CN101689689B - 光电转换元件及其制造方法 - Google Patents

光电转换元件及其制造方法 Download PDF

Info

Publication number
CN101689689B
CN101689689B CN200880024464.9A CN200880024464A CN101689689B CN 101689689 B CN101689689 B CN 101689689B CN 200880024464 A CN200880024464 A CN 200880024464A CN 101689689 B CN101689689 B CN 101689689B
Authority
CN
China
Prior art keywords
electrode
carbon nano
mentioned
tube
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880024464.9A
Other languages
English (en)
Other versions
CN101689689A (zh
Inventor
井上铁也
杉生刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Publication of CN101689689A publication Critical patent/CN101689689A/zh
Application granted granted Critical
Publication of CN101689689B publication Critical patent/CN101689689B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供一种发电效率高、无腐蚀问题、可应用于耐热性低的基板的光电转换元件及其制造方法。该光电转换元件是呈对置状配置作为负极的电极和作为正极的对电极而构成。上述电极是通过隔着透明导电膜(2)将用光敏色素进行了染色的光催化膜(8)形成在透明基板(1)的一面上而构成的。上述对电极是通过在对电极用基板(4)的一面上隔着覆盖该面的导电性粘接剂层(7)来设置对该基板表面实质上垂直取向的刷状碳纳米管膜(5)而构成的。

