合物料在玛瑙乳钵中充分研磨2小时,使其混合均匀,再将混合均匀后的物料置入刚玉坩埚内;
③用碳粉作为还原剂,并做成密闭的碳罐,将上述装满物料的刚玉坩埚再装入密闭碳罐内并密封,密闭碳罐放入高温炉内,加热到1200℃,恒温2小时,随炉温冷却,取出膨松的固体状反应产物,对反应产物进行粉碎,得到近黄绿色的长余辉铝酸锶产品;
④上述铝酸锶产品经365nm紫外线照射10分钟后,在暗处呈现出绿色余辉发光;当光源移走后,该铝酸锶产品在肉眼能够分辨出的发光亮度为不低于0.32mcd/m2,且发光时间超过24小时;铝酸锶产品的激发光谱和发射光谱见图9,归一化余辉特性曲线见图15。
实施例3
①总实施方式中步骤(1)-(7)所得混合物料按图4的实施例3表中的原料配比选取;
②将上述配比好的混合物料在玛瑙乳钵中充分研磨2小时,使其混合均匀,再将混合均匀后的物料置入刚玉坩埚内;
③用碳粉作为还原剂,并做成密闭的碳罐,将上述装满物料的刚玉坩埚再装入密闭碳罐内并密封,密闭碳罐放入高温炉内,加热到1150℃,恒温3小时,随炉温冷却,取出膨松的固体状反应产物,对反应产物进行粉碎,得到近黄绿色的长余辉铝酸锶产品;
④上述铝酸锶产品经365nm紫外线照射10分钟后,在暗处呈现出绿色余辉发光;当光源移走后,该铝酸锶产品在肉眼能够分辨出的发光亮度为不低于0.32mcd/m2,且发光时间超过26小时;铝酸锶产品的激发光谱和发射光谱见图10,归一化余辉特性曲线见图16。
实施例4
①总实施方式中步骤(1)-(7)所得混合物料按图5的实施例4表中的原料配比选取;
②将上述配比好的混合物料在玛瑙乳钵中充分研磨2小时,使其混合均匀,再将混合均匀后的物料置入刚玉坩埚内;
③用碳粉作为还原剂,并做成密闭的碳罐,将上述装满物料的刚玉坩埚再装入密闭碳罐内并密封,密闭碳罐放入高温炉内,加热到1000℃,恒温4小时,随炉温冷却,取出膨松的固体状反应产物,对反应产物进行粉碎,得到近黄绿色的长余辉铝酸锶产品;
④上述铝酸锶产品经365nm紫外线照射10分钟后,在暗处呈现出绿色余辉发光;当光源移走后,该铝酸锶产品在肉眼能够分辨出的发光亮度为不低于0.32mcd/m2,且发光时间超过17小时;铝酸锶产品的激发光谱和发射光谱见图11,归一化余辉特性曲线见图17。
实施例5
①总实施方式中步骤(1)-(7)所得混合物料按图6的实施例5表中的原料配比选取;
②将上述配比好的混合物料在玛瑙乳钵中充分研磨2小时,使其混合均匀,再将混合均匀后的物料置入刚玉坩埚内;
③用碳粉作为还原剂,并做成密闭的碳罐,将上述装满物料的刚玉坩埚再装入密闭碳罐内并密封,密闭碳罐放入高温炉内,加热到1150℃,恒温2小时,随炉温冷却,取出膨松的固体状反应产物,对反应产物进行粉碎,得到近黄绿色的长余辉铝酸锶产品;
④上述铝酸锶产品经365nm紫外线照射10分钟后,在暗处呈现出绿色余辉发光;当光源移走后,该铝酸锶产品在肉眼能够分辨出的发光亮度为不低于0.32mcd/m2,且发光时间超过20小时;铝酸锶产品的激发光谱和发射光谱见图12,归一化余辉特性曲线见图18。
实施例6
①总实施方式中步骤(1)-(7)所得混合物料按图7的实施例6表中的原料配比选取;
②将上述配比好的混合物料在玛瑙乳钵中充分研磨2小时,使其混合均匀,再将混合均匀后的物料置入刚玉坩埚内;
③用碳粉作为还原剂,并做成密闭的碳罐,将上述装满物料的刚玉坩埚再装入密闭碳罐内并密封,密闭碳罐放入高温炉内,加热到1050℃,恒温3小时,随炉温冷却,取出膨松的固体状反应产物,对反应产物进行粉碎,得到近黄绿色的长余辉铝酸锶产品;
④上述铝酸锶产品经365nm紫外线照射10分钟后,在暗处呈现出绿色余辉发光;当光源移走后,该铝酸锶产品在肉眼能够分辨出的发光亮度为不低于0.32mcd/m2,且发光时间超过19小时;铝酸锶产品的激发光谱和发射光谱见图13,归一化余辉特性曲线见图19。
图8-图13为本发明基于纳米助熔剂制备铝酸锶长余辉发光材料即改进样品与常规方法制备长余辉材料即以硼酸作为助熔剂高温固相法制备的常规样品的激发和发射光谱对比图。
图14-图19为本发明基于纳米助熔剂制备铝酸锶长余辉发光材料即改进样品与常规方法制备长余辉材料即以硼酸作为助熔剂高温固相法制备的常规样品的归一化余辉特性曲线对比图。

