CN101681924B - 形成具有量子阱沟道的非平面晶体管 - Google Patents

形成具有量子阱沟道的非平面晶体管 Download PDF

Info

Publication number
CN101681924B
CN101681924B CN2008800061794A CN200880006179A CN101681924B CN 101681924 B CN101681924 B CN 101681924B CN 2008800061794 A CN2008800061794 A CN 2008800061794A CN 200880006179 A CN200880006179 A CN 200880006179A CN 101681924 B CN101681924 B CN 101681924B
Authority
CN
China
Prior art keywords
layer
silicon
quantum well
kernel
planar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800061794A
Other languages
English (en)
Other versions
CN101681924A (zh
Inventor
C·O·徐
P·马吉
W·蔡
J·卡瓦列罗斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN101681924A publication Critical patent/CN101681924A/zh
Application granted granted Critical
Publication of CN101681924B publication Critical patent/CN101681924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66977Quantum effect devices, e.g. using quantum reflection, diffraction or interference effects, i.e. Bragg- or Aharonov-Bohm effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

在一个实施例中,本发明包括一种设备,所述设备具有:衬底;形成于所述衬底上的掩埋氧化物层;形成于所述掩埋氧化物层上的绝缘体上硅(SOI)内核;包覆在SOI内核周围的压缩应变量子阱(QW)层;以及包覆在QW层周围的拉伸应变硅层。还描述其他实施例并主张其权利。