Description

光电转换元件及其制造方法
技术领域
本发明涉及如太阳能电池那样的光电转换元件,还涉及其制造方法。
背景技术
一般来说,染料敏化型太阳能电池等光电转换元件是由在玻璃板等透明基板上形成透明导电膜并用光敏色素对其染色而形成的电极、在对电极用基板上形成透明导电膜而形成的对电极、以及插入两电极间的电解液构成。
而且,为了使从对置电极向电解液的电子移动更佳,提出有如下的光电转换元件:通过在对电极的透明导电膜上设置对该基板实质上垂直取向的刷状碳纳米管,从而使发电效率提高(参照专利文献1)。
专利文献1:日本特开2006-202721号公报
发明内容
然而,在上述结构的光电转换元件中,虽然由于对电极具备刷状碳纳米管而可期待发电效率的提高,但由于电解液中含有碘等腐蚀性的物质,所以存在对电极的透明导电膜被腐蚀这样的问题。
另外,要在对电极的基板上的透明导电膜上使刷状碳纳米管发生取向,需要使用化学蒸镀法,由于基板和透明导电膜在高温下被漂白,所以存在这些材料限于具有耐热性的材料这样的问题。
于是,本发明的课题是提供一种发电效率高、无腐蚀问题、可应用于耐热性低的基板的光电转换元件及其制造方法。
本发明的光电转换元件通过呈对置状配置作为负极的电极和作为正极的对电极而构成,其特征在于:上述电极是通过隔着透明导电膜将用光敏色素进行了染色的光催化膜形成在透明基板的一面上而构成的,上述对电极是通过在对电极用基板的一面上隔着覆盖该面的导电性粘接剂层来设置对该基板表面实质上垂直取向的刷状碳纳米管而构成的。
优选的是,在本发明的光电转换元件中,上述电极是通过在透明基板上的透明导电膜上使相对于基板面实质上垂直设置的刷状碳纳米管担持光催化粒子并用光敏色素对该光催化粒子进行染色而构成的。
更优选的是,上述电极是通过在透明基板上的透明导电膜上形成由碳纳米管粒子和光催化粒子的混合物构成的光催化膜并用光敏色素对该光催化膜进行染色而构成的。
上述电极可以与上述对电极的刷状碳纳米管相接触。
本发明的光电转换元件的制造方法,当制造呈对置状配置作为负极的电极和作为正极的对电极而构成的光电转换元件时,通过隔着透明导电膜将用光敏色素进行了染色的光催化膜形成在透明基板的一面上来构成上述电极,在对电极用基板的一面上覆盖该面而形成导电性粘接剂层,将另外形成的刷状碳纳米管转印到该导电性粘接剂层上以使其对基板表面实质上垂直取向,从而构成上述对电极。
优选的是,在本发明的光电转换元件的制造方法中,在透明基板的一面上形成透明导电膜,将另外形成的刷状碳纳米管转印到该透明导电膜上以使其对基板面实质上垂直取向,使该碳纳米管担持光催化粒子,并用光敏色素对该光催化粒子进行染色,从而构成上述电极。
另外,优选的是,在透明基板上形成透明导电膜,在该透明导电膜上形成由碳纳米管粒子和光催化粒子的混合物构成的光催化膜,并用光敏色素对该光催化膜进行染色,从而构成上述电极。
优选的是,当在上述透明导电膜上形成由碳纳米管粒子和光催化粒子的混合物构成的光催化膜时,将包含上述混合物的糊剂涂敷在透明导电膜上并使其干燥。在这种情况下,优选的是,在将上述糊剂涂敷在透明导电膜上时,在透明导电膜和与其相对的电极之间形成了静电场的状态下进行涂敷。
本发明中,上述电极的透明基板可以是玻璃板、塑料板等。优选的是,上述电极的透明导电膜例如是包含锡掺杂氧化铟(IndiumTin Oxide(ITO))、氟掺杂氧化锡(Fluorine doped Tin Oxide(FTO))、氧化锡(SnO2)等的导电性金属氧化物的薄膜。
光敏色素可以是例如包含联吡啶构造、三联吡啶构造等的具有配位基的钌配位化合物或铁配位化合物、卟吩类或酞菁类的金属配位化合物、进而曙红、罗丹明、部花青素、香豆素等有机色素等。
光催化剂可以是氧化钛(TiO2)、氧化锡(SnO2)、氧化钨(WO3)、氧化锌(ZnO)、氧化铌(Nb2O5)等的金属氧化物。
对电极用基板由铝、铜、锡等的金属片构成。
对电极的导电性粘接剂层可以由碳类导电性粘接剂构成,但不限于此。
根据需要,有时在作为负极的电极和作为正极的对电极之间插入电解液。电解液可以是将碘、碘化物离子、叔丁基吡啶等电解质成分溶解在碳酸亚乙酯或甲氧基乙腈等有机溶剂中而构成的溶液。
刷状碳纳米管的形成和转印按照公知的方法进行。
根据本发明,对电极用基板的一面被导电性粘接剂层覆盖,所以即使在两电极之间插入含有腐蚀性物质的电解液的情况下,该电解液也不会与上述基板接触,因此对电极基板不会被该电解液腐蚀。由此,能够构成具备功率转换效率高、耐腐蚀性优良的对电极的太阳能电池单元。
另外,通过隔着导电性粘接剂层将另外形成的刷状碳纳米管转印到对电极用基板的一面上,由此对电极用基板也能应用耐热性低的基板。
而且,若形成使对电极为片状电极且具有光催化膜的电极片,则能够提供一种挠性的光电转换元件。