Claims (7)

1.基于纳米助熔剂制备铝酸锶长余辉发光材料的方法,其特征在于它先按液相法制备出纳米五硼酸铵和硼酸铝粉末,再以纳米五硼酸铵和硼酸铝粉末的引入作为助熔剂和缺陷形成辅助剂的硼,再在1000-1200℃反应温度下由固相反应制备铝酸锶长余辉材料,其操作步骤如下:
Ⅰ、在硼酸粉末H3BO3中加入无水乙醇和分散剂聚乙二醇,溶解成溶液A,备用;同时,在硼酸粉末H3BO3中加入无水乙醇,溶解成溶液B,备用;
Ⅱ、于溶液A中,在搅拌下滴加氨水溶液制得五硼酸铵沉淀;同时,在搅拌下向硝酸铝晶体中加入无水乙醇和分散剂聚乙二醇配成溶液,并滴加入溶液B制得硼酸铝沉淀;
Ⅲ、将步骤Ⅱ中的五硼酸铵沉淀加入去离子水制得五硼酸铵溶胶凝胶,再经干燥、研磨制得纳米五硼酸铵粉末NH4B5O8·4H2O作为助熔剂和缺陷形成辅助剂A;
Ⅳ、将步骤Ⅱ中的硼酸铝沉淀经陈化、过滤、洗涤、干燥、研磨制得纳米硼酸铝粉末Al4B2O9作为助熔剂和缺陷形成辅助剂B;
Ⅴ、将助熔剂和缺陷形成辅助剂A与助熔剂和缺陷形成辅助剂B混合制得硼酸盐混合助熔剂和缺陷形成辅助剂;
Ⅵ、将硼酸盐混合助熔剂和缺陷形成辅助剂与碳酸锶、氧化铝、氧化铕、氧化镝配比称量,混合研磨,在还原气氛下进行固相反应,得反应产物;
Ⅶ、上述反应产物随炉冷却、取样、粉碎,得到近黄绿色的长余辉铝酸锶产品。
2.根据权利要求1所述的基于纳米助熔剂制备铝酸锶长余辉发光材料的方法,其特征在于制备步骤Ⅲ的助熔剂和缺陷形成辅助剂A所用原料为H3BO3,NH3·H2O的混合物,该混合物的组成按摩尔比:H3BO3:NH3·H2O=5:1。
3.根据权利要求1所述的基于纳米助熔剂制备铝酸锶长余辉发光材料的方法,其特征在于制备步骤Ⅳ的助熔剂和缺陷形成辅助剂B所用原料为H3BO3,Al(NO3)3·9H2O的混合物,该混合物的组成按摩尔比:H3BO3:Al(NO3)3·9H2O=1:2。
4.根据权利要求1所述的基于纳米助熔剂制备铝酸锶长余辉发光材料的方法,其特征在于制备步骤Ⅶ的铝酸锶产品所用的原料为SrCO3,Al2O3,Eu2O3,Dy2O3,Al4B2O9,NH4B5O8·4H2O的混合物,该混合物组成按摩尔比:SrCO3:Al2O3:Al4B2O9:NH4B5O8·4H2O:Eu2O3:Dy2O3=(1-2a-2b):(1-3x-2.5z):(x):(z):(a):(b),其中0.005≤a≤0.01,0.01≤b≤0.02,0.10≤x+2.5z≤0.15。
5.根据权利要求2所述的基于纳米助熔剂制备铝酸锶长余辉发光材料的方法,其特征在于制备步骤Ⅲ的助熔剂和缺陷形成辅助剂A所用原料为不低于分析纯级别的硼酸,氨水,无水乙醇。
6.根据权利要求3所述的基于纳米助熔剂制备铝酸锶长余辉发光材料的方法,其特征在于制备步骤Ⅳ的助熔剂和缺陷形成辅助剂B所用原料为不低于分析纯级别的硼酸,硝酸铝,无水乙醇。
7.根据权利要求4所述的基于纳米助熔剂制备铝酸锶长余辉发光材料的方法,其特征在于制备步骤Ⅶ的铝酸锶产品所用原料的纯度为不低于工业纯级别。
CN2010103001205A 2010-01-08 2010-01-08 基于纳米助熔剂制备铝酸锶长余辉发光材料的方法 Expired - Fee Related CN101768439B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010103001205A CN101768439B (zh) 2010-01-08 2010-01-08 基于纳米助熔剂制备铝酸锶长余辉发光材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010103001205A CN101768439B (zh) 2010-01-08 2010-01-08 基于纳米助熔剂制备铝酸锶长余辉发光材料的方法