Description

形成具有量子阱沟道的非平面晶体管
背景技术
通过在元素硅(Si)衬底上开发薄膜弛豫的晶格常数III-V半导体可以实现多种电子和光电子器件。能够实现III-V材料性能优点的表面层可以承载各种高性能电子器件,例如,用诸如但不限于锑化铟(InSb)、砷化铟镓(InGaAs)和砷化铟(InAs)等的极高迁移率材料制造的互补金属氧化物半导体(CMOS)和量子阱(QW)晶体管。尽管已经将这种高迁移率QW沟道结合到平面晶体管中,但尚未将它们结合到非平面晶体管中。
附图说明
图1是根据本发明实施例的器件结构的截面图。
图2是根据本发明实施例的结构的能带图。
图3是根据本发明实施例的方法的流程图。
具体实施方式
在各实施例中,可以将高迁移率应变量子阱(QW)沟道结合到诸如非平面金属氧化物半导体场效应晶体管(MOSFET)等的非平面结构中。这种非平面晶体管包括形成于下方氧化物层上的硅结构或鳍,接着可以在硅鳍周围形成栅极结构。通过这种方式,可以实现具有极好静电控制的高迁移率沟道,以进行最终的沟道长度缩放。此外,可以同时引入拉伸应变和压缩应变,以利用共同的材料内核分别优化n沟道MOSFET(NMOS)的硅中的电子输运和p沟道MOSFET(PMOS)的锗(Ge)中的空穴输运。此外,正确而充分大的导电性和价带偏移提供了电子和空穴的约束。利用实施例,可以利用常规叠置工程学形成晶体管器件,因为可以由硅形成最外面的内核层,以允许在其上形成栅极叠置体。
现在参考图1,其示出了根据本发明实施例的器件结构10的截面图。如图1所示,可以使用结构10在衬底30上形成NMOS或PMOS器件。在各实施例中,衬底30可以是高电阻率n或p型(100)偏离-取向Si衬底,但本发明的范围不受此限制。如图1所示,接下来可以在衬底30上形成掩埋氧化物层34。在各实施例中,可以由诸如二氧化硅(SiO2)或其他氧化物等的适当氧化物材料形成掩埋氧化物层34。
仍然参考图1,接下来可以形成绝缘体上硅(SOI)层。具体而言,可以沉积(或键合)SOI层并对其进行构图以获得SOI内核40,SOI内核是掩埋氧化物层34上的非平面结构。注意,该SOI内核是由宽度远小于掩埋氧化物层34的范围的硅鳍或窄条形成的。注意,该层也可以是发生应变的。如图1所示,压缩应变QW层42可以被包覆在SOI内核40周围。在各实施例中,QW层42可以是SOI内核40上选择性生长的Ge层。可以通过气相沉积方法进行生长,且厚度范围可以从1纳米(nm)-20nm。接下来,可以在QW层42上形成拉伸应变Si层44。在各实施例中,可以选择性生长Si层44,以包覆在QW层42周围。可以通过气相沉积方法进行生长,且厚度范围可以从1nm-20nm。利用这种构造,空穴(电子)可以迁移并被约束在QW层42之内,以实现高迁移率导通。
仍然参考图1,接下来可以在Si层44上形成栅极电介质层46。在各实施例中,可以利用原子层沉积(ALD)形成保形的栅极电介质层,从而包覆在Si/Ge/SOI形成的内核周围。在各实施例中,可以利用低介电常数(低k)材料,例如掺碳氧化物或其他这样的电介质来形成栅极电介质层46。在栅极电介质层46上可以形成栅电极层48。在各实施例中,可以使用ALD工艺来形成保形的栅电极层48。注意,在各实施例中,可以将类似的或不同的电极材料用于n沟道和p沟道MOSFET。
尽管以图1的实施例中的这一特定的实施方式示出,但本发明的范围不限于此。例如,在其他实施例中,可以使用具有适当隔离的体Si衬底来形成Si内核(即在给定的SOI衬底上方)。此外,除了由纯Ge形成的QW层之外,也可以利用发生压缩应变的高Ge含量的硅锗(SiGe)来形成QW层。在各实施例中,Ge浓度可以介于大约10%和100%之间。通过这种方式,可以为特定应用实现较厚的QW。尽管图1中未示出,完全完成的器件还可以包括由接触层形成的源电极和漏电极。对于NMOS器件而言,接触层可以是n+掺杂的,而对于PMOS器件而言,接触层可以是p+掺杂的。
因此,在各实施例中,可以利用高迁移率材料形成非平面晶体管器件,以形成高电子迁移率晶体管(HEMT)或高空穴迁移率晶体管(HHMT)或具有高速度和低功耗的高空穴迁移率晶体管(HHMT)。这种器件可以具有小于大约50nm的尺寸,开关频率大约为562吉赫(GHz)。这种器件可能能够工作在大约0.5-1.0伏之间而没有驱动电流的显著减小的情况下。此外,实施例可以在栅极长度上提供低于硅基器件的栅极延迟。
现在参考图2,其示出了根据本发明实施例的结构的能带图。如图2所示,能带图通过顶部的线示出了导带(即EC),通过下方的线示出了价带(即EV)。从图2的左侧开始,形成可以为纯硅的SOI层。在该层上方,可以形成QW层,可以由压缩应变锗或硅锗(SiGe)形成QW层。可以将QW沟道层形成为比SOI内核具有更小的带隙。在QW沟道层上方,可以形成上拉伸应变硅层,在一些实施例中,该层可以具有比SOI内核小的带隙,但具有比QW沟道层大的带隙。然后,如图2所示,可以在硅层上方形成电介质层,其具有比其他层更大的带隙。如图2所示,Ge层为空穴提供QW,Si层为电子提供QW。
现在参考图3,其示出了根据本发明实施例的方法的流程图。如图3所示,可以通过在Si衬底上形成掩埋氧化物层(方框110)开始方法100。接下来,可以在掩埋氧化物层上形成SOI内核(方框120)。例如,可以沉积(或键合)硅层并对其进行构图以形成SOI内核。然后可以在SOI内核周围包覆QW层(方框130)。例如,在一个实施例中,可以在SOI内核上生长应变压缩Ge或SiGe层。在QW层上方可以形成Si层,以包覆在QW层周围(方框140)。然后,可以在该结构上方形成栅极叠置体,其包括电介质层和栅电极(方框150)。在各实施例中,可以执行ALD工艺以获得保形的栅极电介质层和保形的栅电极。通过这种方式,可以形成具有高迁移率的非平面晶体管。
尽管已经针对有限数量的实施例描述了本发明,但本领域的技术人员将从中想到很多修改和变化。所附权利要求意在覆盖落在本发明的真实精神和范围之内的所有这种修改和变化。

Claims (11)