根据本发明,利用对电极的刷状碳纳米管或光催化剂内所含的碳纳米管而使电子的移动改善,因此,即使用比以往少量的电解液,也能够构成高效率的染料敏化太阳能电池单元。
附图说明
图1是表示实施例1的太阳能电池单元的剖视图。
图2是表示实施例2的太阳能电池单元的剖视图。
图3是表示实施例3的太阳能电池单元的剖视图。
图4是表示实施例2的电泳法的剖视图。
图5是表示实施例3的利用电泳法的光催化剂层的形成方法的剖视图。
图6是表示实施例4的利用静电法的光催化剂层的形成方法的剖视图。
标号说明:
(1)透明基板
(2)(18)透明导电膜
(3)氧化钛粒子
(4)对电极用基板
(5)(15)碳纳米管膜
(6)密封片
(7)导电性粘接剂层
(8)光催化膜
(11)对电极
(12)(13)电极
(14)高压电源
(16)刮板(doctor blade)
(17)分散液
(25)碳纳米管粒子
具体实施方式
下面,为了具体说明本发明而列举几个本发明的实施例。
<实施例1>
在图1中,在玻璃或者塑料制的电极用透明基板(1)的一面上形成透明导电膜(2),在该导电膜(2)上形成了厚度为10~15μm的由氧化钛粒子(3)构成的光催化膜(8)。光催化膜(8)是在透明基板(1)上涂敷含有平均粒径为20~30nm的氧化钛粒子的糊剂并烧结而形成的。
使用被称作“N3”或者“N719”的钌类色素对光催化膜(8)进行染色后,使光催化膜(8)含浸碘类电解液。由此,构成了光催化剂电极。
另一方面,在由金属片构成的对电极用基板(4)的一面的整个面上涂敷碳类导电性粘接剂,另外使用热化学蒸镀、等离子体化学蒸镀等的方法将对基材实质上垂直形成的碳纳米管从该基材转印到导电性粘接剂层(7)上,以使其隔着导电性粘接剂层(7)与对电极用基板(4)实质上垂直取向,从而形成对电极(正极)(11),在碳纳米管膜(5)的表面(对电极表面)涂敷了碘类电解液。对电极的碳纳米管膜(5)的厚度为20μm。
将光催化剂电极(负极)与对电极(正极)平行配置,以使前者的光催化膜(8)与后者的碳纳米管膜(5)相对置,将由热固化树脂或者光固化树脂构成的密封片(6)插入两电极的周边部之间,用密封片(6)将两电极一体化,从而构成染料敏化太阳能电池单元。
对于该单元结构,利用AM1.5、100mW/cm2的标准光源照射来测量功率转换效率,其结果,转换效率为5.6%。
在使用以往的含碳纳米管的糊剂构成的太阳能电池单元中,功率转换效率为2~3%左右,所以能得到接近2倍的高值的功率转换效率。这是因为,能够形成利用实质上垂直的碳纳米管的电阻低的电路。
另外,研究了对电极的表面所涂敷的碘类电解液的腐蚀性。其结果,证实了对电极表面与初始状态相比没有变化,耐久性优良。
<实施例2>
在图2中,针对被ITO等透明导电膜(18)覆盖了表面的玻璃或者塑料制的透明基板(1),在该透明导电膜上形成了PEDOT或者PEDOT/PSS等导电性高分子的透明导电膜(2)。另外使用热化学蒸镀、等离子体化学蒸镀的等方法将对基材实质上垂直形成的碳纳米管从该基材转印到透明导电膜(2)上,以使与其实质上垂直取向。碳纳米管膜(15)的厚度约为8μm。
接着,如图4所示,将附带该碳纳米管膜(15)的基板(1)浸入氧化钛粒子(平均粒径20nm)分散着的分散液(最好是乙醇分散液)(17)中,在以与基板(1)对置的方式设置于该分散液(17)中的电极(13)和上述基板(1)的导电膜(2)之间,利用高压电源(14)形成大约-1kV/cm的电场,利用电泳法使氧化钛粒子(3)移动到碳纳米管膜(15)内并使之担持。两者相连接,使得基板(1)的导电膜(2)侧为负高压,电极(13)侧接地。
将由碳纳米管膜(15)和被其担持的氧化钛粒子(3)构成的光催化膜(8)用被称为“N3”或者“N719”的钌类色素进行染色后,在光催化膜(8)的表面涂敷了碘类电解液。这样,构成了光催化剂电极。
代替电泳法,也能够将成为光催化剂的前体的氯化物或者氢氧化物的溶液涂敷在附带碳纳米管膜的基板(1)上以后,使用水蒸气等将前体氧化,从而使碳纳米管膜表面担持预定的光催化粒子。或者,还能够滴下将含有平均粒径为20~30nm的氧化钛粒子等的光催化剂的糊剂用乙醇等稀释后的稀释液,并进行干燥、烧结,从而使碳纳米管表面担持光催化粒子。
由碳纳米管膜(15)和被其担持的氧化钛粒子(3)构成的光催化膜(8)担持着介质至各管前端(碳纳米管膜的表面)为止。
与实施例1相同,形成了对电极(正极)(11)。
对电极的碳纳米管膜(5)的厚度为20μm。
将光催化剂电极(负极)相对于对电极(正极)并行配置,使得前者光催化膜(8)与后者碳纳米管膜(5)相对置,在两电极的周边部之间插入由热固化树脂或者光固化树脂构成的密封片(6),将两电极用密封片(6)进行一体化,从而构成了染料敏化太阳能电池单元。