Publications (2)

Publication Number Publication Date
CN101768439A CN101768439A (zh) 2010-07-07
CN101768439B true CN101768439B (zh) 2013-08-14

Family

ID=42501540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010103001205A Expired - Fee Related CN101768439B (zh) 2010-01-08 2010-01-08 基于纳米助熔剂制备铝酸锶长余辉发光材料的方法

Country Status (1)

Country Link
CN (1) CN101768439B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115932932A (zh) * 2022-11-03 2023-04-07 宁波虔东科浩光电科技有限公司 一种闪烁体探测阵列的信号处理方法及成像设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861742A (zh) * 2006-06-09 2006-11-15 江西财经大学 一种碱土铝酸盐长余辉发光粉超细粉体制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861742A (zh) * 2006-06-09 2006-11-15 江西财经大学 一种碱土铝酸盐长余辉发光粉超细粉体制备方法

Also Published As

Publication number Publication date
CN101768439A (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
CN1927996B (zh) 一种荧光粉材料及其制备方法和白光led电光源
CN101092563A (zh) 一种发光二级管(led)用的荧光粉及其制备方法
CN100560687C (zh) 一种真空紫外光激发的绿色硅酸盐发光材料
CN101445729B (zh) 一种白光led用荧光粉的制备方法
CN102585819B (zh) 一种硼钨酸镧红色荧光粉及其制备方法
CN101338188B (zh) 一种具有高初始荧光强度的长余辉发光材料的制备方法
CN101597494A (zh) 钇铝石榴石稀土荧光粉的低温制备方法
CN110028964B (zh) 一种镝-硅增效的白光led用磷灰石结构蓝光荧光粉及制备方法
CN102660284A (zh) 一种led用氮化物红色荧光粉的制造方法
CN1948426A (zh) 纳米硅酸盐长余辉发光材料的制备方法
CN109957403A (zh) 一种Eu3+激活氟硼酸锶钡红色荧光粉及其制备与应用
CN101486904B (zh) 球形铽掺杂的钨酸盐绿色荧光粉及其制备方法
CN101054518A (zh) 稀土焦磷酸盐荧光粉及其合成方法
CN101760191B (zh) Led用高亮度硅酸钡基蓝绿色荧光粉及其高温还原制备方法
CN101768439B (zh) 基于纳米助熔剂制备铝酸锶长余辉发光材料的方法
CN102428160B (zh) 绿色发光材料及其制备方法
CN105802617A (zh) 一种提高SrAl2B2O7:Tb3+绿色荧光粉发光性能的方法
CN106590657B (zh) 一种镥铝酸盐绿色荧光粉及其制备方法和应用
CN111778023B (zh) 一种纳米中空led用钼酸镧掺铽荧光粉及其制备方法
CN103666465A (zh) 氮化物红色长余辉发光材料及其制备
CN103849386B (zh) 一种溶胶自燃烧法制备铝酸盐蓝色荧光粉的方法
CN107858146B (zh) 一种Eu3+离子掺杂硼酸盐(K6Ba4B8O19)基红色荧光粉的合成方法
CN101386784B (zh) 一种微波激励低温液相燃烧合成纳米荧光粉的制备方法
CN112322292A (zh) Eu3+掺杂的荧光材料及其制备方法
CN101372617A (zh) 场发射、真空荧光显示用蓝色荧光粉及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130814

Termination date: 20160108