1.一种半导体设备,其包括:
衬底;
形成于所述衬底上的掩埋氧化物层;
直接形成于所述掩埋氧化物层上的绝缘体上硅内核,所述绝缘体上硅内核由所述掩埋氧化物层上的硅鳍形成;
直接包覆在所述绝缘体上硅内核周围的量子阱层,其中所述量子阱层是发生压缩应变的;以及
包覆在所述量子阱层周围的硅层,其中所述硅层是发生拉伸应变的。
2.根据权利要求1所述的设备,其中所述量子阱层由硅锗形成,且Ge浓度至少为10%。
3.根据权利要求1所述的设备,还包括:
形成于所述硅层上方的栅极电介质层;以及
形成于所述栅极电介质层上方的栅电极层。
4.根据权利要求3所述的设备,其中所述设备包括非平面晶体管,其中所述量子阱层包括所述非平面晶体管的沟道。
5.根据权利要求4所述的设备,其中所述非平面晶体管包括高电子迁移率晶体管或高空穴迁移率晶体管。
6.一种制造半导体设备的方法,其包括:
在衬底上形成掩埋氧化物层;
直接在所述掩埋氧化物层上形成绝缘体上硅内核,所述绝缘体上硅内核包括硅的窄条;
形成直接包覆在所述绝缘体上硅内核周围的压缩应变量子阱层;以及
形成包覆在所述量子阱层周围的硅层,其中所述硅层是发生拉伸应变的。
7.根据权利要求6所述的方法,还包括形成Ge浓度至少为10%的硅锗量子阱层。
8.根据权利要求6所述的方法,还包括形成非平面晶体管,其中所述量子阱层包括所述非平面晶体管的沟道。
9.根据权利要求8所述的方法,其中所述非平面晶体管包括高电子迁移率晶体管或高空穴迁移率晶体管。
10.根据权利要求6所述的方法,还包括:
形成栅极电介质层,该栅极电介质层形成在所述硅层上方;以及
在所述栅极电介质层上方形成栅电极层。
11.根据权利要求10所述的方法,还包括利用原子层沉积工艺形成所述栅极电介质层和所述栅电极层。
CN2008800061794A 2007-03-27 2008-03-21 形成具有量子阱沟道的非平面晶体管 Active CN101681924B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/728,891 US7928426B2 (en) 2007-03-27 2007-03-27 Forming a non-planar transistor having a quantum well channel
US11/728,891 2007-03-27
PCT/US2008/057951 WO2008118825A1 (en) 2007-03-27 2008-03-21 Forming a non-planar transistor having a quantum well channel

Publications (2)

Publication Number Publication Date
CN101681924A CN101681924A (zh) 2010-03-24
CN101681924B true CN101681924B (zh) 2012-01-11

Family

ID=39788965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800061794A Active CN101681924B (zh) 2007-03-27 2008-03-21 形成具有量子阱沟道的非平面晶体管

Country Status (5)