对于该单元结构,通过AM1.5、100mW/cm2的标准光源照射测量功率转换效率,其结果,功率转换效率为7.0%。另外,在代替电泳法而采用将光催化剂的前体溶液涂敷在附带碳纳米管膜的基板(1)上以后经过前体氧化使碳纳米管膜表面担持预定的光催化粒子的方法的情况下、或者使用上述稀释/滴下法进行光催化粒子的担持的情况下,功率转换效率为6.6~6.8%。
通过使碳纳米管膜的密度和对其的氧化钛的担持量等最佳化,能够进一步提高转换效率。
<实施例3>
在图3中,在玻璃或者塑料制的电极用的透明基板(1)的一个面上形成了透明导电膜(2)。
另外,将氧化钛光催化粒子(平均粒子径20nm)和碳纳米管(多壁碳纳米管(MWNT))的长度为1μm的粒子(使MWNT在乙醇中分散并用超声波清洁器进行粉碎后用过滤器取出1μm以下的MWNT后的粒子)混合,向该混合物中加入乙醇和水,制作成糊剂。在该实施例中对碳纳米管使用了MWNT,但也可以使用单壁碳纳米管(SWNT)或双壁碳纳米管(DWNT)。
用刮板将该糊剂涂敷在透明基板(1)上的透明导电膜(2)上并制成膜,在温度150℃下进行干燥,形成了包含氧化钛粒子(3)和碳纳米管粒子(25)的光催化膜(8)。
在该实施例中,使用包含氧化钛粒子(3)和碳纳米管粒子(25)的糊剂形成了膜,但也能够稀释上述糊剂液,将附带透明导电膜(2)的基板(1)浸入该稀释液内,在基板侧形成约-1kV/cm的电场,使用电泳法进行膜生成。即,在图5中,针对被ITO等透明导电膜(18)覆盖了表面的玻璃或者塑料制的透明基板(1),在该透明导电膜上形成了PEDOT或者PEDOT/PSS等导电性高分子的透明导电膜(2)。将该透明基板(1)浸入氧化钛粒子(3)和碳纳米管粒子(25)分散着的分散液(最好是乙醇分散液)(17)中,在以与基板(1)对置的方式设置于该分散液(17)中的电极(13)和上述基板(1)的导电膜(2)之间,利用高压电源(14)形成约-1kV/cm的电场,使用电泳法形成含有氧化钛粒子(3)和碳纳米管粒子(25)的光催化膜(8)。两者相连接,使得基板(1)的导电膜(2)侧为负高压,电极(13)侧接地。
在将光催化膜(8)用被称为“N3”或者“N719”的钌类色素染色后,在光催化膜(8)的表面涂敷了碘类电解液。这样,构成了光催化剂电极。
与实施例1相同,形成了对电极(正极)(11)。
将光催化剂电极(负极)与对电极(正极)并列配置,使得前者光催化膜(8)与后者碳纳米管膜(5)对置,在两者的周边部之间插入由热固化树脂或者光固化树脂构成的密封片(6),将两电极用密封片(6)进行一体化,从而构成了染料敏化太阳能电池单元。
对于单元结构,通过AM1.5、100mW/cm2的标准光源照射来测量功率转换效率,其结果,转换效率为6.6%。另外,在使用电泳法制作光催化剂电极时,对构成的染料敏化太阳能电池单元,通过AM1.5、100mW/cm2的标准光源照射测量功率转换效率,其结果,转换效率为6.5~6.8%。
<实施例4>
在图6中,将表面被ITO等透明导电膜(2)覆盖的玻璃基板或者塑料制的电极用的透明基板(1)配置在连接有高压电源(14)的金属板制的电极(12)上,与该基板(1)对置而配置了金属板制的对置电极(13)。在这些电极(12)(13)之间施加负高压,形成了静电场。两者相连接,使得电极(12)侧为负高压,对置电极(13)侧接地。
在该实施例中,在电极之间形成了-1.5~-2kv/cm的电场。
在该状态下,在透明电极膜上涂敷含有氧化钛粒子(3)等的光催化剂和用超声波清洁器进行了粉碎的碳纳米管粒子(25)的混合物的糊剂,并且使用由树脂制抹刀形成的刮板(16)将糊剂延展,使得糊剂表面变得均匀,从而形成了涂膜。
该涂层中呈分散状所含的碳纳米管粒子通过形成在电极之间的静电场而移动到基板(1)侧,或者在光催化剂层中与基板(1)面垂直的方向上一致。在此,分散碳纳米管粒子即使不朝向与基板(1)面完全垂直的方向而稍许倾斜也不成问题。
在该状态下,利用来自外部的温风或者热风对湿润涂层进行干燥,并进行烧结,从而在基板(1)上的透明导电膜(2)上形成了含有氧化钛粒子(3)和碳纳米管粒子(25)的光催化膜(8)。
将光催化膜(8)用被称为“N3”或者“N719”的钌类色素进行了染色之后,在光催化膜(8)的表面涂敷了碘类电解液。这样,构成了光催化剂电极。
在该实施例中,糊剂涂敷时的膜厚大约为100μm左右,干燥并烧结后的光催化剂层(8)的膜厚为10μm左右。
与实施例1相同,形成了对电极(正极)(11)。
与实施例1相同,由上述光催化剂电极(负极)和上述对电极(正极)构成了染料敏化太阳能电池单元。
对该单元结构,通过AM1.5、100mW/cm2的标准光源照射来测量功率转换效率,其结果是转换效率为6.5~6.8%。

Claims (9)

1.一种光电转换元件,其通过呈对置状配置作为负极的电极和作为正极的对电极而构成,其特征在于:
上述电极是通过隔着透明导电膜将用光敏色素进行了染色的光催化膜形成在透明基板的一面上而构成的,
上述对电极是通过在对电极用基板的一面上隔着覆盖该面的碳类导电性粘接剂层转印另外形成的刷状碳纳米管来设置对上述对电极用基板的表面实质上垂直取向的刷状碳纳米管而构成的,在刷状碳纳米管膜的表面涂敷含有腐蚀性物质的电解液,通过上述碳类导电性粘接剂层来防止对电极用基板被上述电解液腐蚀。
2.根据权利要求1所述的光电转换元件,其特征在于:
上述电极是通过在透明基板上的透明导电膜上使相对于上述透明基板的面实质上垂直设置的刷状碳纳米管担持光催化粒子并用光敏色素对该光催化粒子进行染色而构成的。
3.根据权利要求1所述的光电转换元件,其特征在于:
上述电极是通过在透明基板上的透明导电膜上形成由碳纳米管粒子和光催化粒子的混合物构成的光催化膜并用光敏色素对该光催化膜进行染色而构成的。
4.根据权利要求3所述的光电转换元件,其特征在于:
上述电极与上述对电极的刷状碳纳米管相接触。
5.一种光电转换元件的制造方法,其特征在于:
制造呈对置状配置作为负极的电极和作为正极的对电极而构成的光电转换元件,
通过隔着透明导电膜将用光敏色素进行了染色的光催化膜形成在透明基板的一面上来构成上述电极,
在对电极用基板的一面上形成覆盖该面的碳类导电性粘接剂层,将另外形成的刷状碳纳米管转印到该导电性粘接剂层上以使其相对于上述对电极用基板的表面实质上垂直取向,从而构成上述对电极,在由刷状碳纳米管形成的碳纳米管膜的表面涂敷含有腐蚀性物质的电解液,通过碳类导电性粘接剂层来防止对电极用基板被上述电解液腐蚀。
6.根据权利要求5所述的光电转换元件的制造方法,其特征在于:
在透明基板的一面上形成透明导电膜,将另外形成的刷状碳纳米管转印到该透明导电膜上以使其相对于上述透明基板的面实质上垂直取向,使该碳纳米管担持光催化粒子,并用光敏色素对该光催化粒子进行染色,从而构成上述电极。
7.根据权利要求5所述的光电转换元件的制造方法,其特征在于:
在透明基板上形成透明导电膜,在该透明导电膜上形成由碳纳米管粒子和光催化粒子的混合物构成的光催化膜,并用光敏色素对该光催化膜进行染色,从而构成上述电极。
8.根据权利要求7所述的光电转换元件的制造方法,其特征在于:
当在上述透明导电膜上形成由碳纳米管粒子和光催化粒子的混合物构成的光催化膜时,将包含上述混合物的糊剂涂敷在透明导电膜上并使其干燥。
9.根据权利要求8所述的光电转换元件的制造方法,其特征在于:
在将上述糊剂涂敷在透明导电膜上时,在透明导电膜和与其相对的电极之间形成了静电场的状态下进行涂敷。
CN200880024464.9A 2007-07-12 2008-07-11 光电转换元件及其制造方法 Expired - Fee Related CN101689689B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007183329A JP5127330B2 (ja) 2007-07-12 2007-07-12 光電変換素子およびその製造方法
JP183329/2007 2007-07-12
PCT/JP2008/062545 WO2009008494A1 (ja) 2007-07-12 2008-07-11 光電変換素子およびその製造方法

Publications (2)

Publication Number Publication Date
CN101689689A CN101689689A (zh) 2010-03-31
CN101689689B true CN101689689B (zh) 2014-04-02

Family

ID=40228664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880024464.9A Expired - Fee Related CN101689689B (zh) 2007-07-12 2008-07-11 光电转换元件及其制造方法

Country Status (7)

Country Link
US (1) US20100132786A1 (zh)
EP (1) EP2169759B1 (zh)
JP (1) JP5127330B2 (zh)
KR (1) KR20100031738A (zh)
CN (1) CN101689689B (zh)
TW (1) TWI442579B (zh)
WO (1) WO2009008494A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015606B (zh) 2007-06-08 2015-02-04 满康德股份有限公司 IRE-1α抑制剂
JP5339756B2 (ja) * 2008-03-25 2013-11-13 日立造船株式会社 光電変換素子の製造方法
KR101562060B1 (ko) 2009-04-06 2015-10-21 삼성전자주식회사 전기 에너지 발생 장치 및 그 제조 방법
JP2011142027A (ja) * 2010-01-08 2011-07-21 Hitachi Zosen Corp 色素増感太陽電池の製造方法
CN102859037A (zh) * 2010-04-22 2013-01-02 日立造船株式会社 在透明电极上形成光催化膜的方法
CN102859036A (zh) * 2010-04-22 2013-01-02 日立造船株式会社 在透明电极上形成光催化膜的方法
CN102315311A (zh) * 2010-07-06 2012-01-11 杜邦太阳能有限公司 太阳能模块装置及其封边涂布方法
EP2641273A1 (en) * 2010-11-18 2013-09-25 Robert Bosch (Sea) Pte. Ltd. A photovoltaic device and method for the production of a photovoltaic device
JPWO2013065557A1 (ja) * 2011-11-01 2015-04-02 三菱電機株式会社 薄膜太陽電池セルおよびその製造方法、集積型薄膜太陽電池
JP2013149504A (ja) * 2012-01-19 2013-08-01 Hyogo Prefecture 多孔質半導体上で重合した色素による高耐久信頼型色素増感型光電変換装置
KR102061922B1 (ko) 2012-02-23 2020-01-02 트레드스톤 테크놀로지스, 인크. 전기 전도성이고 내부식성인 금속 표면
GB2501871B8 (en) * 2012-05-03 2022-08-17 Dyson Technology Ltd Hybrid Capacitor
JP6021104B2 (ja) 2012-08-30 2016-11-02 日立造船株式会社 太陽電池の発電層およびその製造方法並びに太陽電池
JP6326815B2 (ja) * 2013-12-27 2018-05-23 日本ゼオン株式会社 太陽電池用電極基板
CN105023756B (zh) * 2015-05-27 2017-11-14 新余学院 一种用于染料敏化太阳电池的整体式纸炭对电极的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610987A (zh) * 2002-06-14 2005-04-27 日立麦克赛尔株式会社 光电转换元件及其制造方法
CN1756716A (zh) * 2003-05-30 2006-04-05 富士施乐株式会社 碳纳米管器件及该器件的制造方法和碳纳米管转印体
WO2006067969A1 (ja) * 2004-12-22 2006-06-29 Fujikura Ltd. 光電変換素子用の対極及び光電変換素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291973B2 (ja) * 2001-02-08 2009-07-08 大阪瓦斯株式会社 光電変換材料および光電池
JP2004111216A (ja) * 2002-09-18 2004-04-08 Inst Of Research & Innovation 色素増感型太陽電池およびナノカーボン電極
JP2004165474A (ja) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd 光電変換素子及びその製造方法
JP2004241228A (ja) * 2003-02-05 2004-08-26 Toin Gakuen プラスチックフィルム電極及びそれを用いた光電池
JP2004319661A (ja) * 2003-04-15 2004-11-11 Fujikura Ltd 光電変換素子用基材およびその製造方法ならびに光電変換素子およびその製造方法
AU2003902117A0 (en) * 2003-05-05 2003-05-22 Sustainable Technologies International Pty Ltd Photovoltaic device
WO2005034276A1 (ja) * 2003-10-06 2005-04-14 Ngk Spark Plug Co., Ltd. 色素増感型太陽電池
KR101074779B1 (ko) * 2005-12-29 2011-10-19 삼성에스디아이 주식회사 탄소나노튜브를 이용하는 반도체 전극, 그의 제조방법 및그를 포함하는 태양전지
US20080072961A1 (en) * 2006-09-26 2008-03-27 Yong Liang Nanosized,dye-sensitized photovoltaic cell
KR100854712B1 (ko) * 2006-10-13 2008-08-27 한국과학기술연구원 탄소소재층을 포함하는 염료감응 태양전지용 상대전극 및이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610987A (zh) * 2002-06-14 2005-04-27 日立麦克赛尔株式会社 光电转换元件及其制造方法
CN1756716A (zh) * 2003-05-30 2006-04-05 富士施乐株式会社 碳纳米管器件及该器件的制造方法和碳纳米管转印体
WO2006067969A1 (ja) * 2004-12-22 2006-06-29 Fujikura Ltd. 光電変換素子用の対極及び光電変換素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2004-319661A 2004.11.11

Also Published As

Publication number Publication date
US20100132786A1 (en) 2010-06-03
EP2169759A4 (en) 2010-09-08
EP2169759A1 (en) 2010-03-31
JP2009021123A (ja) 2009-01-29
TWI442579B (zh) 2014-06-21
CN101689689A (zh) 2010-03-31
EP2169759B1 (en) 2012-10-17
TW200910610A (en) 2009-03-01
KR20100031738A (ko) 2010-03-24
WO2009008494A1 (ja) 2009-01-15
JP5127330B2 (ja) 2013-01-23

Similar Documents

Publication Publication Date Title
CN101689689B (zh) 光电转换元件及其制造方法
Li et al. Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells
Kavan et al. Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets
Mehmood et al. Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs)
Jeon et al. Pt nanoparticles supported on polypyrrole nanospheres as a catalytic counter electrode for dye-sensitized solar cells
Lee et al. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes
Seo et al. Influence of electrolyte composition on the photovoltaic performance and stability of dye-sensitized solar cells with multiwalled carbon nanotube catalysts
Zhang et al. Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar sells
US20110056563A1 (en) Electrolyte composition
Zheng et al. Highly efficient iodide/triiodide dye-sensitized solar cells with gel-coated reduce graphene oxide/single-walled carbon nanotube composites as the counter electrode exhibiting an open-circuit voltage of 0.90 V
Ghamouss et al. Characterization of screen printed carbon counter electrodes for Co (II)/(III) mediated photoelectrochemical cells
Al-Bahrani et al. Enhanced electrocatalytic activity by RGO/MWCNTs/NiO counter electrode for dye-sensitized solar cells
Patrocinio et al. Role of polyelectrolyte for layer-by-layer compact TiO2 films in efficiency enhanced dye-sensitized solar cells
Zhang et al. Performance of dye-sensitized solar cells with various carbon nanotube counter electrodes
JP5127329B2 (ja) 光電変換素子およびその製造方法
Chen et al. Highly Catalytic Carbon Nanotube/Pt Nanohybrid‐Based Transparent Counter Electrode for Efficient Dye‐Sensitized Solar Cells
Xu et al. Effects of ethanol on optimizing porous films of dye-sensitized solar cells
WO2013008642A1 (ja) 光電変換素子およびその製造方法ならびに電子機器ならびに光電変換素子用対極ならびに建築物
Han et al. Flexible counter electrodes with a composite carbon/metal nanowire/polymer structure for use in dye-sensitized solar cells
Singh et al. 2, 6-Bis (1-methylbenzimidazol-2-yl) pyridine: A new ancillary ligand for efficient thiocyanate-free ruthenium sensitizer in dye-sensitized solar cell applications
Fu et al. Plastic dye-sensitized solar cells with enhanced performance prepared from a printable TiO2 paste
Maddala et al. Optimal dye sensitized solar cell and photocapacitor performance with efficient electrocatalytic SWCNH assisted carbon electrode
Choi et al. Characteristics of dye-sensitized solar cells with surface-modified multi-walled carbon nanotubes as counter electrodes
Shu et al. Improved efficiency of CdS quantum dot sensitized solar cell with an organic redox couple and a polymer counter electrode
Ito et al. Porous carbon layers for counter electrodes in dye-sensitized solar cells: Recent advances and a new screen-printing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140402

Termination date: 20140711

EXPY Termination of patent right or utility model