Country Link
US (5) US7928426B2 (zh)
KR (1) KR101131308B1 (zh)
CN (1) CN101681924B (zh)
DE (1) DE112008000571B4 (zh)
WO (1) WO2008118825A1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505494B1 (ko) * 2008-04-30 2015-03-24 한양대학교 산학협력단 무 커패시터 메모리 소자
US7915642B2 (en) * 2008-12-30 2011-03-29 Intel Corporation Apparatus and methods for forming a modulation doped non-planar transistor
JP2010199377A (ja) * 2009-02-26 2010-09-09 Panasonic Corp トランジスタ実装体及びその製造方法
US8816391B2 (en) 2009-04-01 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain engineering of devices with high-mobility channels
CN101853882B (zh) 2009-04-01 2016-03-23 台湾积体电路制造股份有限公司 具有改进的开关电流比的高迁移率多面栅晶体管
US8455860B2 (en) 2009-04-30 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing source/drain resistance of III-V based transistors
US9768305B2 (en) * 2009-05-29 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
US8617976B2 (en) 2009-06-01 2013-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain re-growth for manufacturing III-V based transistors
US8440998B2 (en) 2009-12-21 2013-05-14 Intel Corporation Increasing carrier injection velocity for integrated circuit devices
US8283653B2 (en) * 2009-12-23 2012-10-09 Intel Corporation Non-planar germanium quantum well devices
US8368052B2 (en) 2009-12-23 2013-02-05 Intel Corporation Techniques for forming contacts to quantum well transistors
US8633470B2 (en) 2009-12-23 2014-01-21 Intel Corporation Techniques and configurations to impart strain to integrated circuit devices
US8575653B2 (en) 2010-09-24 2013-11-05 Intel Corporation Non-planar quantum well device having interfacial layer and method of forming same
US8890207B2 (en) 2011-09-06 2014-11-18 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET design controlling channel thickness
US9368502B2 (en) * 2011-10-17 2016-06-14 GlogalFoundries, Inc. Replacement gate multigate transistor for embedded DRAM
KR101805634B1 (ko) * 2011-11-15 2017-12-08 삼성전자 주식회사 Ⅲ-ⅴ족 배리어를 포함하는 반도체 소자 및 그 제조방법
US8994002B2 (en) 2012-03-16 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET having superlattice stressor
US9735239B2 (en) 2012-04-11 2017-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device channel system and method
US8847281B2 (en) * 2012-07-27 2014-09-30 Intel Corporation High mobility strained channels for fin-based transistors
CN103594512B (zh) * 2012-08-16 2017-09-05 中国科学院微电子研究所 半导体器件及其制造方法
EP2741337B1 (en) 2012-12-07 2018-04-11 IMEC vzw Semiconductor heterostructure field effect transistor and method for making thereof
CN103915336B (zh) * 2013-01-08 2016-05-25 中芯国际集成电路制造(上海)有限公司 三维量子阱晶体管及其形成方法
CN103943498B (zh) * 2013-01-22 2016-08-10 中芯国际集成电路制造(上海)有限公司 三维量子阱晶体管及其形成方法
US9159824B2 (en) 2013-02-27 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9385234B2 (en) 2013-02-27 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9087902B2 (en) 2013-02-27 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
CN104347408B (zh) * 2013-07-31 2017-12-26 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
CN104347407B (zh) * 2013-07-31 2017-10-31 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法
WO2015047341A1 (en) * 2013-09-27 2015-04-02 Intel Corporation Non-planar semiconductor devices having multi-layered compliant substrates
CN105684154B (zh) * 2013-09-27 2019-08-20 英特尔公司 具有用于应力和带隙调节的可变包覆层/芯尺寸的晶体管结构
KR20160061980A (ko) * 2013-09-27 2016-06-01 인텔 코포레이션 클래딩된 ⅲ-ⅴ족 채널 재료들에서 높은 이동도를 달성하기 위한 방법들
US9373706B2 (en) 2014-01-24 2016-06-21 Samsung Electronics Co., Ltd. Methods of forming semiconductor devices, including forming a semiconductor material on a fin, and related semiconductor devices
US9590105B2 (en) * 2014-04-07 2017-03-07 National Chiao-Tung University Semiconductor device with metal alloy over fin, conductive layer over channel region of fin, and semiconductive layer over conductive layer and formation thereof
US9331073B2 (en) 2014-09-26 2016-05-03 International Business Machines Corporation Epitaxially grown quantum well finFETs for enhanced pFET performance
KR101611337B1 (ko) 2014-11-14 2016-04-12 울산과학기술원 표면 거칠기 산란을 최소화 또는 없앤 고성능 저전력 전계효과 트랜지스터 소자의 제조방법
US10833175B2 (en) * 2015-06-04 2020-11-10 International Business Machines Corporation Formation of dislocation-free SiGe finFET using porous silicon
US11251270B2 (en) * 2017-08-02 2022-02-15 Faquir Chand Jain Quantum dot channel (QDC) quantum dot gate transistors, memories and other devices
CN110970432A (zh) * 2018-09-28 2020-04-07 芯恩(青岛)集成电路有限公司 全包围栅纳米片互补反相器结构及其制造方法
US11799035B2 (en) * 2019-04-12 2023-10-24 The Research Foundation For The State University Of New York Gate all-around field effect transistors including quantum-based features
US11678451B2 (en) * 2020-05-04 2023-06-13 Panduit Corp. Data center cabinet
US11569352B2 (en) * 2020-05-28 2023-01-31 Taiwan Semiconductor Manufacturing Company Limited Protrusion field-effect transistor and methods of making the same
DE102021109149A1 (de) * 2020-05-28 2021-12-02 Taiwan Semiconductor Manufacturing Co. Ltd. Vorsprungsfeldeffekttransistor und dessen herstellungsverfahren

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0537889A2 (en) 1991-10-14 1993-04-21 Fujitsu Limited Quantum interference effect semiconductor device and method of producing the same
JP3443343B2 (ja) * 1997-12-03 2003-09-02 松下電器産業株式会社 半導体装置
US7205604B2 (en) * 2001-03-13 2007-04-17 International Business Machines Corporation Ultra scalable high speed heterojunction vertical n-channel MISFETs and methods thereof
US6515335B1 (en) * 2002-01-04 2003-02-04 International Business Machines Corporation Method for fabrication of relaxed SiGe buffer layers on silicon-on-insulators and structures containing the same
US6849487B2 (en) 2003-05-27 2005-02-01 Motorola, Inc. Method for forming an electronic structure using etch
US20060292765A1 (en) * 2003-06-26 2006-12-28 Rj Mears, Llc Method for Making a FINFET Including a Superlattice
US7105851B2 (en) * 2003-09-24 2006-09-12 Intel Corporation Nanotubes for integrated circuits
KR100528486B1 (ko) 2004-04-12 2005-11-15 삼성전자주식회사 불휘발성 메모리 소자 및 그 형성 방법
US20060148182A1 (en) 2005-01-03 2006-07-06 Suman Datta Quantum well transistor using high dielectric constant dielectric layer
US20060237801A1 (en) 2005-04-20 2006-10-26 Jack Kavalieros Compensating for induced strain in the channels of metal gate transistors
US7602006B2 (en) * 2005-04-20 2009-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor flash device
US20080050883A1 (en) * 2006-08-25 2008-02-28 Atmel Corporation Hetrojunction bipolar transistor (hbt) with periodic multilayer base
US7564081B2 (en) * 2005-11-30 2009-07-21 International Business Machines Corporation finFET structure with multiply stressed gate electrode
US8319295B2 (en) * 2007-01-10 2012-11-27 Imec Use of F-based gate etch to passivate the high-k/metal gate stack for deep submicron transistor technologies

Also Published As

Publication number Publication date
KR20090125148A (ko) 2009-12-03
DE112008000571B4 (de) 2016-10-27
CN101681924A (zh) 2010-03-24
DE112008000571T5 (de) 2010-02-11
US20120211726A1 (en) 2012-08-23
KR101131308B1 (ko) 2012-03-30
US20180033875A1 (en) 2018-02-01
WO2008118825A1 (en) 2008-10-02
US20080237577A1 (en) 2008-10-02
US20150084000A1 (en) 2015-03-26
US7928426B2 (en) 2011-04-19
US9806180B2 (en) 2017-10-31
US20110156006A1 (en) 2011-06-30
US8921830B2 (en) 2014-12-30
US10355112B2 (en) 2019-07-16
US8237153B2 (en) 2012-08-07

Similar Documents

Publication Publication Date Title
CN101681924B (zh) 形成具有量子阱沟道的非平面晶体管
Ajayan et al. Analysis of nanometer-scale InGaAs/InAs/InGaAs composite channel MOSFETs using high-K dielectrics for high speed applications
JP4301506B2 (ja) 低漏洩ヘテロ接合垂直トランジスタおよびその高性能デバイス
US20110018065A1 (en) Method for manufacturing semiconductor device and semiconductor device
CN103311306A (zh) 带有InAlP盖层的GeSn沟道金属氧化物半导体场效应晶体管
JP2004531901A5 (zh)
CN102610640A (zh) 一种高驱动电流的iii-v族金属氧化物半导体器件
Kim et al. L $ _ {\mathrm {g}}= 80$-nm Trigate Quantum-Well In 0.53 Ga 0.47 As Metal–Oxide–Semiconductor Field-Effect Transistors With Al 2 O 3/HfO 2 Gate-Stack
Barraud et al. Top-down fabrication of epitaxial SiGe/Si multi-(core/shell) p-FET nanowire transistors
Barraud et al. Top-down fabrication and electrical characterization of Si and SiGe nanowires for advanced CMOS technologies
Barraud et al. Strained silicon directly on insulator N-and P-FET nanowire transistors
Ikeda et al. Enhancement of hole mobility and cut-off characteristics of strained Ge nanowire pMOSFETs by using plasma oxidized GeOx inter-layer for gate stack
CN106298947A (zh) 一种双栅InGaAs PMOS场效应晶体管
Talukdar et al. Dependence of electrical characteristics of Junctionless FET on body material
TWI628703B (zh) 環閘極iii-v族量子井電晶體及鍺無接面電晶體及其製造方法
Lee et al. Interactive Lattice and Process-Stress Responses in the Sub-7 nm Germanium-Based Three-Dimensional Transistor Architecture of FinFET and Nanowire GAAFET
Claeys Trends and challenges in micro-and nanoelectronics for the next decade
Rim Strained Si surface channel MOSFETs for high-performance CMOS technology
Khichar et al. Strained silicon devices: mechanism & applications
Hashemi et al. SiGe devices
CN103311307A (zh) 带有InAlP盖层的Ge沟道金属氧化物半导体场效应晶体管
Greene et al. InGaSb MOSFET channel on metamorphic buffer: Materials, interfaces and process options
Bedell et al. Opportunities and challenges for germanium and silicon-germanium channel p-FETs
Chau Integrating III-V on silicon for future transistor applications.
Claeys et al. Advanced semiconductor devices for future CMOS technologies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant